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. INTRODUCTION

This paper is an expanded version of notes for lectures delivered at the Mathematics Institutes

- of Bonn University and the University of Geneva during the summer of 1966. While it includes some new

results, the main emphasis has been on exposition and on developing in detail a particular perspective
toward non—linear analysis. As explained in section 1, it is my contention that non-linear analysis

has developed beyond the stage of being a collection of isolated problems to be treated by ingenious

ad hoc techniques pulled from an esoteric bag of tricks. It can now be treated as a relatively mature
mathematical subject, which is to say it has a definite categorical framework. If, as is perhaps the
case, I have tended to overstress the functorial aspects of the theory, I hope this will be excused as
%he natural result of trying to emphasize my basic thesis. 1 should perhaps also apologize for a

| : failure to pay sufficient attention to fhe problem of c;eﬁfting various mathematicians with the develSp—
ment of the ideas that arise along the way. My only e%éﬁgéjhere is that I mean these notes to be read
either after or along with James Eells review article, "s setting for- global analysis" which has recently
appeared in the Bulletin of the American Mathematical Society, and the reader will find there a careful

an re adequate treatment of these bibliographical questions which T have tended to slight.

I As Tar as pre-requisites go, I have tried to make these notes immediately accessible to anyone

familiar with Lang's "Introduction to Differentiable Manifolds" and Chapter IV of Annels Study no. 57,

f "Seminar on the Atiyah-Singer Index Theorem", although actually very little is needed from the latter

source and I have tried to recall what is in section 2. Otherwise the goal has been to make these

i ‘notes self-contained. An exception is Chapter 18 on the index problem for non-linear elliptic differ-
ential operators. This sectign is a very condensed report of research in progress and will probably
be rather tough sledding for anyone not reasonably familiar with the Atiyah-Singer index theorem. It
was put in only to éuggeét the flavor of-the kind of pértially analytic, partially topological -question

[ which I suspect may prove to be one fruitful and interesting direction in which global non-linear

analysis may move in the near future.

I would like to thank Karen Uhlenbeck and Stephen Greenfield for suggesting numerous improvements

incorporated in the final version of this paper.
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During the preparation of this paper the author was partially supported by National Science

Foundation Grants 4598 and 6085 and by a fellowship from the Alfred P. Sloan Foundation.
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I WHAT IS GLOBAL ANALYSIS?

It has become 2 more or less accepted principle that a mathematica; specialty is defined by
the category it studies. For example, linear algebra is the study of vector.ﬁpaces and linear maps,
topology the study of spaces and continuous maps, homotopy theory the study of spaces and homotépy
classes of maps, differential topologylthe study of differentiable manifolds and differentiable maps,
and so on. 'Thus to answer the Question "What is global analysis?" we should specify a partienlar
category, and this we shall proceed %o do.

First we consider global linear analysis. From an abstract point of view linear analysis
is simply the study of topological vector spaces and continuous linear maps. In concrete linear
analysis the topological vector spaces in question are classically spaces of real, complex, or more
generally vector valued functions on R or on some domsin in an Ifﬁ and the linear maps are
differential (or more generally integro-differential) operators. This might be called local linear
analysis. To pass Lo global 1inegr analysis we replace the domain in ® by an arbitrary different;
iable_manifold M, and rather than merely‘taking topological vector spaces of vector valued functions
on M Wwe more generally consider topological vector spaces of-crqss sections of differentiable wvector
bundles over M. The continuous linear maps are again-defined by linegr differential or integro-
differential operators. This is the general sefiing for such results as the Hodge theory of harmonic
forms, the Atiyah-Singer Index Theorem, and the Atiyah-Bott Fixed Point Formula. Roughly spéaking the
questiong here concern relating analytical invariants of the operators involved with topological invar-
"iants of M and the given vector bundles.

Finally we must say what non-linear anslysis is. Often one sees in'the literature the state-
ment that non-linear anélysis ig simply all of analysis which is not linear. This is of course not a |
definition at all since it.begs the quéétion {what is énalysis?), and it could be treated as Just a bad
| joke were it not apparently teken so seriously. A corollary of this non-definition is that non-linear
anaiysis can never be a real subject of s£u633 but only a collection of isolated problems and their
solutions. This poinﬁ of view has had a pernicious effect on the‘growth of the whole field.

In fact there is a unifying technigue which runs =11 through what is usually called non-linear
analysis snd which gives an important clue to what it is about, namely the idea of "linearization”,
i.e. reﬁlacing & non-linear mep "locally".by an epproximating linear map. If one looks behind this,

one sees that what is usually the case is that the sets on which the map is defined and into which it

maps have nabtural infinite dimensional manifold structures with respect to which the map is different-

t
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isble and that the linearization of the map near a given point is just its differential at that point.
Thus what abstfact non-linear analysis turns out to be is the study of infinite dimensional manifolds
and differentidble maps, i.e. 4infinite dimensional differential topology in another guise.

It should be admitted that this has to be taken with & grain of salt. There are subjects
which are often put under the general heading of non-linear analysis, suchk as Leray-Schauder fixed
point theory, where the meps are not differentiazble., Basically however the priﬁciple is correct, "non-
linear" means "differentiable", not just "contimuous”. Thus non-linear analysis lies in an inter-
mediate position between linear analysis and topqlogy, and topics such as Leray~Schauder theory should
properly be considered as belonging to topology (indeed to homotopy theory). 7

This same principle, that to pass from linear to non-liﬁear means to replace linear spaces
and maps by differentisble manifolds and maps suggests the proper definition of global non-linear
analysis. Instead of differentiable vector bundles over a differentiable manifoid M we consider more
generally differentisble fiber bundles over M. Instead of topological vector spaces of sections of
the vector bundle we consider differentisble manifolds of sections of the fiber bundle, and for maps
we again take differential operators (now non-linear) which define differentlable maps between such
manifolds of sections.

. This seems to be the proper framework for a large variety of diverse subjects. Perhaps
most obvious afe the theory of non-linear differential operators and the caleulus of variations, in
particular Morse Theory and Iusternik-Schnirelman Theory. 3But also as Abraham has shown it is the
natural setting for general transversality theorems. For a survey of the present status and recent 1
history qf the field we refer the reader to the excellent review article by James Eells, Jr. which .
will appear shortly in the Bulletin of the American Mathematical Society under the title "A setting
for global analysis“; '

Before stating the precise scope and purpose of the present paper let us summarize what

has been said above in a diagram.
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h o T 1
The Banach spaces of sections of a vector bundle-that are actually considered by analysts have

proliferated greatly in the past several years. Aside from the classical Ck, the Helder spaces Ck+a;

énd the Sobolev spaces ﬁﬁ there are many more exotié spaces that arise through various interpolation

schemes and by taking "boundary values". In the first part of this paper we have abstracted four

basic axioms (B §1) - (B §4) that these spaces all seem to possess, and develop their more elementary

eonsequences. Our real goal however is the passage from Banach spaces of sections of a vector bundle
to Banach manifolds of sections of a differentiable fiber bundle. The literature on this subject is in
a somewhat unsatisfactory state. The conditions under which this transition goes through in general
have not been clear, and the various techniques for putting on the differentisble structure have alwéjs
seemed a little arbificial. We shall show that if a Banach space sectlon functor satisfies one add-

itional "axiom (B'§5) then it extends in a very natural way to a Banach manifold section functor on

_fiber bundles. -

. The'reader is expected to be familiar with the basgic facts concernihgtdifferentiablefBanach

manifolas, as found for example in 8. Lang's Introduction to Differentisble Manifolds. We also assume

a knowledge of the elementary theory of differentiable vector bundles. Aside from this we have
attempted to make the discussion relatively self-contained. Sections 2 and 3 discuss jet bundles and
differential operators. These topics are basic to what follows. For a fuller discussion including

complete proofs the reader is referred to Chapter IV of Seminar on the,Atiyah—Singer Index Theorénb

Annals of Math. Study No. 57, referred to henceforth as 5.A.5.I.T.
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2. JETBUNDLES

Given a paracompact C manifold M ‘let VB(M) denote the category of ¢ vector bundles

over M, with ¢" vector bundle homomorphisms as the morphisms. Given aan object § of VB(M) let

" 8(E) denote the vector space of all sections of § and Ck(g) (k = 0,1,.. .”) _ the vector subspaces

of Ck-sections. Both S and all the Ck are functors; if I ¢ Hom (§,7) then we have the linear

map £,:8(6)———> 5(N) defined by (f,5)(x) = f(s(x)), and f, wmaps Ck(g) into CR(T[) for all k.
Recall VB 1is itself a (contravariant) functor; if ¢:M——> N is a ¢°  map we have the

: % . *
induced bundle construction. © :VB(N) > VB{M). For each fixed such @ the map ¢ is itself

a {covariant) functor; i.e. given a morphism f£:§ > T of VB(#) we have an induced morphism
%, ¥ %
o (£)2 (8) > 8(98)

*
which maps & (€) into & (CP §) for all k, namely st——> 8° @. Regarding § and S¢ as

* *
> @ (M) defined by ¢ (f)e = fe. There is also a linear map fp;: 8(8)

. functors from VB(W) to vector spaces, tpg is & natura.l transformation, i.e. we have coﬂmmta.tw:.ty

Jin the diagram

. - £,
SE) > s(1)
% cp“T;
56 E)) > 5@ (M)
(9" (£)}

We ghall be interested in the above mainly when @ is a diffeomorphism of M ‘onto an open

" submanifold of N, in which cagse if we regard ¢ as s.n identification {(soc M is an open submanifold

of N and ¢ is inclusioh) then all the above induced maps are restrictions.

| | Given a € vector bundle § over 'M and p g M define a subspace 75 (§) of c°'°(§') as
follows. Iet Xppee s ¥y be local coordinates at Pr Spp---a8y € c¢” (§) a local basis of sections of
.§ near p. Then if s = £, ...+ £,5, near p (f e C (M) then s e Zk(‘i) if end only if | '
,(Dafi)(p) =0 i=l,...4 and [o] <k where q =(al, cee ,an) are n-tuples of non-negative integers,

la] = apte.to, end 3 alal/axlal...ax:n. Tet Jk("';)P =c (§)/Z§(§)- and for s e O (€) 1et

jk'(s)(li) be its class in Jk & )P. Then it is possible in a unique way to make the Jk(ﬁ )P the fibers

d




6 : §o

of a € vector bundle Jk(g) over M so that jk(s)-e Cm(Jk(g)) for all s & C (£). The linear -

map 3, :¢ (8) > ¢°(a%(g)) is called the k-jet extension map.

Jk:VB(M) > VB{M} is functorial; given f £ Hom (g, M} there is a functorial induced map
Jk(f) s_Hom(Jk(g), Jk('n }) characterized by Jk(f)*jk(s) = jk(f*s) for 81l s £ C(E) .

Mso if @0

> M is a diffeomorphism of (& onto an open sub-manifold of M +then there
* * *
is a functorial induced vector bundle isomorphism Jk(rp ):Jk(rp E)m~ @ Jk(g') defined by

Jk(cp*)jk(s) = jk(s ° cp-l) for s'e Cm(cp*g). In particular when G S M and ¢ is the inclusion

o

> M then we get an isomorphism Jk(i)':J‘k(g |6} ~ Jk(g)IO given by
3 (5)(p) —— 5, (slo) ().
In view of the latter, in order to see the structure of JE (£) it suffices to consider the

case where £ is a trivial bundle E=0xV and & is open in ®'. 1In this case it is clear that

x _ '
FE)x0x O B,V ~ o x GF v
=0 |l <

where L‘g( Bn,v) is the space of symmetric j-linear maps of B into V and where the indices a"

as above denote n-tuples o = (al, .. .,an) of non-negative iz{tegers and ]ocl =y +...1 o, - The

natural isomorphism Lg ( ;Rn,v) ~ ? V is given by T+—> {T(ejl, ceey eng)} . where
. orl=3 ool =3
. oy % o . ‘
@y,---;€, 1is the standard basis for R and e~ is the q,-tuple (ei, e ,ei) . An element

5 E Cm(g) is a2 C mapof O into V. Its k-jet extension i (s) e cm((]*k(g)) “is given by a

kt+l-tuple, of maps (the jth being a Cmr mep of & into Lgfl( EY,V)) na.mély 3 (s) = {s,ds, des, . .,dks} ).
.o ,‘ o g
Since dfals(ec;l, .- .,enn) = D%, in the other representation of J'k(g) as @ V, we have

alge
. iy
5306) = BB

‘As & consequence of the wbove we note the Tollowing for future reférence. The k-jet

" extengion map jk:céo(g) —> Cm(Jk (g)) has a natural extension to a Iinear injection

3:C°(E)

—> @5e))-




“is a linear map c-k(D) (v, x) igx

3. DIFFERENTIAL OPERATORS

> ¢~ (1)

If € and T are cm vector bundles over M then a linear map D:Cw(g)
is called a k-th order linesr differential operator from (sections of) £ +to (sectioms of} 1 if
for s C () and p e M, jk(s)(p) = 0 implies (Ds)(p) = 0. The set of all such is a vector

space Diffk(‘i,ﬂ). If Te¢ Hom(Jk(‘:’. ),M) then sp——> T*(jk(s)) is clearly an element

Dy € Diffk(ﬁ,ﬂ). Moreover the map Tf—> D; is a linear isomorphism of Hom(Jk(§), n) with

Dif‘fk(g,'ﬂ). It follows that D e Diffk(g,‘l]) extends to a linear map D:Ck(g) > (1)

Let u he a strictly ﬁositive smooth measure on M, i.e. u 1is a Radon measure on M
and relative to local coordinates u is sbsolutely continuous with respect to Lebesque measure and

has a strictly positive c” Radon-Nikodym derivative. ILet £ and T be Riemannian vector bundles

" over M and let <, > denote the inner product in §_ . Br s,8, ¢ ¢®(z) having compact

X

support, let < s,,s, >§ = ‘[' < sl(x), sE(x) >§x du(x), and similarly for 1. Given a D e Diffk(g,"n)

<%
“there is a unigue D ¢ Diffk(ﬂ,g) called the formal adjolnt of D such that -

¥*

1755 >'ﬂ = <s,D 5, >§ whenever s, ¢ Ck(g ¥, S, € Ck('n) and at least one of s, and s, bas

< Ds

its support compact and disjoint from 3JM. !

-

Given vector bundles €,7,{ ©over M and D, e Diff,(T¢), D, € Diff (g,7), then

DD, Dzl.ffkﬁe(g,g). .In particular since i, € lefz(g,J'e’(g)) and J_ ¢ lefk(J ﬂ(g ),d J'e(g)) there

exists a unique T ¢ Hom(Jk.u(g) ,Jle ()) such that T*'jk+,e, = §id,» This T is easily seen to be

injective and so identifies 7= +,€.(§) naturally with a sub-bundle of a* (JJ, (£)). From thiz it follows

easily that every D e Diffk+£(§,n) can be written as a composite D = DD, where

D, € DrEE,05E)) and Dy e pirg,(FKE)-

If De Diffk(g,'n) then for each cota.ngent:vector at a point x e M, say (v,x), there

> 9, called the (k-th order) symbol of D at (v,x), which

" can be defined as follows: choose f £ C (M) such that £(x) = 0 and af = v; then for

eef, ck(D)(v,x)e = %3 D(fks)(x), where s is any element of Cm(g) such that s(x) = e. It

can be shown that qk(D) is linear in D, and is zero for all (v,x) & T (M) if and only if




8 - : §3
D e Diffy (5,m). Also o, (D) (v,%) = o, (0)(v,x)" emair Fe Difg (1,0) then

1 orn @0 =5,F) (5 x)a, (0} (0.
Suppose now M=TR", £ =R' x V and M= B x W. Then Jk(g) éIRn X b?< v
go an element T ¢ -Hom(Jk(g ),n) is given by an indexed set {7} ldd <k of ¢ maps of R into

the vector space L(V,W) of linear maps of V into W. HNowa C section s of E{n) is =

¢ map of B into V(W) and clearly (DTS)(X) = 2 ‘l:)gx)(})as)(x). If (v,p) is a

: lal <% '
n o : :

cotangent vector of IR° at p then v = z vi(dxi):p where (vl, A JeTR® and it is easily :

: i=1

seen that : £

5

oy (0%, p) = z v (p)

'Oﬂl =k ;

where V% = v?l VZE. . .vnn. Since we can always choose local coordinate systems in any M and

trivialize bundles locally the above shows what differential operators look like locally and also

how to compute their symbols:locally.




4. BANACH SPACE VALUED SECTION FUNCTORS

Let M be a function which asscciabtes to each ¢” vector bundle E over a compact

.

n-dimensibnal C00 manifold (possibly with boundary) a complete, normable, topological vector space
M{g) which includes C"(¢) and which is a subspace of the vector space S(§) of all sections of .

Actually for certain examples  M{€) will be a little more general. Namely let T(£) be the subspace

consisting of sections which are zero almost everywhere {recall that since the base of §

ig differentiable there is a natural notion of sets of measure zero, namely those carried into sets

of Lebesque measure zero by all charts). In many cases () will not be T. and in fact HE)

1

will be the closure of the origin and it is really %(E)/W(E) which is the complete normable space
in question. Having remarked this we shall as usual ignore the distinction between sections and

classes of -gectlions which are equail almost everywhere.

Our first axiom is a functoriallty assumption.

Axiom (B§1). For each compact €  n-dimensional menifold M, M is & functor

from VB(M) to the category of Bamach spaces. To be precise if g,7 are (o

vector bundles over M and f ¢ Hom(g,7) then we assume that - f,:5(g) > 8{n)

‘maps  M(E) dinto  M(n) and defises thereby a continucus linear map

m(e)y: mE)

> (7))

If ¢ isa ¢ scalar valued function on the base space of E , then multiplication by

y defines an element T‘b ¢ Hom(g,£). If ¥y ¥ is a C  partition of unity for the base of |
E then m(‘l‘ ) paeas m(Twlr Y- gives a partition of the identity map of M(E) into continuous linear

Moreover 1f s 577!() then WZ(T ¥s (x) = (x)s(x) so support (ﬂ(Tqr)s)g_ support ¢ and

s vherever § = 1. As an immediate consequence we get the following:

k.l Iocalization Theorem: Let E bea ¢ vector .}5undle over ‘s compact
) . ) o . 7 . .
n-dimensional C manifold M, s ¢ 8(§) and suppose that for each p e M

there is a neighborhood U of p in M and s, € M (&) such that

slu = sp|U. Then s 557]{ (g)..




The category VB(M) is additive and Whitney sum is the bi-product. Moreover M-

is clearly an additive functor. .Hence we have the:

4.2 Direct Sum Theorem: If - ¢ and 71 are ¢” vector bundles over M then

me® )= mE)e wn) ‘

The second basic property our section functors % will be assumed to possess is functor-

iality with respect to diffeomorphisms of the base space, often referred to as "coordinate invariance™.
Axiom (B §2). Let M and N be compact n-dimensional C manifolds and let
@:M—> N be a diffeomorphism of M into N. If £ is a vector bundle over

N then st——3> s o g is a continuous linear map of % (E) into % (cpi'g).

Remark: In all natural examples this map is onto. If Mc N and ¢ dis inclusion then

(B §2) just says that restriction is continucus from M (€) to ME|M) and in this case onto-ness

expresses the possibility of extending s e M (E|M) to an element of N €). In fact usually

restriction has a continuous, linear right inverse.

4.3 "Meyer-Vietoris" Theorem: ILet M be a compact n-dimensional ¢ menifold
“and let Ml""’Mr be compact n-dimensional cm submanifolds whose interiors

cover M. Given a C  vector bundle E over M define

%(%) ={(sp--55,) & e & [M;) si|Mj = sj[Mi} and define F : m(E) > };z(g_)

i=1

by F (&) = (s]Ml,...,ser). Then F is an isomorphism of Banach spaces.

Proof. The contimiity of F is immediate from (B §2), and ker F = 0 follows from

*
_M = u Mi’ so by the open mapping theorem it will suffice to prove F surjective. Let Q7 - Py

* Douvady points out that we actually construct a continucus inverse, so the open mapping

theoreﬁl is not needed.
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be a C° partition of unity for M with supp(cpi) C interior of M,. Given (sl, eee s Sr) e M(E) it
follows from the remark following (B81) that P8, € m (g ]Mi) . If we define Ei g 8(8) by
§i| M, = @5, and 8, = 0 outside . M, then it follows from Theorem k.1 that 5, £ M(§), hence

§=8 t...5 ¢ mE) . If p € M; then either sj(p) = cpj(p) si(p) (if pe Mj) or else if p f MJ_ ‘

5.

then Ej(p)=0 and since CPj(p)=0 Ej(p)=tpj(p)s.1(p) again. Thus 8(p) = s,(p) or SM, =,

and F (8) = (sl, ces 3 sr) . d.e.d

Let S(0%,BY) denote the vector space of all functions fram the n-dise D'={x e |[[x|| <1}

‘ into ®Y, regarded as the sections of the product bundle D" xR over 1%, and let @ (D%, mY)

denote the Banach space assigned by % +to this bundle, so 7 (D%, R®Y) is a vector subspace of
s(0", BY) with a Banach space topology. The above theorem implies that knowledge of 7 (0", %)
campletely determines 7 as a functor on VB(M) for any compact n-dimensional menifold M . Inm

fact, given a vector bundle § over M let cpi:Dn —>M i=1, +es; * be charts for M such that

MCc Ul P (D ) , =nd let ¥ cp*g ~ D" xR? be trivializetions. Define a linear function
i r
P F:5(8) —> @ s(0®, ’Y) by F(s) = (8y5 +ev 5 5,) where s5.(x) = y,(s(p;(x))) . Then

; i=l

s e M(E) if and only if F(s) & EB m (0%, RY) =and in fact it follows from Theorem 4.3
i=1

that F maps 7 (E) isomorphically omto {(sl,...,s ) e GB m (0", ]Rq)l\]t s, CP; = 11:3 sjcpg } . In

i=1
| particul&r note that if || || is an admissible norm for ?R (o7, IRq') then

. | E ”\p s @ [|] is an admissible norm for M (§)
$=1

We can carry the reduction one step further., According to Theorem L.2 if T ¢ S(Dn, IRq') s

sy £(x) = (£3(x),..., £ (x)) with £, e (", R) , ‘then £ e M (D", RY) 4if and only if. each

T, € m (Dn, R) , and in fact f— (fl, ...,fq) is a Banach space iscmorphism of 7 (Dn, RY) with
S, (0%, R) . In particular if [} || is an admissible norm fo;' 7 (D, R) then igl”fi”
(or (%ll |fi| ]2)1/2) is an admissible norm M ", Ry .
. d=
‘Thus to know M as a functor on VB(M) when M is a compact n-dimensional manifold, it

guffices to know M (D7, R) . It is natural to ask, given a linear subspace M (D", B) of s(0*,m)

with & Banach space topology, when can we find a function W satisfying (B81) and (B82) giving

rise to it. If £ =1D" xR we cen identify Hom(§,E) with ¢"(0",R), the ¢ maps of D" into IR.




Given f ¢ Hom(E,E) and s ¢ S(E) we have (f,8) (x) = £(x)s(x). Then (B §1) glives:

pxiom (B §1'). For each f g C (J°,R) miltiplication by f is a contimuous

linear map of M (D',R) into itself.

‘And (B $2) leads to:

\

>D" isa diffeomorphism into then s> 8 o g

Axiom (B §2'). If :D"

is a continuous linear map of M (D"JR) into iteelf.

Conversely if M (D",R) is & linear subspace of S(D'JR) with a Banach space topology which
satisfies (B §1') and (B $2') then using the constructions indicated above we can define first
m (D"®&Y) and then M () for £ any ¢ vector bundle over o compact € n-dimensional manifold

> M and of the trivializations

‘M. That 7 {£) 1s independent of the choice of charts cpj_:DIl
4,198 2 ¥ RY follows easily from (B §2'), and so does (B §2), while (B $1) follows from (B §1').

In addition to the two functoriality axioms (B §1) and (B §2) there are two regularity axioms

which are perhaps less natural but which again are satisfied in practice:

Axiom (B §3). If € is a ¢® vector bundle over a compact ¢” n-manifold M

then ¢°(€) N M (£) 4s dense in M (€).

Let C:(g) denote the space of Coo sections & of the vector bundle £ over M such

that support (s) is a compact set disjoint from M.

Axiom (B§4). ILet M be & compact € n-manifold with a strictly positive smooth
measure and let € %be a ¢ Riemennian vector bundie over M. Then for each

G € C:(g) the map & km—md < 8, >. extends from ¢®€) N () to a continuous

g

linear functional £ 5 0 Me). Moreover {,ecld- £ C';(g )} is a total {i.e. point

% ‘
separating) linear subspace of % (€) , the dual space of N (E).
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Remark. Any other Riemannian structure on € is given by an element T ¢ Hom(g,§) ~ such
that Tx is a strietly positive operator on gx for each =x ¢ M. Any other strictly positive,

smooth measure p on M is related to |, by & = p & vhere p ¢ cT(MR) is strictly positive.

If o ¢ C:(g) and J?«G denotes the linear functionals corresponding to the new choices of measure

~

" and Riemannian structure then clearly ,6;_ ="£pc M (T). It is immediate that if (B §4) holds for one

choice of measure and Riemannian structure then it holds for any other also.

.4 Theorem. ILet M be a compact € n-manifold and let and 7 be O
Iheorem g 1

Riemannian vector bundles over M and D & Dif‘fk(g,'q). Then for ¢ & c:(g)

h that D = .

suc a s e m(n)f. ,e,c(Ds) Jz,D*a(s)

Proof. Immediate from the definition of D*.

We should of course answer the question, what are the properties of M (0", R) that will

guarantee that (B §3) and (B §4) hold? The answer is completely evident.
axiom (B §3') ¢°(D"R) N M(D"R) is dense in M(D,R)

Axiom (B §4') ‘For each ¢ & C (D, IR) the map s —=> § s(x)o(x)dx extends
o

DJ.'.L

: o,.n
from ¢ (D", R) N 70", B) to a continuous linear fimetional L on mo*, m). More-

) ) *
over {.@c[g £ C:(Dn, IR)} is a total linear subspace of M (0%, R)




1k

5. DERIVATIVE FUNCTORS

! In this section we shall show how from a section functor M  satisfying (B §1) - (B §4) we
can construct a sequence of "derivative™ funchors 77‘1: k=0,1,2 ... also satisfying these axioms,

with 77(0=?R.

Given a €~ vector bundle .§ over a compact o n-manifold M let

M) €)= (5 = Q) | 3,(s) em ()

Then Jj, is a continuous linear injection of 7 (x) {€) into the Banach space 9 (Jk(g) and hence
77( (k)(g) becomes & normable topological vector space if we topologize it by the requirement that
i be a homeomorphism info. We define mk(g) to be the completion of 9 () {£), so that I
extends to a continuous linear isomorphism of mk(g) ontc a closed linear sﬁbspace of M (Jk(g)).

. Note that we have a canonical identification of J°(g) with g din which J_ becomes the
.identi'by map. It follows that m(o)(g) = ¢°(g) n ;mE) and hence by (B $3) it follows that

m (§) = me)-

5.1 Theorem. If k and £ are integers with k>£> 0O then (k)(g) cn u)(g) and

the inclusion map i ( 2x) ig continuous and therefore extends to a conbtimuous linear
map i‘ek:?ﬂ k(g Y—— sz (€). These maps are all injective and satisfy Lot = e
so if we identify the underlying vector space of ﬁi{(g) with its image under i

in Wto(g) = M(E) +then we have inclusions

e Ry €Y S RE) < o 2 () - ' T

and-all the incinsion msps are continuous.

~ Proof. Let Pjy & Hom (J‘k &), ot (€)) denote the map characterized by

Edx () = 3,(5) e C™E). T2 sem(e) then §,(s) = ME )3 s) € MHE)) s0




$
m (k)(g) = 7/7( z)(g) and we have a commutative diagram

(1)) RO )
Jye jz
m (3(5)) Mt e
n (Pﬂk)

The continuity of i (2x) is now immediate from the definition of the Lopology on M (k)(§) and

m («E)(g) and the relation i ,i, =i, follows from the obvious relation i(mf,)l(.ek) = 1(mk)

Finally since ik = :LOEJ. P to prove 1yp injective it suffices to prove 1ok injective.

Suppose iok(S) - 0, s¢ 775{(5;) Since ‘jkﬂ,ﬁ{(g) >7R(Jk(§ Y) is iﬁjective it will suffice to

show that jk(s) = 0. Let {s] be a sequence in m(k)(g) with s > s in W(k(g )5

i.e. jk(sn) — jk(s) th(Jk(g)). Choose a strictly positive smooth messure on M and a

Riemannian structure on €. By (B §4) it will suffice to prove that for ecach o e C':(g) we have

£ c(jk(s)): 0 or that £ o-(jk(sn)) > 0. Now by Theorem 4.4 we have £ cr(jk(sn))- = 4

ﬁ‘c(sn)

and since za. % g is a continuous linear functional on PE) it will suffice to show that
k

>0 in ME). In fact by the continuity of i

*n k’ °n 7 iok(sn) — iok(s) = 0.
q.e.d.

Remark. Henceforth we shall always regard the Wk(g) as subspaces of 44£) having

topologies. finer than the induced topology.
5.2 Theorem. FEach M i Satisfies (8 §1) - (B §4).

Proof. Gilven f ¢ Hom(g,n) we have Jk(f) £ Hom(Jk(g ),Jk(n)) satisfying

Jk(f)*(,jks) = jk(f*s), s e C (). It follows that we have a commtative diagrem

1o
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ma ) > M)

m (5(£))

from which by the definition of the topology on m(k) it fellows that ¢M(f) is contimuous and therefore _ t
extends to & continuous linear map Wk(f‘):?fk(g) — Wi{(‘n) which proves (B §L). The proof of (B §2) L g
* : |
is similar using the induced map J* {w ) in place of Jk(f*). i t
i
. ) : ix
Since by definition M (§) is the completion of () < ), (B $4) is trivial and Lo
we even have that Ck(g) n mk(g) is dense in W{k(g). . £
) I
{ Choose & strictly positive smooth measure on M and a Riemannian structure on J’k (&) E
: 3 ) : c
Since the sequence O > ker P > g% &) > g > 0 is exact we can regard o () as i
the orthogonal direct sum of ker Py ond §, identified via P~ with {ker Pok) Moreover
since Pok*jk(S) =5 if s e Ck(g) we have J,.(s) =5 @ gk(s) where g (s) e ker P, and is as |
b
00 L
_smooth as 8. If ye Co(g) then for s g ?]((k)(g) we have l'
f
Ly() = [ <s(x), Y(x) % a(x) =] < s(x) ® g (s), v(x) ®0> & () |
Y € K ‘
x ' i), 1.
_ [ a
= 2@ olgs) -
. . * ' !
Since by (B §4) z\eo is in @ (J’k(g)) and since J: m(k)(g) > m(Jk(§)) is continuocus -
it follows that I,Y € ?7(1'{(5 )* Since J, maps M (%) isomorphically onto a closed subspace of
Wt(Jk(g)) and sihce {ZO,IG £ C':(Jk(’:’,))} is total in m(Jk(g)) it follows that :
) [* 3, 0 ¢ CCIE))} is total in - €)". But by b.h ° 3 = h 1
- k o mk . y Theorem %.4 g ° Jy -,ej* 0, ence !
. k - .
5i
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{z & |c e c°°(J EN}c {z [v sc NN

*
is total in mk(g) . This proves (B §i4) for My , _ g.e.d.

5.3 ‘Theorem. (77(1()JZ Mty

Proof. By the discussion following Theorem 4.3 it follows that it will suffice to prove

that '(mk)(z) (o",v) = Rgeay,) (D%, v). But Mirers) (0%, V) consists of 811 5% maps f£: D >V

such that Daf € ??z(Dn,V) for all ]al < k+tf and the topology is the least fine making all the maps
£ +—> D% into M (D",V) continuous. On the other hand (?Izk) (0) (0%, V) consists of all

Ca" maps £: "

>V such that DPF e My (0%F) for en1 gl <43icec al €% maps
aE (k) Pl =

£: D" >V such that DPf = p¥Pr is in WD V) for @<k, and the topology is the least

fine making each of the maps f +—= D “Be 4o m (D%, V) contimuous for |aof <k, |pl <2 .

Clearly these are the same. . g.e.d.

e .
5.4 Theorem. If £ and T are C vector bundles over a compact € manifold M and R

De D:'Lffr(g,'f}) then for k > r D maps m(k)(g) “into m(k—r}('ﬂ) and extends to a

> mk-r(n) .

continuous linear map DN k(g)

A e e e e

Proof. First consider the case k=r. . Recall that D = Tyl Te Hom(J" (g },m) so we have

a commbative diagram

R y€) ——>—> Mw)
\ / no.
nT" €))7

Since #(T) 1s continuous and Iy is by definition of the topology of m(r)(g) an isomorphism into,




18 ' . 7]
> Wﬂ(;r’

and Theorem 5.3 completes the proof. ,

D is contimious. If k > then we have that D defines a continuous map (Wﬁ{—r)r

5.5 Definition.. We say % satisfies the Rellich condition if the inelusion

ml(g) >M(E) is always completely contimious.

Remark. It is easily seen that it suffices for the inclusion Wzl(Dn,IR)—> 70" R)

| to be completely continucus {see Theorem 4.3 and the discussion which follows it).

5.5 Theorem. If % satisfies the Rellich condition then each of the inclusions ’ :

77!5_;_!’(5) —_— > ?ﬂk(g }, £ > 0 is completely continuous.

Proof. Bince the composition of a continuous map and a completeiy continuous map is
completely continuous we can suppose £ = 1. Then we have a commtative diagram (in which horizontal

arrows are inclusions).

Ty (€) > m(6)
jk jk h
m (TE)) > W) o

Since Jj, € Diffk(g, = (€)), the left hand vertical arrow is continuous by 5.3 while the right

hand vertical arrow is an isomorphism into by definition of Wk(g). Since the lower horizontal arrow

iz completely -continuous by assumption, so is the upper one. . . q.e.d.
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6. DUAL FUNCTORS

Two Banach spaces X and Y are said to be dually paired if there is given a continuous

bilinear mep B: X x Y >R such that the maps x +— B(x, °) and y+——> B(°, y) are

respectively isomorphisms of X onto the dual of Y and of Y onto the dual of X.
Recall that given an n-dimensional ¢® manifold M with a strictly positive smooth measure

W and a € Riemannian vector bundle & over M we write

< 5155, > = £ < sl(x), SQ(X) >i._;x du(x) for 8428, € CO(E).

|
6.1 Definition. TLet M and % be two section functors satisfying (B §1) - (B §4). We say

. * - [
that M end M are dual section functors if given & Riemannian vector bundle £ over a compact C

n-menifold M with strictly positive smooth measure B , there is a dnal pairing <, >, of wE)

with m*(g) such that < s,,8, > =< s;,8, >§ for s, e} (g) N ¢°(g) and S5 € 771*(5) n Co(g)-

Remark. The discussion following ( §4) shows that the choice of Riemannian structure and

measure is irrelevant in 6.1.

As usual it suffices to verify that the condition of 6.1 is satisfied for the trivial line

. ‘ *
bundle over the n-disc, i.e. that there is a dual pairing of MDH,ZR) with o (0";R) which extends

(o P
the bilinear msp (sl, s2) ——-—>J'n sl(x)se(x)dx of CO(Dn,IR) x ¢ {D,R)

>1R .
o )

) . *
6.2. Theorem. If % and W are dual section functors then for any ¢” vector bundle

*
£ over a compact C n-dimensional manifold, c:(g) is dense in ) and in # (€).

Proof. Tnmediste from (B §k), sinee by Hehn-Banach a total subspace is dense.

6.3 Definition. If 7 and M . are dual section functors then for amy C‘m vector bundle
- _ _
§ over a compact C n-manifold M we define mz(g) and ?]z*ko(g) to be respéctively the closures

of Co(g) in mk(g) a.nd. .in m:(g) For k> o we denote the dual space of 7’!: %) vy m_k(g).

©.If M has a strictly positive smooth measure and if £ 1s Riemsnnian then we identify %(g) with

*
the dual of mo(g) vie the dual pairing <, > .
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Remark. Note that by Theorem 6.2 ?7?; °€) = mt(g) s0 that ?ft_k(g) = dual of %t °k) 1is

still true when k=0O.

6.4. Theorem. For k >0 7I§+1(§) is a dense linear subspace of. Wi(g) and

the inclusion map is continuous. Thus restriction gives a continuous linear

injection of m_k(g) onto & dense linear subspace of m_k_l(g). If W is

a Rellich functor this injection is completely continuous.

Proof. The first statement is an immediate consequence of Thecorem 5.1, and the definition

D e s T .
of %,,- The second follows beceuse the restriction mep of m_k(g) into m_k_l(g) is the
adjoint of the inclusion i: § k+?_(§) > My o(g). The injectivity of i dmplies that 1 has
*
dense range while the dense range of 1 implies the injectivity of 1 . The final remark follows

because the adjoint of & completely eontinuous map is completely continuous. q.e.4.

In general we will identify each M, with its image in m—k—i(§)° Thus if £ 1is a

Riemannisn vector bundle over a compact n-dimensional ¢* manifold M and if M has a strictly

positive smooth measure we have a doubly infinite chain of Banach spaces
---Wl k+1(§)gmk_(§) Emo(g) :_: b gm-k(g) (..:.. m_k_l(g) E .-

Moreover each mk(g) is dense in the next ¥ k-l(g) and the inclusion maps are continuous (and are

completely continuous if % is a Rellich functor). Iet X > 0 and let sSeq E(g) c mo(g) and
let g e _k(g). If it should happen that g ¢ mo(g) cm _k(g) then g (8) = < 5,4 >, Ve may
therefore regard the natural pairing of m]c;(g) ~and ‘m_k(g) ‘as an extension of <, >o and we

shall write < 5,4 > for £(s) whenever 3 ¢ m_k(g) and & ¢ m;(g).

6.5 Theorem. Let M.Ibe 8 compacf Cm n-dimensionsl manifold ﬁth a strictly
positive smooth measure and let £ and 1 be ¢ Riemannian vector bundles

over M. If De Diffr(g,'n) then for every integer Kk, D extends to a

contimious linear map D M k(g) E— Wlk_r('n)-




§6
Proof. First suppose r=1. By Theorem 5.4 D extends to a contimious linear map
Cox

D, : 77lk(§) _— mk_l(g) for k> 1. Similarly D ¢ D:‘Lffl(‘n,g) extends to a continuous linear
msp D : mk('n) —_— mk_l(g) and gince differential operstors reduce supports, D, restricts to a

. . ® 0 %o * o ' . .
continuous linear mep D, :f (7)) ——> mk-l(g)‘ Let D¢ m-k+1(§) —> (1) be adjoint

* 0

to D, % If ge CE)C M, () and se C(n) Sy °(n) then

¥ 0 *
< 8, D_k+lc>o=<Dk s,c>0=<Ds,o->=<s,Do->o.

. . ¥ o . -
Since CO(T]) is a dense subspace of My (1) it now follows that D436 = Do. Since

k is any integer > 1, -ktl is any integer < 0, so the theorem is proved for r=1. We now proceed

.by induction and assume that r > 1 and that the theorem holds when r is replaced by r-1. . By

R . r-1, ; r-1
§3 we can write D= D,D, where D, e lefr_l(g,J (£)) and D, & Diff, (3" 7(g),m). 1If

(Dg)k: n k(g) ——>M I‘!_:L(Jr_l('tg)) is a continuous extension of D, and if

r-1 < . .
(Dl)k‘-r+l:m k—rl-l(J &N >77(k_l('q) is a continuous extension of D

1 then putting

21

D = (Dl)k-r+1 ) (De)k’ D : mk(g) _— ?lzk_r('l]) is a contimuous extension of D. g.e.d.
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7. NON-COMPACT BASE SPACES

Let M satisfy axioms (B §1) - (B §4) ofrsection % and let £ bea C  vector bundle
over a not necessarily compact n-dimensional ¢” manifold M. We define a vector subspace R(E)
of 8(g), corllsisting of all sections s of g such that for each p € M there is & neighborhood
N of p in M vhich is a compact ¢ n-dimensional submanifold of M and sli\T £ MmE IN) It
is immediate from Theorem .1 that if N is any € n-dimensio.nal compact submanifold of M
then s|E & M(E|N). We topologize M(E) by the requirement that the topology be the least fine
locally convex topology such that for each such N the map s —> s|N of #(g) iato #ME[W) is
continuous. If {NaJaE s s a family of compact n-dimensionsl submanifolds of M whose interiors
cover M then the topology is the least fine locally ‘convex topology such that each of the maps
5 b—> S'INa of ME) into m(gINa) is contimious. This follows easily from Theorem 4.3 since’

given N as above we can find N_ ,...,N whose union covers N. Indeed it follows from Theorem

al

k.3 that s +—— {S!Na] oeA 18 @ topological vector space isomorphism of M(E) with the subspace

{ {5} ¢ gm(gima) | sahvs = sB]Na } of gm(ghva). It follows that if M is g-compact {or, what

is the same, if ‘M satisfies the second axiom of countebility) then M(E) 1s 2 Frechet space
('however it is Banach only when M is compact). If N is a second Cm vector bundle over M

and f g Hom(g,'n) then given a compact n-dimensional submasnifold ¥ of M we have a commtbative

diagrom

mig) {£) > m(n)

l l

(g 1) —wEE minlw)

from which it follows that (B §1) continues to hold if we omit the word "compact™ and replace "Benach
space” by "locally convex topological vector space”. The properties (B §2) - (B §3) also generalize
in the same way (a.nd with‘eqtial ease) and hence'_ so do their conseguences.

o

We define M,(8) = n mk(g) - with the least fine locally convex topology making each
n=1 - :

of the inclusions NE) —> mk(g) continuous, If the base space M of £ is compact or o-compact

then M_(§) is Frechet (but it is not Banach even when M is compact). i
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In all interesting cases C (§) ¢ 7€) and hence C'(§) Cm(§), so that C7(E) g mMSE)-

Moreover it also seems to be the case in all the usual examples that there is a positive integer 4

" such that My €)c Co(g) and that the inclusion 1s contimaous. It then follows from Theorem 5.3 that

M yeeg €)c (& 1 €)= ck(g) = ck(g) and that the inclusion is continuous and hence that in fact

m, €)=C(g)-




i
!
|
;
i

:appropriate symbol and we shall use the somewhat unusual symbol C

ol

8. SOME EXAMPLES

Of course the most. obvious example of a Banach space value section functor satisfying

(B §1) - (B §4) is ¢° with the compact open topology. If E isa C vector bundle over a |

compact n-dimensional manifold M and if <, >§ is a Riemennian structure for € then
’ x
1/2 . ¢ e o .
[Ist] = sup { < s{x),s(x) > e | x e M} gives an admissible norm for ¢ (), proving it is normeble
x

(completeness is well-known). The verifications of (B §1) - (B §4) are trivial. It is clear that
(CO)k = ¢® with the uswal "c® -topology™.

An only slightly less well-known example is Ca

~where O << 1l. This is most easily
deseribed in terms of Ca(Dn,]R) which consists of all real valued functions s on Dr% which
satisfy a Holder condition of order ¢ (i.e. there exists K > O such that [s(x) - s(y)|< K[]|x-y||%

and with the norm |[s|| = sup { |s(x)} ~ s(z¥)|/|[x-¥] 1% % # y}. Once again the axioms are easily

~verified. In this case (Ca)k is usually denoted by Ck+a: it congists of Ck sections whose

. partial derivatives of order k 1in local coordinates satisfy a Holder condition of order . If

we replace ¢ by 1 in the sbove construction we get Lipschitz maps. Clearly Cl would not be an
. For .(Cl—)k - we write Ckﬂ'-,
these consist of Ck sections whose kth partial derivatives satisfy a Lipschitz condition. Clearly

if l.> > f >0 we have
0 e) ¢ FE) 2 M) € FPE) = Fe) < -

Moreover each of the inclusion ﬁaps is continuous and indeed by the Ascoli-Arzela Theorem it follows
that the inclusion meps are even completely continuous. In particular all of the functors
c°, &, Cl- satisfy the Rellich condition.. (Definition 5.5) ‘ _
By the way, it might have seeméd more nstural to assume, instead of (B §3), that ¢™(E)
was a dense subspace of m(g). Our reason for not doing so can now be explained. The closure of
c"{g) in the space ¢ fl'(g)' turns out to be -Ckfl(g) (this is most easily seen in the case
of Cl'(Dl,‘jR), f.‘<.:~r if f g Cl(Dl,B) theﬁ clearly Sup lf'(x)| = sup[f(x) - £(y)|/|x-y! by the mean
value theorem, hence the ¢t norm and the ¢ nom agree on ¢t (DI,JR), and since C- is complete

in the €' nowm it is a closed subspace of C¥7).

A somewhat @ifferent family of examples is provided by the functors IY, 1 <p <® In




i

8 - ; &

.terms of a local description, IF(D™,R) consists of all messuresble real valued functions s on °

such that |[ls|]| = (J' |s(x) |pdx)l/p <.®, TFor a global description let £ %be a ¢ vector bundle

‘over a compact cm n-manifold M. Choose a strietly positive smooth measure y on M and a

Riemannian structure <, > for £ and let M {g) " denote all Borel measuresble sections s of

$x
£ sﬁch that |[s[] = (J' < s(x),s(x) yeqj,(x))l/P < ®, An argument similar to that following (B §k&)
shows that if we change p or the Riemannian structure, then we éet an equivaient norm and hence
the same Banach space 'Lp(g). Note this is a case such as mentioned at the beginning of section U,
where the closure of the origin is all sections which vanish almost everywhere. Again the verification

of (B §1) - (B §4) is trivial. If p>1 and %«» %= 1 then it is classical that I¥ and L%

are duel functors (Definition 6.1), or rather it is classical that (Sl’ 52) &—>j' sl(x)sg(x)dx

is & dusl pairing of ILP(D"R) with 1%(D™R) which is all that is necessary. The spaces IL(E)
are usually called Sobolev spaces. In particular Li is often denoted by H'k The Li are
particularly interesting because they are Hilbert spaces. Moreover L2 is a self-dual functor and
in faet it iz essentially immediate from definition 6.1 that I.2 is the unique self-dual Ffunctor.
There are a great many more exotic Banach space' section functors, however we éhal-l not
explicitly describe any of them but rather refer the interested reader to M. H. Taibleson s Research

Announcement “"Iipschitz classes of functions and distributions in En", Bull. Amer. Math. Soc.,

" July 1963, pp. 487-493 and to the further references given there.

Finally a remark on notation. If § is a € vector bundle over a non-compact manifold

M then it is customary to write L:Ii(g)loc for what in our notational convention would be Li(g).

If E is Riemannian and yp is a strictly positive smooth measure on M then we can define a Banach

space Lﬁ(;,u-) =is ¢ .(Li(g)) Jo> {Is{P ={ |ls{x)]Pas(x)} . Contrary to what happens when M

loc

is compact LIP{@ ,k} does depend both on ¥ eand on the Riemannian structure.
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9. SOME BASIC LEMMAS OFQNON-LIN EAR ANALYSIS

In this section M will denote a compact n-dimensional manifold, end £ a ¢” Riemannian

vector bundle over M., We denote b}? IRM the trivial line bundle over M. If 1 £p <=« we define
1

Dby D+ % =1 so IF(E) is the dusl of IP(E). We recall that we define 12(5)° for k>0

to be the closure of c:(g) in Ll!;(g) and Ll_’k(g) is defined to be the dual of Lﬁ(g)". For

reasons that will soon become evident it will be convenient to represent the spaces Lﬁ(g) asg

() . We define s =n - s, so that the dual of Lf_: (8) is 1P (E} . The spaces -
&

- = -8
: D

L=

P(g) are defined for non-integral values of k by the "complex method of interpolation” or equiv-
P i

alently by means of Bessel potentials (see "Lebesque spaces.of differentiable functions and distribu-

tions" by A. P. Ca.].dero’n, vol. 4 of the AMS Symposia in Pure Mathematics). The next few theorems state

conditions for IF(E) to be included in LXE) (or ¢**%€)) and are kmown collectively as the'

Sobolev embedding theorems. The -proofs may be found in the paper of Calderon mentioned above.

‘9.1 Theorem., ILet 1 <P, g <o and let k and ‘£ be real numbers with
k - %2 . % and k> £ ., Then I{(g) c L%(g) and the inclusion map is

< continuous., If k - %>ﬂ- 1—;- and k > ! then the inclusion mep is even

A

completely continuous.
Corollary. If 1 <p <o then IF satisfies the Rellich condition,

2.2 Theorem. Let 1 <p<w and let k - % =4 +Q where ! 1is a positive

4oy

integer and 0 <Q <1 . Then L;"Z(g) cC E) and the inclusion map is

continuous.

Corollary. If k-,-'% > £ . then Iﬁ(g) c C-l(gr.). and the in'clusj_.oh ma.p-is_' '

completely continuous.
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9,3 Theorem. Let N be a closed n-j dimensional ¢” submanifold of = M

L8 "~ and suppose k - %> 0. Then the restriction map of Cm(g)

> ¢g [N}

extends to a continuous map of Lﬁ(g) into I£ _ 3 (e lm).
P

Remark. We note that Theorem 9.1 can be rewritten in the form

-s»~—~-t%t and s <t, and'the inclusion is completely continuous

g ]

n
P
- .8 2.4

¥ Eyci? () ir
a
P q

if —;- 85> % -t and & < t. In particular we have

) . <o
i (3 B L) - a<w §=0
z-s
P Lg’(g) }.>§ O<S<E
< ga—n - P

and the iiiclusion map is continuous and is even completely continuous in tase

§<0 or 0<s<Z anga 1>%,
) a4  n

The next few theorems seem to play a basic role in proving the differentiability of certain
types of non-linear differential operstors acting between Sobolev spaces. I would like to thank
Mrs. Karen UhlenBeck for suggesting several important improvements in these results. ‘ -

b

9.4 Theorem. 'Let 1< p, <w, 1< q<o andlet 2. 8> 0, 1= 1,..05r
. ' ’ i

h=l

’ Then'multiplicatioh is a continuous r-linear map of

TP ; 11 '
® L ™, R) > LM, R) provided =>% T s, (vhere the
s ' - 4 5.>0
=1l = -8 )
" 1
1l

inequality must be strict if some s, = 0).

i : '3
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Proof. If s, <O put % =0, if & >0 put == 5§  and if some ‘s, = O (in which
i i n
1.1 o . 1 1 1
case = > Y z s.) choose the corresponding ql so large that =>g =—= ¥ —_ s 5°
1 s>0 * : A 9 3% s=0% 5.0
i i i
y r.oq
Then by Holder's inequality mmultiplication is a contimmous r-linear map of © L, (M, R) > L&(M, R)
i=1 ' '
and by the remark following Theorem 9.3 we have a contimious inelusion T (M, R) C L, {M, R).
n_ 5;
Py
g.e.d.
9.5 Theorem. ILet 1 <p; < 1<q<e and ;— - s, > max (0, 2).
: i

1) If each 8; < -4 <0 then miltiplication is a contimuous r-linear map of

. r p, 2
. &L " (M, R) into C*(M, R).
. - i=1ln
Py

2) If all 8; £ O then multiplication is a contimuous r-linear msp of

r P. .
L + (M, ®) into L%(M, R) provided £ S% - max (sl, . .sr) (where
i=i n
p,” f1

the inequality mist be strict if -fl-l .is integral).

3) If some Si >0 then multiplication is a conbtinuous Y-linear map of

r . - . .

@ b L (M, R) into .L%(M,__IR) provided £ _<_§ ~Z sy (whe_z_'e the

J=3 & - Si ‘ L ' Si>c_) ' . '
i

inequality must be strict if some 8, = 0) and if moreover, in case

£<0, % s; <n.
' si>0 :

§9




§o ' 29

Proof. - (Case 1) 1is immediate from the fact that C:z is a Banach algebra and that

(Corollary of Theorem 9.2) for k - ;1—)> L, L.E(M, R) ¢ ¢ (4, B).

For the remaining two cases we can easily reduce consideration to a coordinate neighborhood
in M, so we can assume M= Dn. Also by interpolation theory we need only consider integral ¢ .

To begin with we assume £ > O (wvhich is no restriction in case 2) in which cage by the definition

of LE(DH, R) it will suffice to show for each mlti-index o with [a < £ that

. _ T P,
(fl,...,fr) —_— Da(fl...fr) is a continuous r-linear map of @ L ~ (0", R) into Lg‘(Dn, R).
- i=1
- s,
i

el k=

i
Now bjr Ieibniz' formula Da(fl. . 'fr) is a linear combination with integer coefficeints of terms of

B B . B. .
of the form (D lfl)...(D rfr) with pt...+ B, = 0. Also f, —>1D lfi is @ continuous linear

P, ) P. .
map of L * (0%, ) into L * (0%, R). Thus it will suffice to show that
n . . n .
Ej_ - Si f_ = (Si + [B:LL)
r p:i. n n
miltiplication is a continucus r-linear map of & L {D, R) into L%(D ; R) for .
' =l n (s, +%.)
P; i i

all r-tuples (tl, .- .,tr). of non-negative integers with tl+..'.+tr < £

By Theorem 9.1 this will be the case provided the meximum of the sums z LA + ti,
' s, + £.>0
1 1
for all such (tl, ...,tr), is < (—I;- We can assume some 8, > - f , for otherwise Case 2 follows

from Case 1. If all 8; < 0 the maximom of these sums is £ + max (sl,...sr). On the other hand
if some S, > 0 the maximum sﬁm is 4 + z 8¢ Finally if 4 < 0 then recalling that

5,20 .

i

q ) _
L}(Dn, R) is the dual of I_, (0", R)° and that the pairing is given by < gf > = [ a(x)f(x)ax

when g, e ™ (Dn, R), it will clearly suffice in this case to prove that multiplication is

. r p- ' p I
continuous from & L © (0", r) @1 (0%, R) into Ll(Dn, R). Since
i=l n __ - -4 ° _
I i
n n n n e . .
- = i (g +=) = 3 (g +n- E) the condition for this by Theorem 9.k is




30 , , &

Z>p+n-2+ 5% s or £<2- 5 s provided (£+n-D>0. If £+n-2<0 +then the
1= q i —a i q N q—
5,>0 8.0
i 1.
condition from Theorem 9.4 becomes n> 3 8s which is satisfied by hypothesis. - g.e.d.
: 8.>0 ) :
B

The folloﬁng is just a restatement of the second two conclusions of Theorem 9.5 making

the substitution g4 = -GC.

Qs

- g and let

9.6 Theorem. Let 1sp, <% 1<La<mw “ sy >

o |
Qs

L 8, <n. Then mitiplication is a contimous r-linear map of

i
Si>0

r P, '

® L) (M R) into LE : (M, R) provided ¢ > . % H {where the
i=1 5 - Si E - ’ Si>0

inequality mmst be strict if some s, = 0). If all 8s < 0 theqn the vfeaker
condition ¢ > max (sl, .. .,sr) (where the inequality must be strict if

max(sl, --+»8,) 1s an integer) suffices.

9.7 Corollary. Let 1<p<e and k> % Then LII;(M, R} iz a Banach algebra

under pointwise muitiplication and for 0< j <k, L?(M, IR) is a topological

Lo(M, R) module.

= _n =1 o= = 2. z_ =2 _y
Proof. 1In 9.6 take T=2,p=p =D, = sp=35 % Sp=3-d o=3-3- Then
n n . I . n n n . n - n -
- =g, =K = -5 = = - = = .8, >=- ~ = = - = - + (= - = +5..
By 1TV By 2T gTOTd 80 5 m 82 te20 ad o= G-I G-k = sty

The COIl(_‘.l‘lI_G.S:'!.IOH is. that mltiplication is a continmious bilinear map of Lﬁ(M, R) & L? M, R)

into -L?(M, R). - geed

9.8 Lemma. Let 1<p<w, k> % end let @,...,8. De n-milti-indices with

g, >0 ena 3 Ipy! <. Then

i=1

i
i
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& B
le ...Dp7%¢
. r

(fl,..,.,fr) —>D °f,

is a continuous r-linesr msp of & Lﬁ (0", B) ianto ng (0", R).

.

By : _
Proof. Since D “: L:E(Dn, R) > ]'.%;_IB ](Dn, R) is a continuous linear map we must
i .

show that multiplication is continuous from ear LP
n n
_ - (= - k
T (lﬁll (P ))

(0™, B) into LIO’(Dn, R). By

Theorem 9.4 it suffices to show that %> > o (el + (% - k)) or, writing + for the mumber
[{5i|>k -=
P

.

‘of indices i = 1,... r such that [ﬁi[ >k - o Ve cen rewrite this as

¢ 1 Z n [8,1) - =< t(k -~ ). We consider three cases. First if +t = O then the inequality
[By[>% - 2 PR -
i P
becomes - > < 0. Becond if > 1 then since T [p,] <k the inequality is also clear. Finally
' i=l .
if ¥ =1 then the inequality becomes k> & 0 |ﬁii . 8ince we can assume T > 2, and since
16, ]>% - 2
1 P
r
all [g;| >0 we have < iE]_ Is;l < k. q.e.d.

,ﬁli>k = 5

9.9 Lemma, If fg ¢ (D" xR, R) then for k> % the map

' (sl,...,sr) > f(, sl(-),...,sr(')) of ®° ¢°(0% B) into c°(d°, W)

- restricts fo a continuous map of & IjI;(Dn, R) into Iﬁ(Dn, R).

Proof. By defini‘l;.ion of the topology of LI!;(DH, 1R) we nust show that for }a} < k the
map (si,...,sr)  — Da_'f_'(', sl('),...,sr(‘)) of @ (1%, IR)- to ¢®(0%, B) extends to a

continuous map of @I‘L}!;(Dn, R) into Lg(])n, R). By the chain rule and induction

o e e e he oo
O U s O N e

31
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]
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3 §9
cpal...sr is in ¢ (0" x®’, R). Now

(sl,...,sr) — chl...sr(. , Sl(')""’sr('))

is clearly contimuous from & ¢®(%, ®) into (o, R) and by the corollary of Theorem 9.2 it
is also contimous from & LII{)(Dn, R) into c°(D", R). Also mltiplication is continuous from

' B
(o, R) x ¥ (D%, R) into IP(D", R) hence it suffices to show that (sl, ...,-sr) —=> D lsl.. . .

is a contimous map of & IP(D%, R) inmto P, B) ir g1 +..o+ Jp.] < |af<k. But this is
Lk o] 1 r - -~

immediate from Lemma 9.8.

9:10 Theorem. Let g and 1 be ¢ vector bundles over M and let
f: €

>1 be a ¢ fiber preserving (but not necessarily linesr on fibers)

map. Then the éomposition s> f o 5 is a contimous map of r ) imto
_ _ g

N

i

b,
). (&7 g
Proof. As usual we can reduce to the case M= D" and we can assume £ = e xR and
N« D, ®IR, in which case the theorem is just a restatement of the preceding lemms. g.e.d.

The following lemms allows us to extend the results of Theorems 9.5 and 9.6 to the case

when exactly one of the % -8y is negative. As usual Lr(Ul, ,Ur;v) denotes the continuocus

i

r-linear maps of Ul@ vee B Ur into V.

9.11 Lemma, Lgt vl""’vr’ W, Z be Banach spaces with W reflexive. Then

there is a natural isomorphism of Lﬁl(vl, eV, W Z*¥} with

PV, Vo, 25 W), TH——> T, defined by (F(v yeaesVy 2)) =

(T"(Vl, -.--JTVI.: ,ﬂ)) (Z)' o .

Proof.  This is the composite of the following natural isomorphisms

r+l : r , _
TV v e s G W5 28) o BE(VG, e, Vs T(WY 2X)) i TV, 000, Vs L(WE, L(Z, R)))
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a2 Lr(vl; '--:Vr H LE(W*: Z; R)) ~ Lr(v > -':vri L(Z:L(W*:,]R))) ] Lr(vl:-'-: 7 L{Z,W))

T+l
P (vl,...,vl;, 7; W).  g.e.d.

9.12 Temma. Let lSpi<°°, l<q<°°,kiZOi=l,...,rkr+l<0,1’,<O

. . . ] oo ] -
and suppose that multiplication extends from & "¢ (M, R) > ¢ (M, R)

r P, -
to a continuous {r+l) - linear map of & Lk:L MRS L‘}z (M, R) inoto
i=1 i

Pria

L, (M, R). Then it also extends to a contimuous (r+l1) - linear map of
r+1

r+l Dy
'®1 L, (M R) into LE(M, R).
1= 1 .

Proof. Recall that L_g_’z(M, R) = (LE‘(M, ]R)o)* and if g e C (M, R), then regarding g as

an element of L(_lz'(M, R), for f & LE(M, R)° we have g(f) =j‘ gfdy where p is the Riemannian

measure on M. Now since the product of elements of Cm(M, R) has smaller support than any of the

S E (o} Praa o
factors it is clear that multiplicetion maps @ I, (M, Ry@ L ) (¥, ®)" into T (M, R)
i=1 i r+1

a.nd. Lemma 9.12 now follows directly from Lemma 9.11 q.e.d.

9.13 Theorem,. If 1 <p<=®, k> % then for 02> j > - k, multiplication

o =] o
extends from € (M, R) @ ¢ (M, R) > C (M, R) to a contimuous bilivear

map of L2(M, ]) @ ];.?(M, R) into L?(M, R) where = =1 - % . In particular

k=N

- 2 R
(for p = 2), Lj(M,_IR) is an Li(M, R) module for }j| <k if x> g .
Proof. Corollary 9.7 and Lemma 9.12.

9.1 Theorem. Let 1 <p; <% 1<p, <% 1<qg<« and suppose

S 1 n
<0, = -s8.2>- (= -8.,,) for 1<i<r, and
r+l Ps i Priy r+l -7

e

_O-S

o |
]
n




3k

- . . rtl )
)y 8; < n. Then mltiplication extends from & C (M, RB) > ¢ (M, IR)
5, ;
. - r+l p, :
to a continuous (r+l) - linear map of e L (M, R) into 12 M, R) !
=1 n _g n_ i
p, 1 q °

provided g > T 85 {vwhere the inequality mist be strict if some 8; = 0).

: 5.>0 ;
i € ’

Proof. By Lemms 9.12 we must show that multiplication is continuous from

H
ke

|
o

‘e 11t M B & 1 - (R into T *7T (M, TR) (where we recall, H
=1 n _ n_= no 3 '
i P 1 ~--¢ - +1 £
3 b q Pre1 4
H - - oy = - - 1 - ’ 1 f
G=n=-0g, 5,,=0n Sr+1)_' Since ¥ s; <a we can choose ¢' <o with n>g' 2> 5 %o s; and |
2
since there is a conbtinuous inclusion of I3 (M, R) into 13 (M, R) we can assume g =g, :
4 _ ‘no_
| s " ° g

or in other words we cen assume g <n. Then g = n - g > 0, thus by Theorem 9.6 it suffices to

verify that = >g +

- sg which is equivalent to g> 3 8; s with equality l[

z
g8.>0 5.>0
i i

i=l...r

permissible if no s; = 0. g.e.d.

9.15 Lemma. et k> g and k > s > 0. "Then multiplication extends from

c°(M, R) & cT(M, R) > ¢"(M, IR) to a contimious bilinear map of

8
}‘
L
;
L
Rk

2 2 , 2
L . (M‘, R) @ L. & {(r, _13.)_ into I_ M, R).

Proof. By 9.12 it suffices to show that multiplication is conbinuous from

Li M®R)® Li_s' {M, R} into Ii_s (M, IR) and this is immediate from Corollary 9.7.
q.e.d.
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' 9.16 Theorem. let k>3, 5420 with s= % 8 <2k Then milbi-

i=1

plication extends from earc“(M, R) to a contimuous r-linear map of

3 r

! 2 . 2

® L (M, R) into I (M, ®).

i=1 1

r .

; Proof. Since s, * Sj < T s < 2k ait most of the s; can be greater than k, hence
! i=1

at most one of the k-s; can be negative. Note that k-s; = Iél' - (si - (k - %)) and similarly

kew = g - {w-(k - %)) , thus from Theorems 9.6 and 9.14% we see that what we must verify is that

s, <w (which is trivial) and the two inequalities

i

(a) z ., (si-(k-'—g-))<n
s.>k—=
L i e
B w> 3z . (s;-(x-3)
' sk -3 '

If we define t to be the number of indices i with 8y >k - % these inequalities become

(remembering that w=% s; so that

=
w - n 5. = b 5.)
n i n i
si>k -3 5.<k - 3
(a") T 5. < 2k + (t-2)(k - B)
n i 2
i 8.7k - = -
i 2
. Cn
() & ,. 5> tG-kK
s.<k - =
i 2

r
inequality (A') is also clear if + > 2 since I S < w < 2k. Since we can ignore any 8; = 0
i=1

Now (B') is trivially satisfied since 8 > 0 and the right hand side is negative. The

»
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(by 9.13), in case t =2 {(A') 1is also clear unless r = 2 and Sy * 8, = 2k. But in this case the
theorem reduces to Lemma 9.15. Finally in the special cases t =0 and t= 1, when (A*) in

fact does not hold, the theorem follows easily from Theorem 9.13.

q.e.d.




10. THE CATEGORIES FB(M) AND FVB(M)

Given finite dimensional ¢® manifolds E and M and a C° map p:BE > M let us

put E = p-l(m) for each m € M. We shall say that E (or more precisely the map p:E > M)

is a C fiber bundle over ¥ if p is differentiably locally trivial, i.e., if, for each
n e M Em is & C  submanifold of E and there is a neighborhood U of m and & ¢° diffeo-

)
morphism g: 'p-l(U) %U x E making the following diagram commitative
)

p'l(U) — s Ux E

| | |
- o
|

t
> M over M and HEI

where I 1is the natural projection. Given a second ¢ fiber bundle p':E!
a & mep f£:E—> E' we call f a fiber bundle morphism if. it is fiber preserving, i.e if
f(Em) c E' for all me M. Of course for a ¢” fiber bundle E  over M, as for a vector bundle, #

we have the notion of the set S(E) of all sections of E as well as that of the spaces & ()

of all C.k sections of E, k= 0,1,...,w, but these have no linear structure. Also if £:iE > B!

is a fiber bundle morphism then we have an induced composition map f,;8(E) > 5(E'), defined

by s b——=> f ° 5, which maps Ck(E) into Ck(E') for all k. ' ot

We define FB(M) to be the category of ¢ fiber bundles over M and fiber bundle
morphisms. Qur goal in the next few sections is.to show how with one extra assumption, (B §5)
introduced in the next section, our functor # from VB(M) +to Banach spaces and contimious linear -
maps "extends” to a functor from FB{M) %o Banach manifolds and c” maps. This extension is of : L
~ course at the_ heart of the ‘relation of non-linear analysis to the théory of infinite dimensional . .. o A
. | meniforas. | !
l In carrying out this extension it is convenient to pass. through an intermediate category, V
FVB(M), whose objects are C vector bundles over M (i.e. objects of VB(M)) but whose morphisms

are all fiber bundle morphisms {i.e. morphisms of FB(M}) rather then only the vector bundle
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homomorphisms. Then for an object & of FVB(M) %(g) is a well-defined Banach space. The axiom (B §5)
demands that () ¢ ¢®(e) and that for a morphism fiE

£, ¢“(g)

> 17 of FVB(M), the map

> ¢7(1) restrict to a continuous map m(e): me) > m(n}. The somewhat surprising
fact is that it follows aﬁtomatically that M(f} is a fact a ol map, hence M extends to a
functor from the category FVB(M) to the category of Banach spaces and ¢ maps. This is the
first step in the extension.

The remainder of the extension is based on the notion of an "open vector bundle neighborhood”
ina C fiber bundle E over M. This is C vector bundle £ over M such that € is an
open submanifold of E eand the inclusion map of £ din E is a fiber bundle morphism. If s & C°(E)
then a fundamental existence theorem states that we can always find such a ¢ with s ¢ Co(g). Whether
or not s € M(E) turns out to be independent of the choice of such a €, and the set of all s ¢ °(E)
for which s e #{g) is denoted by M(E). It follows from the first step in the extension that ‘there

is a unique ¢” Banach manifold strupture for M(E) such that for each open vector bundle néighborhood

g of E, M(g) is an open submanifold of #M(E), and it also follows that if f:E

> E' is a
fiber bundle morphism then sb—=> f o 5 defines a €  map (£) M(E)Y —— m(E'), =and this

completes the extension of M +to a functor from ¥FB(M) +to the category of ¢ Banach manifolds

[-+]
and C maps. We now proceed to fill in the details of this sketch.
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; 1. THE AXIOM (55)

In what follows n is some fixed positive integer. We now add to ocur axioms (B §1)- (B §h)

introduced in section Y4 the following axiom:

Axiom (B ). If g is a vector bundle over a compact ¢ n-dimensional manifold

M then M(g) < c°(e) and the inclusion map is continuous. Moreover if 1| is a

second vector bundle over M and T:f > 1 is a ¢ fiber preserving map
] ' {i.e. a morphism of FVB(M)) then f*:co(g) —> ¢°(q) restricts to a

continuous map M(£)M(E) > (M) -

We note that (B §) is not independent of (B §1) - (B $4). TIndeed (B §) clearly implies

(B §1), (B §3), and (B §4), so in effect the axioms we will henceforth be assuming are (B §2) and (B.§5). "

It follows from the corollary of Theorem 9.2 and Theorem 9.10 that for k > n/p axiom (B ¥5) (\\
A
‘ is satisfied with ¢ = Lk Tt is trivial that (B §5) is satisfied with 7 = €°. A4 more or less :;|
obvious modification of the proof of Theorem 9.10 shows that (B §5) is also satisfied if ik
m= Ck, , or Ck - : [l

Tt is not hard to show from the localizaebion and direct sum theorems of section % that in |

order to verify that (B §5) holds in gemeral it suffices to consider the case M= o, £ = R, . i

and T = = xR, or in other words to prove an analogue of Lemma 9.9 with 77{(}) » R) replacing
"% ®).

The following is an interesting necessary condition for (B $) to hold

11.1 Theorem. If (B §5) holds then, for each compact n-dimensional M, (M, R) S

iz a Banach‘alg_ebra under pointwise mltiplication.

-Proof. Let IBM ‘denote the trivial line bundle MxR over M, so that A X R L

m(M, R) = m(IBM) and define a fiber bundle morphism £: By >Ry by f(x,¥) = xy. Then since o

the mep (sl, sp) V> 88, of C O(M, R) © (M, IR) > ¢%(M, R) -is just Tys 1t follows

directly from (B $) that 7(M, R) is a Banach algebra.

q.e.d.
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The really essential information contained in (B §5) is that M 1is a functor from FBV(M)
to the category of Banach spaces and continmuous maps. In the remainder of this section we will Pprove

the fact, crucial to the rest of the development, that this automatically entails that M is really

a functor from FVB(M) to the category of Banach spaces and Cw,' maps, i.e. that if f: g >

is a fiber bundle morphism of vector bundies € and 7 over a compact n-dimensional manifold M,
then M(£): M(E )
indeed we will explicitly compute d_km(f) for all k.

>M(7), which is only guaranteed to be ¢° by (B §), is in fact ¢°, and

Given vector bundles £ and 1 over M Ilet Lr(g,']]) denote the vector bundle over M
. . r . . r
whose. fiber at x is the space I (gx,‘nx) of r-linear maps of §x 1nto ., and let -Ls(g,'n)

denote the sub-bundle of symmetric r-linear maps. We note that there is a canonical identification

K

of L{€,L"(€,M)) with L“l(g,n). Given a fiber bundle morphism f£: E

> T, Tor each

XeM f!g % is a Cm map of gx into 'nx, hence for each positive intéger r its rth differential
: r r T r ;
at eef_  is an element 87f(e) = q (f[gx)(e} £ Ls(gx’nx) = LS(§,TI)x. It is clear that

s'f; E

> L:(Q,TI) is a fiber bundle morphism (for r=1 we write simply &f) called the vertical

B differential of f (or the rtB differential of f along the fiber). Moreover if we regard

87f as a morphism into L°(E,T) and make the above identification of IL(§,L7(€,7)) witn L”l(g,‘n)

then &(s"f) = 87 1r.

There is a canonical fiber bundle morphism vy: Lr(§,'!]) & @%) > 1 given by

v{T, e1,...,er) = T(el,...,er). By (B ) and Theorem 4.4 we have a continuous mao

n(v): MITE,M) o @RE))

> 7/1(’“) given by 7]1('\’) (T, Byz .- 'Sr) {x) = T(X)(Sl(}(), .- '7Sr(x))'

From this it follows that the map = of the following definition is well-defined and continmuous.

11.2 Definltion. We define a contimous linear mep T > T of m(I.r(g sM)) into

Lr(??z(g Y m(n)). vy f(sl,‘...,sr)(x) = 7(x) (sl(x),...,sr(x)). If F:g > Lr(g,'r}) is a fiber

> X (nE ),m(n)) by

> 1 1is a fiber bundle morphism then for each

bundle morphism then we define g continuous map  H(F): e )

~ —
M(F)(s) = M(F)(s).  In particular if f:g

positive integer r we define a continuous map CRIE (D) > L:(m(g ):7(n)) which is given

explicitly by




§11 , _ . h1

RETE) (s ){(5y5 a8 M (x) = 87E(s_(3))(5(x), -, 8, (x))

11.3 Theorem. If § and 17 are vector bundles over a coinpa.ct ¢® manifold

> (n)

M and i f:g

> 7 is a fiber bundle morphism then #(f): Mm(E)

isa ¢ map and for each positive integer r

a" m(z) = 7(87T).

Proof. It suffices to congider the case r=1, for then we can proceed inductively as

follows:

a™ L m(e) = a(a” m(£)) = ai(s"e)).

But since :m(Lr(g,n)) > 1T ), m(m))  is a continuous lirear mep it commtes with 4

and we have;

am(e) = (am(sTE)) = (m (5 876))”
But meking the identifications of L"‘ﬂ(g,'q) with L(g,Lr(g,n)) and of Lr’*l(m(g), 7n)) with
L MmE), L@E), m(7))) entails the identification of (6 6°f)) with (5" 1f), which completes

the inductive step. The case T =1 is handled as follows. We claim first that it suffices to

prove that for s, and ¢ in nEd:
() mEs, + o) = M) - B (e,) o)
. |
=L G, + ) - Hen(s,)) @ (@)

To see this choose norms for () and M(n) and, given &> 0, choose & > O, by the conbinuity

of M(sf), so that if |[g|l< & then

i
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[I(8E) (s, + o) - F(5£)(s )| <e O<t<1.

Then- for||g]j< & it follows frem (=) that [lm(£)(s, + o) - M(£)(s_) - M(ee) (s Vo) < H ] e
and so by definition M(f) is differentiable at s_ and 4 m(z)(s, ) = ﬁ(&f)(sc).

To prove (%)} note that since both sides of the equality are sections of E, in fact
elements of (), it must be shown that both sides have the same value for each X eM. If we

put so(x) =P and o(x) = v then evaluating the left hand side gives £{ptv) - £(p) - 87(p). On

the other hand by the first part of (BY5) evaluation at x is a continuous linear map of PE) into

Ex ©nd hence passes under the integral sign on the right of (¥), which becomes

s
f 0(5f(p+tv) - 8f(p))(v)at

Finally, since by definition &f(p+tv) = d(figx)(lﬁtv), the equality of f£(p+v) - £(p) - 6£(p) and

i
.f (82(prtv) - 8£(p))(v)dt is just one of the versions of the Mean Value Theorem.
0 : g.e.d

oo
11.h corollary. If s €C (£) then 4 me)(s) = 7/?(85f) where B _f:€ > )
is a vector bundle hombmorphism, called the vertical differential of f along

8, defined by Bsf = Bfecg.

Proof. For ¢ & ME) and xe i M(sz)(cf)(x) = 5sf(K)(O‘(X)) = 3f(s(x)){o(x)) =
M(e)()0)6) = (o) (5)(a) = a M) (E)(0).

.igq.e.d.

i .




is & vector bundle homomorphism called the vertical differential of f along s.

sub-bundle of E, if E,c E, and if the inclusion map E,

If in addition. E. is open in E2 we call El an open sub-bundle of E,.

‘s e () then

L3

. VECTOR BUNDILE NEIGHBORHOODS

If =:E =M is a ¢® fiber bundle over M then by local triviality it follows that

% is a submersion and hence tHat ker(dt) is a vector sub-bundle of T(E), whose fiber at e € E

is clearly T(Ex)e' This vector bundle over E is denoted by TF(E} and called the tangent bundle
along the fiber of E. Because of the conventional picture of a fiber bundle it is alsc often
referred to as the vertical tangent bundle (or bundle of vertical vectors) of E. If s g ¢ ()
then s*TF(E) iz a vector bundie over M denoted by TS(E). Note that if we identify M with iﬁs
enbedded image under s then Ts(E) = TF(E)}[M. If € is a vector bundle over M then for each

<]
e g §, We have a canonical identification of TF(§ )e = T(§x)e with g hence, if s €0C ) =

canonical identification of Ts(g )x = TF(§)S (x) with €, and hence

12.1 Theorem. If £ is a vector bundle over M then for each s € Cw(g)

there is a canonical isomorphism of T_(£) with £.

= E2 is a fiber bundle

morphism then sinece f is fiber preserving it follows that the vector bundle homomorphism

If El and E2 are O fiber bundles over M and £: E:L

ar: T(E,) £*TF(E,)

* *
> f 'I‘(EQ) maps TF‘(El) into f TF(EQ) and we dencte by B8f: TF(E:L)
the corresponding restriction. We call 5f the "differential of f along the fiver" {or the "vertical

> Tfos(E

differential of £"). Given s € C (B;) we define B5.f = 8fes. Then B.f: T (E,)

1 2

. - .
12,0 Definition. If E. and E. are ¢ fiber bundles over M we say that El is a

> E,

o is a fiber bundle morphism.

1

Bemark. If E, is sn open sub-bundle of E, then clearly TF(E) = TF(E,) e, hemce if

1
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TS(El) = S*TF(El) = S*TF(EQ) = TS(EE).

12.3 Definition. If E is a C" fiber bundle over M and s ¢ (E) then a vector

bundle neighborhood (sbbreviated VBN) of s in E is a vector bundle E over M such that g

is an open sub-bundle of E and s g CO(E).

12.4 Temma. If E is a C° fiber bundle, s ¢C™{E), and £ is a VBN

of 8 in E then € sz(E).

Proof. Theofem 12.1 and the remark following Definition 12.2.

12.5 Uniqueness Theorem for VEN. If E is'a C  fiber bundle, o ECO(E),

and if and £, are both VBN of ¢ then =g,
1 2 1 2

=] o
4 Proof. By standard spproximation theory we can find s &C (gl) nec (§2) and by

Lemma 12.4 we have By © TS(E). q.e.d.

The rempinder of this section will be devoted to the proof of an existence theorem for
VBN. The proof is closely analagous to the construction of tubular neighborhoods of submanifolds

which 1s based on the notion of a spray (see Lang's Introduction to Differentiable Manifolds,

Chapter IV). We begin with the notion of a "bundle spray".
First recall that if W is a Cma manifold then a "second order differential equation

in W' is defined to be a vector field X on T(W) such that for each v € T(W) we have

ap(X(v)) = v. where p: T(W) > W 1is the natural projection (cf. Lang, loc. cit. page 68).

Given ae IR let &: T(W) > T(W) denote the mep v+—=> ov. If X is = second order

differential eguation in W then for each v & T(W) do (oX(v)) is a tangent vector to T(W) at.

av. If for all _v. e T(W) -we have
X(aw) = da (c&(v))

then X 1is called a spray over W (Lang, loc. cit. p. 69).
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Now one intuitive way of thinking about a ¢” ftiber bundle n: E > M 1s as a family
of O manifolds {Em}m M "smoothly parameterized by M". The corresponding parameterized

family of tangent bundles {T(E )} y I8 represented by TF(E) = U T(Em) {which "explains" its
meM

importance). Similarly the parsmeterized family of second tangent bundles | T(T(Em))}maM is

represented by the sub-bundle of T(TF(E}) given by
ap (TF(B)) = {x € T(TF(E))] dp(x) & TF(E)]

where p: TF(E)

> T is the natural projection; indeed since T(Em) = p-l(Em) and p is
a submersion T(I(E )) = dp'l(T(Em)).

The notion of a "bundle spray" over a ¢ fiber bundle E is supposed to capture the
.intuitive notion of a smoothly pa.fameterized family of sprays (one over each fiber). In view of the

above the proper definition is clear.

> B

12.6 Definition. Let u: E > M bea C fiber bundle and p: TF(E)

its tengent bundle along the fiber. A o vector field X on TF(E) is called a bundle second

order differential equaticn in E if

1) dap(x(v)) =+

for all v £ TF(E). If in addition for all v e TF(E) and all o £ R we have

2) X(av) = dx(oX(v))

(where a: TF(E)

> TF{E) is the map v r—> av) then we call X a bundle spray over BE.

Remark. If X is dbundle second order differential equation for E then for each me M
it feollows that X]T(Eﬁ) is & second order differential equation in Em. The point is that while

X being a vector field on TF(E) only implies for v ¢ T(Em) that X(v) ¢ T(TF(E))V, which is

" bigger than 'T(T(Em))v’ condition. 1) gives that ap(X(v)) « T(Em) which by the remark preceding

> TF(E} is

the definition gives X(v) & T(T(Em)). In particular it follows that if o: (a,b)

a solution curve of a second order differential equation in E and c(to) £ T(Em)- then

o((2,0)) ¢ NB,) and so 3o((a,0)) € By
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Secondly we note that both conditions 1) and 2) are convex. Also since if E has
Paracompact fiber there is a spray over each fiber (Lang, loec. cit. . T0) and hence a bundle spray

over each product neighborhood, it TFollows from a partition of unity argument that

© 12.7 Theorem. If n: E >M isa ¢ Ffiber bundle with paracompact base and

baracompact fiber then there exists a bundle spray over E.

Now let X be a bundle spray over E and define ar open subset D of TR(E}) and a

map Expy: D > E as follows: for each v & TF(E) let ¢, be the maximm solution curve

of X such that o‘v(O) =v; let D={ve TF(E)lcv(l) is defined} and let Epr(v) = cyv(1)

for v £ D. Exp is called the exponential mep associated with X.

12.8 Temma. Let E = MxF be a trivial ¢ fiber bundle whose fiber F is
& finite dimensional normed vector space and let Exp be the exponential map
of a bundle spray over E. (iven any e, € E there ig 8 neighborhood G(eo)
of e in E and an r> 0 such that for each e sG(eo) Exp maps the
ball of radius r about zero in F (F being identified with TF(E)E ye®
isomorphically onto a neighborhood of e in F {identified with the fiber

conteining e) which includes the ball of radius r/2 about e

Proof. For each e g E identify TF(E), with F in the canonical way. Then
Ebcp[TF(E)e becomes a map £° of a neighborhood of 0 in F, dinto F. As in Lang, loc. cit.
page T2 we have fe(o) = e and the differential of f° at zero is.the identity map of F. Now
we define ge(x) = xte - £9(x), then g°(0) = 0 and the differentisl. of g% at zero is zero.
By continuity there is a neighborhood G(eo) of eo' in E, and an r> 0 such that if e ¢ O(eo)
and “x” < 2r +then the norm of -dge at x is less than l/e. The lemms no{r follows from the
proof of the implicit function 'theorel_n (Lang, loc. cit. p. 12). g.e.d.
12. . Lemma. Let E be a paraéompact ¢ flber bundle over a ¢ manifold
M and let Exp be the exponential map of a bundle spray over E. Choose a

Riemannian structure for TF(E) and let p, denote the corresponding

Riemannian metriec in the fiber Ex’ Then there are strictly positive ¢
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functions * and p on E such that if e ¢ Ex then Exp maps the open

disc of radive A(e} in ‘I‘(EX)e ¢ isomorphically onto a neighborhood U

of e in E_ which contains all e' e E_ with px(e,e’) <gple).

Proof. Given e e E it Tollows from Lemms 12.8 that there is a neighborhood G(eo)
of e  in E and positive numbers e(e,) and 8(e)) such that if e e e )N E_ then Exp
maps the dise of radius B(eo) about the origin in T(Ex)e o isomorphically onto a neighborhood
of e in E_ which contains all e' e E with px(e,e') < g (eo). (Note that since this is a

local statement we can assume that E is trivial and the fiber a vector space). ILet {Vﬁ} BeB

be a locally finite cover of E by relatively compact open sets which refines {G{e)} and

ecE’
choose e(p) so that Vﬁc O{e(p)). ILet {cpﬁ)ﬁEB bea C partition of unity with support

P C Vg Put A= >’:3 8 (e(rss)‘)cpEs and p = EBY(B)EP(B) "where y(p) = min {s‘(e(ﬁ'))IvB 0 Vg # 9.

Now given e & E., Exp maps the disc of radius 8(e(p)) =zbout the origin in

T(Ex)e ¢” isomorphically onto & neighborhood of e in E,_ which contains all e’ € E,

with p{e,e'} < e (e(p)), provided e & VB. Since
min {8(e(p))|e & VB] < max {8(e(g))]e « Vﬁ} and p(e) < min {e(e(p))]e ¢ VB}
the lemmé. follows. _ a.e.d. i

12.10 Existence Theovem for VBN. Let E be a Cm fiber bundle with paracompact
fiber-over a paracompact € manifold M and let g e c®(®). Given a

neighborhood @ of g(M) in E there is a VEN £ of g in E with

E ¢ (®. Moreover if g e ¢"(E) we can choose € so that g is the zero- s
section of E. :“
!‘u"?"'\f
- o
Proof. Choose a Riemannian structure for TF(E) and a bundle spray over E and let H"‘ﬁ :
Exp; X, p, and p be as in Lemms 12.9. By standard approximation theory we can find f e ¢ (E) I;E
' i
which.is so close to g that on the one hand p(f(x)) > %u,(g(x)) while on the other hand e
) i
1 - ‘J#».fg
px(f(x),g(x)—) < é"p.(g(x)). If g is € we take f = g. Then clearly px(f(x),g(x)) < p(f(x)}. gfnl‘:

Now let A ={ve Tf(E)] [[v[] < M£(p(v))} where p: Tf(E) > M is the bundie projection.

Let o@: [0,)

> [0,1) bPe a ¢© diffeomorphism such that p{t) =t for t near zero, and
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define a diffeomorphism § : Tf(E) a A bf; o(v) = 2(£{p(v)) ?;‘(-H:\Ir-’—u v. Then Y =Exp °¢ isa C°
fiber preserving isomorphism of Tf(E) onto an open subset § of E vwhich we make into an open vector
sub-fundle of E by demanding that ¢ shall ‘be a vector bundle isomorphism (ﬁote that f is the zero
section of § ). I: % £ M +then since g‘x(f(x), g{x}) < p(£(x)) there isa v e T(Ex)f(x) = Tf(E}x
with J1¥|] < 2(£(x)) (so v e A} such that Exp(v) = g(x)} and hence g(x) = (5_1(v)) £ £ . Thus

g £C%(g) and E is & VBN of g in E . Finally, we note that we can replace p by any strictly

positive smaller ¢® function so that in particular we can assume that if e = Ex and

'px(g(x),e) < 2u(g(x)) then e €O . It then follows that £ co., q.e.d.

12,11 Definition. ILet E, bea ¢® fiber bundle over M and let E, be a closed ¢*  sub-.

bundle of El » By a bundile tubular neighborhood of E2 in E:L we mean & C vector bundle r:G —>E2

over E, such that C 1s an open subset of E,, and in fact an open sub-bundle of El’ and r. 1is a

¢ fiber bundle morphism over M .

12,12, Existence Theorem for Bundle Tubular Neighborhoods,
Let El be a paracompact ¢ fiber bundle over M and let E2 be a closed €%

sub-bundle of E.. Then E2 has a bundle tubular neighborhood in E

1 1°

Proof. Choose a Riemennian structure for EEE‘(El) and let Exp be the exponential map of &

bundle spray over E,;. Let v denote the normal bundle to TF(EE) in TF(El)IE2 . Then there is a ¢~

strictly positive function 2 on E, such that Exp maps the dise of radius M(e) in v, ¢®  iscmor- -

-phica.lly onto a neighborhood of e in El' As in the proof of the existence of tubular neighborhoods in

Lang, loc. cit., p. T4, it then follows that there is a neighborhood U of the zero section of v such
that Exp maps U diffecmorphically onto a neighborhood of E2 in El' Replacing. * by a possibly

smaller strictly positive C° function we can suppose that - A = {ve vel [Iv]] <2(e)} is included in
U. ' Then defining §:v ——> U as in the proof of Theorem 12.10, Exp ¢ ¢ defines a diffecmorphism of v
onto & neighborhqod 64 of E2 in El, and carrying the vector bundle structure of v over to © via

this diffeomorphism it is clear that ¢ is a bundle tubular neighborhood of E2 in El' . g.c.d.

Remark. We can think of a cross section of a € fiber bundle E (or rather s its image)

as being a sub-bundle whose fiber is a point. In this case the notion of bundle tubular neighborhood

and VBN coincide.
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13. THE DIFFERENTIABLE STRUCTURE FOR (E)

In this section we again assume that M is a compact n-dimensional manifold and that
M satisfies condition {B§2) of &4 and (B%5) of §11 (we recall that {BY5) implies conditions
(B§1), (B§3), and (BSL) of §4).

- :
13.1i. Definition. If E is a ¢ fiber bundle over M +then we define WE) to be

the set of all sections s of E such that s ¢ M(g) for some open vector sub-bundle g of

E, i.e. M(E) = UM(g) where the union is over all open vector sub-bundles § of E.

g
‘Remark. From (B§5) we have C (E) c_Wz(E) c c®(r).

13.2 TLemma. Let E be a C  fiber bundle over M, ge CO(E) and let

g and be VBN of g in E. Then there isa fiber bundtie

morphism £ §l > ge which is the identity in a neighborhood of

o ().

Proof. Choose a Riemannian structure for £y and an r > 0 such that for each x e M-

the dise of radius 3r about o(x) in (gl)x is included in (ge)x. et y & Cm(gl) such that

[ly(x) ~o(x)l] <r for all x e M and let @: [0,) > [0,2r) be a ¢" map such that
Y ! P P

3 . o
Zr. Define f: g, =—> g, by the condition that on (gl)x

£(v) =_y(¥) + ﬂ'HH%Hl (v -y(x))°

men [|2(v) - y(@)[ = o(llv - @]} <2r 50 [12v) - o] < 2rel o) - yG)|[< 325

so f(v) e (ga)x. Also if Hv - o )] <%r then

p{t) =t for 0<t<

v -y@l <gr+ v -o@ll <27 so olvy@I) = [lvw )| ena £2(v) = v.

g.e.d.

13.3 Theorem. If E is a ¢ fiber bundle over M eand o e M{(E} then

for each VBN of ¢ in E, say g, we have ¢ e M(g).




50

Proof. Iet g, bea VBN of ¢ in E such that ¢ e M(g,). Teking € =g, in

Lemma 13.1 we have a Cw fiber bundle morphism f; gl > E which is the idéntity in a

neighborhood of (M), and in particular fog = g. Bub by (BS) fog = 7(£) ) emg). q-.e.d.

13.4 Theorem. Iet B, and E, be ¢® fiber bundles over M and let

>E, bea ¢" fiber bundle morphism. Then f*:CO(El)

0
£:1E, > ¢ (EE)

restricts to a function W{f): m(El) —_— 7?2(E2) Moreover if g, and g,

are open vector sub-bundies of El and Ee respectively and
6 = lo = M) M) o) e MEL)} then O is open in M(z,) and M(r)
maps ¢ C  into m(gz).

. 7 o .
Proof. Let ¢ sm(El) and let vy = £.(5) & C (EE) Let g, bea VBN of y in E,
and let g, be a VBN of ¢ in E) such that g, ¢ f_l(gz) {see Theorem 12.10). Then

g= flglzgl —>g, isa ¢” fiber bundle morphism. By 13.3 g ¢ m(gl) 50 by
(B§3) g*(g)" e M(,) end so by definition g.{o) ¢ 7(E,). But clearly f.la) = g.lo) =0
T,(0) = m(E,).

If now €10 Eo and ¢ are as in the ststement of the theorem, then since

£ n ‘f“l(gar) is open in g, it follows from the fact that the topology of Wz(gl) is stronger

than the compact-open topology {by (B§5)}). that ¢ is open in ?}z(gl). Let o £ O and by

Theorem 12.10 choose M & VBN of g In Ey with fcg, n f-l(§2). By Lemms 13.2 there is a

¢ fiber bundle morphism g:§l > 7| which 1s the identity in a neighborhood U of o(M).

Then f°g:§l _— s is a Cm fiber bundle morphism so by Theorem 11,3
o vy ) -
Mm{teg): M(gl) —>ME,) isa ¢ map. But U={ye Wz(gl)ly(M) c U} is = neighborhood
of g in M(gl) end clearly W(f) and M(fog) agree in U. Hence m(E) is ¢” near g
in ¢ , and since ¢ was arbitrary, M(£)C isa C map of & into m.(g,a).' g.e.d.

We now come to one of our main theorems which in fact is little more then a rewording

of Theorem 13.k4.

13.5 Theorem. Let ¥ satisfy (B32) and (BS5) and let M be a compact n-dimensionsal

manifold. Then for each cm fiber bundle E over M there is g unique Cw

§13
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differentiable structure for #(E) such that for each open vector sub-

bundle § of & W(E) is an open submanifold of M(E). If £:E > F,

1 2

is a C  fiber bundle morphism of ¢” fiber bundles over M then
m(E) (E, )

differentiable structures for m(El) and m(Ee) In other words 7

> M(E,) is & ¢ map with respect to the above

extends to a functor from the category FB(M) to the category of

'C" Banach menifolds and C. maps.

Proof. In Theorem 13.Y4 if we take El = E2-= E and let f be the identity map, then

“the second conclusion of the theorem states that the charts 7R(§l) and 712(':;2) for M(E)

corresponding to ftwo open vector sub-bundles are Cm related. This proves the existence of the
20 ) :
required € structure for #M(E) and uniqueness is of course frivial. The remainder of the

theorem now 'becorﬁes just a Ijesta.tement of Theorem 13.4. ' . g.e.d.

Henceforth, when E is a C  fiber bundle over M, M(E) will denote the ¢ Banach

manifold whose differentiable structure is given by Theorem 13.5. We note that by (BY5) the

inclusion JM(E) > c°(E) is contimious.

13.6 Theorem. Let E. be a C  fiber bundle over M. If s & C (B

1 1)._

then T(?JZ(El))S, tangent space to ?]z(El) at s, can be identified

canonically with m(T(B;}). Moreover if f: E, ——>E, is a ¢

1 2

fiber bundle morphism then the differential of () M(E)) ——> M(E,)

-at s, when regarded via the above danonic:a.l identification as a linesr

map of M(TS(El))_ into m(Tfas(Ee)) is given by
am()) = Mo )
(where 8 £ =8fos: Ts(El) —_— Tf‘ns(Ee) ig defined Pfollowing Theorem 12.1).

Proof. By Theorem 12.10 we can find a VEBN-E of & such that s is the zero section

of E. Por any such £ we have & canonical identification of Ex with T(€x)s(x), and since

51
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£, is open in (El)X we have T(g ) s(x) = T( (El)x)s(x) = TF(El)S(X) . {We have essentially

repeated the proof of Theorem 12.5). Thus € is canonically identified with Ts(El) and since

by definition of the differentiable structure on Wz(El), ME) is a chart about s, we have a

canonical identification of T(Wz(El))s with 7(€). The remainder of the theorem now follows

from Corollary 11.L. g.e.d.

Recall that if El and E2 are Co0 fiber bundles over M then their fiber product

*
E]_ Xy E2 is their product in the category FB(M}. Concretely it is P EE or equivalently

*
Py El where Pyt Ei > M are the bundle projections. There is a natural map of

o o . Ofn - .
¢ (El) x C°(E,) into ¢ (El x, E,) given by (o'l,qe) —> 5. X0, wWere

1 2
(cl x ce)(x) = (nl(x),ca(x)). If E, end E, are vector bundles then of course
El Xy E2 = El & EE' The next result then follows directly from Theorem 4.2 and the definition of

the differentiable structure on W(E).

13.7 Theorem. 7. is & maltiplicative functor from FB(M) to C Banach

menifolds. That is if p,: E, > M (i = 1,2) are ¢ fiber bundles

over M then (p,§) —> o x¢ is a C  isomorphism of m(El) x 771(E2)
with 77;,'(5::L Xy .Ee) » and if =« : B %y By =——> E, are the natural
projections Cm fiber bundle morphisms over M) +then we have commmtativity

-in the diagrams:

m(z,) x M(E,) > M(E, x, B,)

N

m(E; )
'13.8 Lemma. Let X be a finite dimensional C manifold, E= Mx X

the product bundle over M and for each x £ X let x denote the constant

section, mb——>x of E. Then x t——>x isa C embedding of X

in %(E).
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Proof. If V is a neighborhood of X, € X with a vector space structure, then
E=MxV is a VBN of EO in E, so it suffices to prove that x+—> x is Cm embedding
of V in M(E). But this map is clearly linear, and since V is finite dimensional it is a

00 -
continuous linear map and hence C ., g.e.d.

13.9 Theovem. Iet E, and E, be ¢” fiber bundles over M and let

X bea Cm. manifold. Let f:El x X = E2 bea C map such that
for each x £ X the map £ By~ E, glven by fx(e) = f(e,x) is a
fiber bundie morphism. Then (x,0) r—> m(fx)(c) isa C map of

X x?}z(El) into M(Ee).

- Proof. Pul E3 = Mx X. Then El Xy E3 = El X X. Clearly f:El Xy E3 —_ E2

is a € fiber bundle morphism so m(£) :m(ElxM ES) — m(Ea) is C. By 13.8 xb——=> X  is

a € mapof X into m(E3) 86 by 13.7T (Xyo) ——>g x %X isa C map of X x?]{(El) into
M(E, X, E;) end so (x,0) V> M) x ) is a ¢” map of X x m(E)) into WM(E,). But
M(E) (o x Bm) = 2(o(m),Em)) = £olm),x) = £ M) = n(£Jolm), 1e. M) x D) = ML) 6)-

g.e.d.

13.10 Definition. ILet El and E2 be Cw fiber bundles over M. We say that E2

is a CEm bundle deformation retract of El if there is a Cw deformation retraction

f: El x7T = El of El onto E2 such that for each t € I the t-th stage ft:El > El
of the deformation is a bundle masp. We note that this is the case if E2 is a closed sub-bundle
of a ¢ bundle E over M and E, is a bundle tubular neighborhood of E, in E.

13.11 Theorem. If El and E2 are C  fiber bundles over M and

E2 iz a C  bundle deformation retract of El

. ¢ deformation retract of m(El) and in particular the includion

then m(EE) is a

M(Ee) _— ?I((El) is a homotopy eguivalence. Hence if E, is a
closed sub-bundle of a C - fiber bundle E over M and El is a
bundle tubuler neighborhood of E2 in E +then the inclusion

77((E2) —_— m(El) -is a homotopy egquivalence.

33
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Proof. If £ : El —_— El, t el is a Cm bundle deformation retraction of E.

t 1
onto E, then, by 13.9, m(ft): ?n(El) —_— m(El) is a ¢ deformation retraction of m(El) on
WI(EQ)' _ q.e.d.

In many applications we have homotopy type information about C (E) and we would like

“to derive similar information gbout M(E)}, or vice versa. The next result we are after takes care

of all such situations since it shows that the inclusion of Z(E) in C°(E) is alwaye a
homotopy equivalence. First we state as a lemma Theorem 15 of "Homotopy theory of infinite

dimensional manifolds™ (Topology, Vol. 5 pp. 1-16 (1966)).

13,12, Lemma. Let Vl and Ve be metrizeable locally convex topological

vector spaces and let f:V. >V,

¥ o be & comtinuous linear map of V.

i

onto a dense linear subspace of o Given & open in VE let ;

>3 is a homotopy

& -tY0) andlet F=r£l0 Then ¥: &

equivalence.

13.13.Lemma. If E is a cw fiber bundle over ¥ with paracompact fibers
then we can imbed E as a closed Cw sub-bundle of a ¢* vector bundle

i £ over M.

>R

Proof. By Whi'tnejr's embeddiﬁg theorem we can find & C enrbedding g:E

of the total space of E into a Euclidean space such that g is & proper map., Tet E =M x B

> & by f{e) = (n(e),g(e)) where =n: B

and define s fiber bundle isomorphism f: E > M o %

is the bundle projection. Clearly f is proper so f{E) is closed in E.
. g.e.d.

13,1k ,Theorem on the Tnvariance of Homotopy Type. if E is a € fiber

bundle over M then the inclusion msp M(E) > ¢°(E) is & homotopy :

equivalence.

Proof. By 1313 we can suppose that E is a closed sub-bundle of a ¢” vector bundle

g over M, and by Theorem 12.]12 we can find a bundle tubular neighborhood U of E in E. Since ' b
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U is an open sub-bundle of g, #M(U) is open in the Banach space M(E).
idnE) > °(€) is a continuous linear map whose image contains C (), and hence is dense

in (). Clearly i +(c°(U)) = m(U) so by 1312 (V)

The inclusion map

> ¢°(U) is a homotopy equivalence.

We have a commbative diagram
) ————> ¢°(v)

m(3) 6]

m(E) ——————> c°(E)

where Jj: E > U is inclusion and the bottom arrow is likewise an inclusion. By 13.11 the

vertical arrows are homotopy equivalences and since the top arrow is too, so also is the bottom

8YTow. " q.e.d.

Remark. Essentially the same argument shows that the inclusion CQ(E) > ¢°(%)

is also a homotopy equivalence.
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14.  SOME SPECIAL TYPES OF MORPHISMS

Qur standing assumptions remain those mentioned at the beginning of §l3.

If £:E

1 = E2 is a € fiber bundle morphism over M then certain properties

of f are reflected in corresponding properties of wm(£): M(El)

> m(EQ)'. We shall consider
some specific instances of this in the present section.

If ¢ and 7 are ¢ vector bundles over M then recall there is a natural

isomorphism between Cm vector bundle morphisms f£:€ > 1N and Cw sections § of

L(€,n) which we regard as an identification. Similarly for each non-negative integer k, o

vector bundle morphisms f:£ > 7 are identified with f e Ck(L(g »N)). Since

muE,m) ¢ CO(L(g,'ﬂ)) it is natural to call a ¢° vector bundle worphism f:g > T} of class

m if £ em(T(E,n)) and we shall do so.

Recall that a (° vector bundie morphism f£i€ > 17 is called strict if #£(x) has
the same rank at all x ¢ M and that in this case ker £ and im(f) are & vector sub-bundles
of § andf respectively. We shall now see that there is a natural notion of a sub-bundle of

class M of a Cm vector bundle over M and that if I

> 7 1is a striet vector bundle
homomorphism of class  then ker(f) and im(f) are sub-bundles of class M of £ and

respectively.

First recall that if f:f > 17 is a vector bundle homomorphism of class % then

we have a contimious linear map Fi(g)

> (M} defined in 11.2 by F(s)(x) = £(x)s(x).
Secondly we note that if ByseeesBy € ME) are linearly independent over an open set U and
we construct Oq7 0020, by the Gram-Sclmidt proecess, then o; is a linear combination of -

§1s---58; With coefficients which are in {U;R) by (BS5), and so the o; & ME[V). We shall

use then facts in the following.

 14.1  Theorem. TLet £ bea C vector bundle over M and lek n bea °
sub-bundle of £. Then the following five conditions are egquivalent and if
any one and hence all of them hold we shall call M a sub-bundle of class

N of E.

1) For each x ¢ M there is a neighborhood U and Byse--s8 € ME)

such that sl(y),...,sm(y) is a basis for Ty at 211 y & U.
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1. Finally 3) => 5 since 1-P:f
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2) If P > £ is the orthogonal projection of € on T with

‘respect to any ¢’ Riemannian metric for € +then P 1is of class

7.

> £ of class % such

3) There is a vector bundle morphism P:E

that P(x) is a projection of £ on M for all xe M.

4) There is a ¢ vector bundle { and a strict vector bundle

morphism f£:f > € of class # such that 7 = im(f).

5) There is a € vector bundle { and a strict vector bundle

morphism f£:f — > of class % such that 7= ker f.

Proof. 1) => 2). Given a C Riemsnnien metric for g, let P:E > €  be the

-orthogonal projection on 1T . By (B§2) it will suffice to show that PJU e Mm(LEU, £]U)) where

U is as in 1). By the Gram-Schmidt process we can assume that ByreensSy are othonormal in T.
o ;

Then for ye U Pye =35 < e,si(y) > si(Y) from which it follows easily from the remarks
i=1

. preceding 11.2 that P is of class M in U.

The implications 2) => 3) and 3) =>14) ave trivial. We next prove U) => 1). Given

X € M choose o € C”(l;) such that f(cl(x)),...,f(gm(x)) is a basis for 1 . Then

l’ e ,cm
8, = f‘(o-l), eesBy = f(o-m) are in M(E) and by f':on‘binuity sl(y),...,sm(y) are a basis for 'l'\y
for y near Xx.

At this point we know that 1) - 4) are equivalent and from 2) that if T satisfies

any of these conditions then so does its orthogonal complement with respect-to any Cw

Riemannian metric. We complete the proof by showing that 5) is equivalent to the other conditions.

Given a strict vector bundle morphism £ > [ of class % choose ¢

Riemannian metrics for § and {. Since y —> 'Y* is a C vector bundle iscmorphism of

L(E,L) with L({,§) it follows that £ C >g is of class M and clearly is strict, so -

* N ,
im{(f") satisfies 1) - k) and hence so does im(f*) = ker £. Hence 5) implies 1) - k).

> £ is strict and of class % and 1 = ker{1-P).

g.e.d.
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4.2 Corollary. If 17 is a sub-bundle of £ of class % then so is

the orthogonal complement of 1 with respect to any Cm Riemannian

metrie for €.

Before stating the next theorem we recall the elementary fact that if M is a c®

sub-bundle of & ¢ vector bundle then T has a ¢ complementary sub-bundle.

14.3 Theorem. If g and N are ¢" vector bundles over M and

i€ > T is a strict vector bundle morphism of class % then there

iz a strict vector bundle morphism g7

> € of class 7 such that

feg(e) = e for e e im(f).

Proof.

Case 1. f(x):gx > 1M, 1s bijective for all x € M. Then f € M(Iso(§,M)), where

Iso{g,n) is the open € fiber bundle in L(E,M) whose Tiber at x is all linear isomorphisms

of £,  onto 7. Since er—> el isa ¢ fiber bundle isomorphism of Iso(g,m) with

Iso(1,€) it follows that 1, ) ——

> € is a vector bundle morphism of class .

Case 2. f‘(}c):g}c > T, 1s surjective for all x & M.. Iet { be a ¢"  sub-bundle

of § complementary to ker(f) and let j: ¢

> £  be inclusion. fThen foj:l > 1 is of

class # and bijective so by Case 1, g = (f‘aj)“:L e MTM:6)) c m((n,g)).

Case 3. General case. Iet { bea C complement to im(f) in 7. Then
@ id: § ®{ —>7 is of class 7 and is surjective on each fiber, so by case 2 there exists

hi

> & ®{ a vector bundle morphism of class M such that if e € im(f) and e € { then |

(f@id) eh(e+e')=e+e', andhence f o h{e)=e. Thus we camtake g=P o h where P

is the projection of E @£ on €. _ ' gie.d.

4.4 Definition. If 9 is a vector sub-bundle of class 7 of a Coo vector bundle

Vg then we define 7]1('{1) = CO(T]) N mE)-

§ik
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1&.5 Theorem. If £ is a ¢ vector bundle over M and if n is a
vector sub-bundle of £ of class 7 then M(n) is a closed complemented

subspace of M(E) &and in fact we can choose a vector sub-bundle { of

£ of class ¥, complementary to 7, such that M(E) = () @ w(iE)-

Proof. Let P:f > £ be a vector bundle morphism of class % . such that P(x) is

& projection of g, on 7, for all x & M. Then PmlE) > mE) is a comtinuous projection

whose image is clearly 7(7) and whose kernel is M({) where [ = ker P. . g.e.d.

14.6 Theorem. ILet fif > 7 be a strict vector bundle morphism of

class M and let Tun(g) > m(n) be as defined in 11.2, i.e.
¥(s) (x) = £(x)s(x). - Then ker(T) = ¢(ker £) and im(F) = Mm(im £), hence
in particular ker(¥) and im(¥) are closed complemented subspaces of

mE) and (M) respectively.

Proof. That im(f) is really all of #{im f) follows from 1%.3. Everything else is

either obvious or follows directly from 14.5.

14.7 Lemma. Let T >1 bea Cm vector bundle morphism and ilet

s £ ME). Then Bsf: X b—> 8 fs(x) is a vector bundle morphism

£ > 1 of class % and "ﬁ-:f{= d??l(f)s'

Proof. Since e b—> 8f_ isa ¢" fiber bundle morphism of E \\iqto L(g,n) it
follows from (B§5) that o +——> Saf is a contimuous map of M(E) into m(z.(g,ﬁ)._) and hence

\
from 11.2 that o V—=> Bof is a continuous map of M(E) into LMRE),M(M)). If ‘s Cm(g') _
then by definition §S'r’ = m(_ﬁsf)' so in this case Bf = an(€), by Lk If se Wt(l;\') then the
argument of 1l.4 gives the same result. - ;T gee.d. .
" The following is one of the main results of this section.

14.8 Splitbing Theorem. ILet fiE, ——>E. be a C  fiber bundle

1 2
morphism over M and let = E?I((El) be such that B&f:TF(Ey)

> f*TF(EE)
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has the same rank at s{x) for all x e M. Then the differential of
m(£) M(E,)

complemented subspace of W(E and an image which is a closed
1

—> m(EE) at s has a kernel which is a closed

complemented subgpace of ?71(E2). Moreover d.'?]z(f)s is injective

(surjective} if and only if st(x) : TF(El)S(x) > TF(EQ)f(S(x))

is injective (surjective) for all x ¢ M.

Proof., Tmmediate from 14.6 and 1h.7.

11L9 Definition. ILet f:El > E2 bea C morphism of ¢ fiber bundles over

M. We say that f is a bundle immersion (bundle submersion) over M if for all

xeM f,(El) —_ (Ez) is an immersion (gubmersion).

Cantion. In the context of infinite dimensional wanifolds and in partieular in the
following theorem and co:pollary, we use the terms submanifold, submersion, and immersion in the
sense they are used in Lang's Introduction to Differentiable Manifolds. TIn the terminology of some
authors these are called sp;it""éﬁfﬁﬁﬂff@lﬁs;*-ﬂsplit_ submersion, and split immersions respectively,
i.e. we assume that the “tangent space to a submanifold, the kernel of the dlfferentla.l of a
submersion, and the image of the differential of an immersion have at each point closed complementary

/

-

;
i

subspaces.

14.10 Theorem. If o >E, is a ¢ ‘bundle immersion {sub-

“mersion) over M then #(f) :m(El)

> m(Ea) is an immersion
(submersion).

Proof. Iﬁmediater_from 14.8.

1h.31 Corollary. If E) and E, are C fiber bundles over M and

E) is a closed sub-bundle of E, then m(El) is a closed submanifold
of M(EE)_'
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The following is well-known.

14.12 Theorem Consider a commiative diagram

El > By
Py Py
: M
where PpiEy > M and f:El > E, are ¢ fibrations. Then
pl:El > M is also a Cm fibration and £ is a C  bundle morphism
over M.

Proof. First suppose that M 1s contractible, so that we may assume EE =FxM .

with p, the projection. Let q:F > ¥ x M be the fhap % FH—3 (x,mo),_ for some

*
fixed moe M, and let Ei =q El' Since M is contractible g is a homotopy inverse of the

projection F x M >F so0, as a bundle over F x M, E; ~ E; x {F x M), and it iz inmediate
that Py =Py f: El > M is a trivial bundle with fiber EJO_ x F. TIn general each x g M
has a neighborhood U . which is contractible and it follows that pl:El—--——> M is trivial over
U. The final remark is cldar.. ) ' g.e.d.

¥ 14.13 Definition Tet f£:E;

>E, bea C‘_ucl fiber bundle morphism over M. We
say fthat f is a fibered morphism of bundles over M if dsa € mep of E; into E, £ is
{
locally trivial (i.e. £:8, > E, is a ¢” fiber bundle over EE)'

Remark., :'l‘he.p_oj_.nt of 1k.12 is of course that in 11'{‘.13 it suffices to assume tha_t__ _

1 2

>M is a ¢” fiber bundle and £ is a fibered morphism of bundles over M.

p2: E2 > M apnd f£:E, —~—— F are Cm fiber bundles and ’.then automatically

Py = Py © £iFy

> M be (¢ fiber bundles

> M and q:B

14.14 Temma. Tet p:B
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> B be the induced Cw fiber bundle over

M -
over M and let a:p E

Fee
B. Then p e q: PE

BXME

> M 1is identieal to the fiber product

> M, and moreover ¢ is a Cm bundle morphism over M.

¥ -
Proof. By definition, as topological spaces both p E and B Xy E are equal to

{(v,e) e BxE | p(b) = g(e)} and also by definition afb,e) =b, so p o alb,e) = p(b) which

is how the natural projection B x, E >M 1is defined. Since for x e M (B x, f)x = B, x E

X

and ¢ restricts to the projection on Bx the final remark is clear. _ g.e.d.

14.15 Temma. Let piE > M bea C vector bundle over M and

1:E >E a ¢” fiber bundle over E. If (:M > £ dis any

Cm section of g +then E is eguivalent to the induced bundle

W - —_— . *
o:p E > g, vhere q:F > M is the C  fiber bundle ( E

induced by (.

Proof. This is of course well known and follows from the fact thet since im(f) is a

* *_* ¥

deformation retract of g, { is a homotopy inverse for p and hence E= ({p}) E= p{ E=p L.
______ qg.e.d.

The following interesting result was discovered and pointed out to me by S. Greenfield

and H. TLevine independently. Their proofs were somewhat different from that which follows.

{

l\ 14.16 fTheorem. Iet f:El' > E2 be & fiberéd morphism of ¢” fiber

bundles over M. Then R(£):m(E,) > M(E,) is a ¢ fibration whose

o0
> B isa ¢C section

%
fiver at ¢ e ME,) is mlC El)’ where {:M )

which is containe_d in some VBN E of ¢ in E‘E'

Proof. Let E = Ellg- Clearly m(f)—l(‘}n(g)) = M(E) end since M(E) is a neighborhood

of ¢ in m(EE) 1t will suffice to find a diffeormophism of M(E) onto m(;*El) = miE)

> (E) and the projection of m(g*El) xMEY on ME). Now

commting with R(£|E):m(E)
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by 14.15 and 14.1h4 there is a bundle isomorphism @:E > Q*El x,§ over M which commtes

with the bundle morphisms f£|E:E

%
> £ and { El Xy & > E over M. By the functoriality
of 7 and its multiplicativity (Theorem 13.7) it follows that M(p) is the desired diffeomorphism.

q.e.d.

14.17 Theorem. If E iz a C fiber bundle over M with paracompact

fibers then M(E) is a paracompact Cm manifold.

Proof. By Lemma 13.8 E is a closed sub-bundle of a ¢ vector bundle £ over
M, hence by 14.11 M(E) is a closed C - submanifold of the Banach space M(E).

q.e.d.
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15. NONLINEAR DIFFERENTIAL OPERATORS

Iet =n:E

>M bea C fiber bundle over M. Given e, & B with (e ) =x_

and local sections s;,8, of E defined near x, with sl(xo) = 82(}{0) = e by choosing

a chart at X in M, a loecal trivialization of E near x s and & chart near e, in the

fiber Ex we can define the kth order Taylor expansions of 8y and S at X . While
o

these Taylor expansions will depend on the various choices, if they are the same for one set

of choices they will be the same for any other and we say in this case that By and 5y have

the same k-jet at X, This defines an eguivalence relation on the set of local sgections s of

E defined near x_  with s(xo) = e_. The set of equivalence classes is denoted by > (E)e
o

and the equivalence class of s is denoted by J,. (s . Let Jk(E = U Jk E) and let
' k *o © ecE ¢

19;‘: JI:)(E)
ﬂ];:JJ;(E)

> E be the function which maps J‘lg (E)e tc e. It is easily seen that

> E has in a natural way the structure of a Cw' Tiber bundle over E whose fiber

. k
et e is @ LIQ(T(M) s T(E ) ), or equivalently all polynomial maps of degree less than
m=1 :

or equal k from T(M)x into T(Ex )e . We define a C  fiber bundle nk:Jk(E) > M

o o 0

whose total space is just Jl;(E) and whose projection is A= x J'[}é, i.e. nk(jk(s)x ) = % -

That this is indeed a C  fiber bundle follows from 14.12. More generally if 0< £ <k we

R S k Jk 7 . k
define a ¢  fiber bundle Ty (8) > J°(E) whose total space is J (E) and whose

pro;jectlon is glven by =« (gk( ) ) 3 ﬂ(s)x . (There is a canonical identification of J(E)

e - o
e .

with £ so the notafio_n is consistent).

We note that'v}\e have a natural map, the k~jet extension map,

31 (E)

> Q (J (E)), deflned of course by J (s)(x) = Jk(s) If g isa VBN of s sCm(E)

then (see §2) Jk(g) is'a vector bundle, and in faect it is clearly a VBN of ;k(s)s ¢ (Jk(E))

| Moreover jk: ¢ (E)

> (J‘k(E)) restricts to 2 linear map of Cm(g) to Cm(Jk(g)).

Now let f:El_: > E2 be a ¢ fiber bundle morphism over M. Then there is an

. oo
induced € fiber bundle morphism over M b {(£): e (El) — = F (EE)’ defined by

|I"IV'
b
b
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Jk(f)jk(s)x = 4, (f vs)x. Of course one must check that Jk(f') is well defined (i.e. that

jk(f s S)x depends anly on jk(s)x) end is C, but this is elementary (and will follow from
considerations in the next section when we compute Jk‘(f) explicitly in "loeal coordinates").

Thus J° is a functor from FB(M) to itself.

Note that we can alsc consider Jk(f) as going from JIE(E]_) to J,}Z(EE) for 4 <k,

in which case we denote it by Jl‘;(f). Clearly J}f(f) is a fiber preserving map with induced map

J‘c(f), i.e. we have a commutative diagram

! le(f)
7 (E) : > 338
k k
) e
J’G(Ei) J‘Z(f) > J‘(EE) _

15.1 Theorem. If 9 satisfies (B§5) then so does each of the derivative i

functors mk k=0,1,2 ... defined in Section 5. : o

Proof. Similar to that of 5.2.

15.2 Theorem. If 2 satisfies (BS2) and (B®) and B is a ¢ fiber ' i

bundle over M then jk:Cm(E) = Cw(Jk(E)) extends to a C. map .

Sy (B) —— m_(35(R)).

Proof. Given 'ssmk_l_r(E) let € bea VBN of s in E. Then Wzk+r(§) is a

neighborhood of s  in W@*r(E) and by 5.4 3 (teing an element of Diffk(g,Jk(g)) extends

unigquely to a Cm._ (in fact linear) map of mk-!-r(g) into mr(Jk{g)). q.e.d.

boE awmor=tew s ew roewEma FEor o cEoeos

Recall that if € and N are vector bundles over M then a linear differential o

o0 00
operator of order k from g %o T ({or from C () to C ()) is a linear map

o0 : oo . y
D:C £) => ¢ () that can be factored as a composition

) i f
CE) —Es (EE)) —E> i)

: o : ' l ;
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where f:Jk ) '

]
>f is a C vector bundle morphism over M. It is clear how to define a

{non-linear) differential operator of order k by analogy.

15.3 Definition. Let' B and E2 Vbe CUD fiber bundles over M. A function

1
D:Cw(El) > CW(EE) will be called a {non-linear) differential cperator of order %k from
00 ., o0
E, to E, (or from ¢ (El) to € (By)) if it can be factored as
J Fy
¢*(E,) —E— (5, )) > ¢ (E,)
1 1 2
where F:Jk’(El) ——>E, isa ¢ fiber bundle morphism over M. We denote the set of all

differential operators of order k from E, %o E, by ka(El’Ee)'

1
15.4 fTheorem. If g <k then DfE(El,Ee) < DE (B ,Ey).

>E2 is a

Proof. ILet D e sz(El’EE)’ say D= F,j, where F:J‘Q(El)

£

fiber bundle morphism. Then £ o KE:JK(E = E:2 is a fiber bundle morphism over M and

1)

cleaxly D= (F o :r};) g.e.d.

*jk'

15.5 Temma. Let j,:C"(E) > ¢(7F(8)) and

El}:Cm(‘_Tk(E)) =3 Cw(J'E'(J“k(E))) be jet extension maps. Then ;}Tz o Jy

is a differential operator of order k+4 from E to J¥ (J‘k (E)).

Proof. If E is a vector bundle this is a special case of the fact that the composite
of linear differential operators is a linear differential operator, so if £ is a VBN in E

sa ¢ o (o (s fom) £ H
then there is a C fiber bundle morphism (in fact a vector bundle morphism) f: €)——> 3°(77())

s\uch that ':TJG ° Jy = Ty j‘m.

_'S:‘ane f is of course unigque, the various ¥ for differe_nt :
£ are consistent and define a C - fiber bundle morphism f:JkH‘(E) —_— J’Z’(J’k(E)) with the

same property. g.e.d.

15.6 Theorem. If D stk(El,Ee) and D

3 p €Df,(By,Ey)  then DD, €Dfy (B,E,).

1
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Proof. Let D, = £14§, and D, = oxdy where f:J (El) > E, and

:\‘.‘e:JJz (EE)

> Cm(J"e(Jk(E))) is the jet extension map and

where 3, (TE(E))

k
st (e)) a4 (0 ()
%
<0 -
finally we have DyD, = h*3k+£ where h=f, o J‘q’(fl) o g is a € -fiber bundie morphism

> J‘z(EE) is the € fiber bundle morphism irduced by f;. By 15.5

> J'a(Jk(El)) is a ¢ fiber bundle morphism, so

. kg
° 3y = Bedy,y Vhere g.Jk (El)
from Jkﬂ”(El) to Bg. g.e.d.

15.7 Theorem. Assume 9 satisfies (B§2) and (B§5) and let D¢ ka(El’Eg)

‘where El and E2 are C‘m fiber bundles over a compact n-dimensional (’.1Do

manifold M. Then D:C (E

l) > Cm(EE) extends to & C  map of

mk—!—r(El) %o mr(EE) for r=0,1,2,‘... .

Proof. D= £, o j, where f:Jk(El) >E, isa C fiber bundle morphism. By

15.2 j, extends toa ¢ map jl({r):mkﬂ(m_l) —_—, mr(ak(El)) and by 15.1 and 13.b, £,
extends to a C  map mr(f) 'mr(Jk(El)) mr(Eg), 50 mr(f) ° j}(:) gives the desired
© extension. q.e.d.

Both to better justify the name non-linear differential operator snd slso to prepare

for later computations we shall now see what a differential operator "really looks like" in loecal

coordinates.

Let m:E >M bea C fiber bundle. Let e, E and let xo=nr(e0). Choose

‘coordinates XypeeosX in a neighborhood U of X, in M, coordinates ¥ys e+ -5, in a

m

neighborhocod V of e, in Ex and using & locel trivialization idenfify a neighborhood of e
: o

in B with UxV so that = restricted to Ux V is projection on the first component. Then
we have natural coordinates yg\ (1=1,...,5 0< |a] <k) for the fibers of JIS(E) over Ux V
defined as follows. A section o of E over U with o(x) eV for x €U is given by a map

xb— (x,8(x)) of U into U x V. Pubting. si(x) = yi(s(x) ), jk(c) is given in coordinate

form by a msp x —> (x,5(x), y5(3,(0)(x))) where ¥5(3(0)(x)) = D%, (x), and as usual
o4 o
%=3 lal/a::l 1_. - DX B

o - - . byl
> E3 are ¢ fiber bundle morphisms. Then DyDy = fE*(Jﬂfl*)Jk = fQ*(Jz(fl)*‘}ﬁ)Jk

67
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Now let =': >M bea C vecbor bundle over M and let D ¢ ka(E,l;), say

D= where F:Jk(E)

F*jk > is a Cm fiber bundie morphism. Let Vyreses ¥y, be a basis of

[+=]

C sections of { over U. 1If we restrict F +to the part of JIS(E) over Ux V it is

o’
given by certain functions Fj(j = 1,...,¥) of the coordinates (xl, RRVE SPIS APRERTS a0 yi) by

the rule

Tr
Qy g a
(x,¥, yi) > T Fx¥, yi)vj (x)
=1

. Then the explicirt expression for Dg is

Do(x) = JEle {x, sl(x), cery sm(x), Dasi(x) )vj {x).

15.8 Definition. We shall call the ordered r-tuple of functions Fj (=,¥, yi) defined

above the parametric expressions for the operator D near e, relative %o the various choices
made (i.e. the coordinates XypeeesXy in U, +the coorc.iina.tes. Yy eees¥y in V, +the local

trivialization of ® over U, and the basis of sections ACEREEEAM for { over U).

§15°

i
!
L
‘
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16. POLYNOMIAL DIFFERENTIAL OPERATORS

If E is a C"o fiber bundle over M and ( is a ¢® vector bundle over M, then
by wtilizing the linear structure in { it is possible to single. out certain vector subspaces of
the vector space ka(E,g) of kth order differential operators from E +to { which are
"polynomial™ functions of certain derivatives. These classes play an important role in many
part of non-linear analysis, particularly in the calculus of variations, and in this section we shall

define them and derive some of their most basic properties.

16.1 Definition. ILet E be a ( fiber bundle over M, [ a C vector bundle

over M and D e Df,(E,{). Let w and £ be integers with w>0 and 0 <4 <k. We shall
say that D is polynomial of weight < w with respect fo derivatives of order > 4 {(symbolically

De Df;:;’c (E,£)) 1if for each parametric representation of D

I (x) =

r - a
= F_j (x, sl(x), .o -,Sm(X’),D Si(x)) Vj—(x)

Jj=1

(see Definition 15.8) each of the functions F:i (=,7, y?) j=1,...,r can be written as a sum

of funections of the form

B, B \
§ ©r)y,” ey, , -

where all ,y] <4, all !Bil > £ and IB]_, Faaut IBql <W .

We abbreviate DfX;O(E,C) to DfI:(E,g ), and elements of this space we refer to as

polynomial differential operators of order k and weight < w.

. Elements of Dfllz;k_l(E,l;) (i.e. such that the Fj' of an parametric representation
are linear in derivatives of order k) are called guasi-linear differential operators of order

k from- E to (.

Remark. It is immediate from the definition thet if D e Df;:;"‘ (E,£) then -

DE wa(E,g), hence if D is really of order k (i.e. involves k"™ order derivatives in an’

essential way) then w> k.

“
£
.
§
i
i
i
i
1
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It is also immediabe from the definition that Df;i;ﬂ' (ByL) is a vector subspace of

De, (E,) and Df‘l:”'(E,g) S o™ (B,g) if 0<4<m

Evidently DfO(E,;) Esz;‘e(E,c) for all k and £ <k, however it is not & priori
evident that Df';':;f’(E,C) ever has positive dimension if w > 0. The next theorem however shows
how to construet lots of operators in Df‘W;L (E,f). TFor exsmple if E is a vector bundle it
shows that Diffk(E,g), the space of linear k-th order differentisl operators from E to ( is

< DES(E,C)-

16.2 Theorem. Let E be a C  fiber bundle over M, [ a ¢" vector
bundle over M and D e Df,(E,{). In order that D Df‘}:SE (E,¢) it is
sufficient that for each e € E there exist at least one parametric

expression for D near e, satisfying the conditions of Definition 16.1.

Before commencing on the proof of Theorem 16.2 we note that it suffices to assume that
E is a vector bundle. This follows from the following lemma which is an elementary conseguence

of Definition 16.1.

Lemma 16.3. ILet D be as in Definition 16.1 and suppose that for each
coordinate neighborhood U in M and each VBNE of E’U the obvious

"restriction” of D to a map of C (£) into C (C]U) is an element of

Df‘l;’;'e'(g,glu). Then D€ Df;:;"(E,g).

The crucial step in proving Theorem 16.2 is getting an explicit coordinate descripbion

of the induced fiber bundle morphism 7 (£): = (&) > 7" M) of a ¢" fiber bundle morphism

£ > of vector bundles., Since this is a local question we can suppose M =R and we

use x = (‘xl,...,kn) to denote both & point in W® and the natural coordinates in R°. Also
: ¢4
as usvual we write ]51 = alal/axc;'l... axnn. We can also assume £ = M K" and T =M xR and we

use y= (yl,..'.ym) and g = (z'l, ,zp) for the natural coordinates in IK® and IR' respectively.

We recall that we get coordinates y‘ix(i=l, ceesmy 0 < o} <x) for the fibers of J’:(g)
as follows: an element ¢ of C (§) is given by a map x +—> (x, s(x)) = (=, sl(x),...,sm(x))

of M into MxRE', where si(x)=yi(s(x)). Then jk(cr') is given by a map
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% —> (x,5(2), ¥ 3 (o) (3)))

a a ‘ _
where yi(jk(c)(x)) =D si(x). Clearly those y?: with Jof > 2 are coordinates for the fiber
of the tundle J(§) over 2.

In the same way we get coordinates z?(j-—l,...p; o< |a| < k) for the fiber of the

bundle J];('ﬂ), where now for a section g: x +—> (x,8(x)) of 7 , zg (Jk(q)(x)) = Dazj(s)(x).

i Now a € fiber bundle morphism f: € > 1T is given by a map

(5,¥) —— (®olx1) = (e (6¥), e, (7))

- where 'qp:]Rnx]Rm T isa € mapand cpa.:IIRn x B >R 1is zy @ If 5 € c”(g)

as above then f o g(x) = (x,9(x,8(x))), hence

X3 (£ o o)) = D%, (£ o 5) = DB (x5 (x); -0 55(x))-

Hence using the chain rule and induction we get Zj(jk(f o g)) =

= = = U ety o ol

Q
B g (x,s(x)) Ds, ..
o<ag ol al+...+gq§|a[ bt R R PR

[, [>0

. {where the term in the sum corresponding to ¢ =0 is to be interpreted to be of

'l. .. 'e'q_
) are certain (:uD real valued functions on

' 2
the form ?@(x,s(x)). The aé
3 J

ﬁl' .- ﬁq-.

n m oL - . . N
R x¥E and in fact are sums of partiasl derivatives of ‘Pj of order less than Ia[. Recalling

That Jk(f)jk(g) = 'jk(f o g) we have the following result.




g2

16.% Theorem. Let M=K, § = Mx K, M= MxE and let y; end

Z{i be the natural coordinates described above for the fibers of Jk &)

and Jk( n). Let f:£ > 1 be a Cm fiber bundle morphism given by

(=y) —> (x,q;l(x,y), .. .,cpp(x,y)). Then the induced morphism

a(e): )

> Jk(n) is given by the formulas: Z?o -J’k(f) =

n % g ByeeeBy i B By
> = > ( ey oy
. 3 o 8 hy
o<ag]al Bfe e tBSa Mysiesh, = 1 Ly-ehy

lg;1> 0

@ o ByreeBy

where the % are Cm real valued functions on £ and
3 f,l...,eq

k

i T5e)

> & 1s the natural projection.

16.5 Corollary. The induced morphism Ji(f): J;;(g) > J};(T]) is

given by the following formulas (with [af > £): zc; 6 Jf(f) =

S LI E LRI

e T Y, «eo¥F,. -«
osaclal BB e gy =1 Lpeedg 4 k1 T4

q
le,| > 2
. ' @ BBy
. o [
where the ? . ~are C functions on Jj' {€) and
D T BT - '
nf: Jf(g) > g% (€} is the natural projection.

. 16,6 Definition. . Let M be a manifold diffeomorphic to K'. Let £ bea C fiber

-bundle over M with fiber W and let £ bea ¢ vector bundle over M. Given integers

'§16
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4, k, v with w> 0 and 0<4 <k we define a vector subspace Pg;z (£,C) of the vector space
of Cw fiber bundle morphismsg of Jk(g) into £ as follows. Make the following choices:
coordinates x = (x,,-..,x_ ) on M, a trivilization E = M x R of g and coordinates
1 n

. .
vy = (yl,...,ym) in R, and let Vyse-e3V, be a basis of ¢ sections of {. ILet y(z be the

natural coordinates in the fiber of Jlg () as sbove. Then a morphism g:Jk(lg) > is

given by

I
iy &4
g(x,y,¥;) = = Gj(x,y,yf)vj(x)
=1

and we say that g ¢ :P;:;“"(g,g) if and only if we can write each GJ as a sum of terms of the

form

B, B
C TR IR AR
¢ 2 Yoy

where ko gE {€) > gt (¢} is the natural projection, @ is a C real valued function on

)

FE), a11 the Iaii >4 and lﬁl[+...+lﬁqf < w. We define Df§5£(§,g) to be the set of

: . . Wil
De ka(g,g) such that D= g, where ge B {&,¢)-

Remark. Note that to say a function on & {g) is of the form @ °n1; where % is a

function on J’?’ is just to say that it can be written as a function of the coordinates
(x,y,y?) with |of < 4. Ts it is clear that Definition 16.6 is consistent with Definition 16.1. -
In view of Lemma 16.3 the proof Theorem 16.2 is equivalent to showing that P;;;'e'(g L) is

¥

really well defined, 1i.e. is independent of the various choices entering into the definition,

and this we now proceed to show.

.First suppose we replace Voo sV, by a second basis of sections

ViseessV, of (. Then vk(x) = Eakj_ (x)_;j' 80 -

r r
— L0298 Yo
g(x: s y(]:_t) = Jil (kE]_ ak;] (x) Gk(X, Vs Yi) )VJ




™
and it is clear that if each G, has the form stated in 16.6 then so does each ¥ o5 G, .

Next suppose we replace the coordinates EREEPEN by new coordinates El’ . ";En

Q
X vas DX Then by elementary calculus Da = X cpa D B where the
1 1 acey B

P B are Cm functions on M. Hence the new coordinates ;Tri‘ are related to the coordinates

y; by y;= % (cp(; o x5 ) ;f and it follows easily if g has the proper form when expressed
[gl>0

in terms of the coordinates (x, y,yzc.f) then it also does when expressed in terms of (X,¥, Eia 3.

Finally consider the effect of changing the trivilization Eas M x Bm and the

. . m .
coordinates in X . The new coordinates (xl, ceasX

o’ g’hl; ---;.;f-m) in g are related to the

0ld coordinates (xl,...,xn, yl,...,ym) by v, = Fi e £ where f:f > g is a Cm fiber

bundie automorphism, and elearly the induced coordinstes ;f in le(g) are related to the

coordinates yg by y(; = 'fio" o J‘}é(f) (lal > 4). Hence for |af > & we have by Corollary 16.5

i B .
that Yg is a sum of terms of the (‘I’ e :rf) ¥ JZ.l cer ¥ .ﬂq where each Iﬁil >4 and
1 a

Igl|+...+] Bq_' < lal - It then follows immediately by substitution that if g has the required

form to be in PI:;!"(g,g) when expressed in terms of (J_c,y,y(:), it also does when expressed
in terms of (x,?,:w}?). This completes the proof that P‘;;‘e (E,L) in Definition 16,6 is really

well-defined and hence also completes the proof of Theorem 16.2. g.e.d.

16.7 Theorem. Let g,'qo,...,'nq, { be ¢” vector bundles over M and
o . q+l
let T bea C section of the vector bundle L ('I]O, ser gl L) of
g+l - linear maps of |, @ ... & Mg into (. Let D e sz(g,'no) and
let D; e Diff_ (g,ni)i=l,..., 9 vwhere 0< g <s; i=1,...,q
N ,

o0
and define D:C (£)

) :
> C{f) by Dy =T (Dog, ch,...,nqcr). Then

b -
q

I A
D e Df, °7(§,0), vhere k = max (sl,...,sq) end W= 85

816
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Proof. Obvious

16.8 Corollary. Let & and || be ¢ vector bundles over M with

7 Riemannian and let ( , )x denote the inner product in M . Let

D, & Diff_{£,M) , i=1.2 and define D:C (g)
i

> Cm(IRM) {where

IRM denotes the trivial line bundie over M) by Dolx) = (ch(x)’DQG(X))x'

l+82.

W
Ther D & Df‘k(g,IRM) where k = max (sl,se) and w=s
Ve recall that by Temma 13.8 every C:oo fiber bundle E over M with paracompact
fiber can be embedded as a closed sub-bundle of & C  vector bundle E over M. From this fact
together with the preceding theorem and part 2) of the following theorem we see how to construet

nié.m[ polynomial differentisl operators from E to (.

16.9 Theorem. Lek 'E bea C fiber bundle over M and let N and [

oo

be (¢ +vector tundles over M.

1) If DanE”(E,n) and £:1)

> dis a ¢" vector bundle homo-

morphism then £, ° D € Df;:;f' (E,¢).

2) If f: B

>N is a ¢ fiber bundle morphism and D € Df‘}:;‘p’(ﬂ,g)
then D ° f, & Df;:;z(E,g). In particular if E is.a closed sub~bundle
of T +then (taking f above to be the inc]:usion) it follows that the
restriction of D to C (E) isin DEA(E().

3) If Dl is a guasi-linear differential operator of order k1 from E to
1 a.ndD2 is a quasi-linear operator of order k, from 9 to (

then DD, is e quasi-linear operator of order k; +k, from E to (.

Proof. 1) is obvious, 2) follows easily from 16.5 and 3} from an easy direct

- ealeulabion.
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Remark. Actually all three of the above conclusions are special cases of a

My Vordo
considerably more general theorem which says that if Dl € ka (E,1) and ZD2 £ ka - T(.8)
1 2

wik +4
then D.D. € Df 172 (E,;) where however w is in general a little hard to describe.
271 l‘;l_-l-k2

The importance of the classes Df:_r;‘e(E, M} is in part due to theorems of the following

sort.

16.10 Theorem. Iet 1< p <, lSq(w,0§_£<k-;l—) <r<k and
r<m Let DeDfZ_r;‘e(E,ﬂ) where E iz a € fiber bundle over a

]
compact C n-dimensional manifeld M and 7 is a ¢ vector bundle

pr e
over M., If m>k assume w< T = - Then D extends to a C

n

map of LII;(E) into Lg_m(‘n) provided

g2 (em) + X2 - (k1))

Proof. It will suffice to prove that D extends to 8 € map of I.l};(g) inko
I.E_m('rt) for each open vector sub-bundie E of E, =0 there is no loss of generality in

assuming that E =§ 1is a vector bundle. Also we can as usual restrict to a coordinate neighborhood

on M, 80 we can assume that M= Dn, £ = p* xR and N-= o x ]Rt. Then by definition of

Df¥5£(§,ﬂ) if = (f,...,£;) then Df = ((Df);,..., (Df),) € (1) where each (o£); is h

a sum of terms of the form

o S .
- (pf)y = A (f)(DO.zlfsl)...(D ‘_Ifs )
_ SR "

e

. . : u
where A g DF (g,]RM-), g<lo]l <r anda © |o| <w. Now A extends to a map of
) 4 it = j=1

Lﬁ(g) into Lf-:_ ‘ (M,R) by Theorem 15.7 (since k-f > % and hence 7 = Lﬁ satisfies BIS)

~&
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94

while f > D 1fi is an element of Difflo: I(g ,‘.[RM) and hence extends to a continuous linear
. : 1

map of Lﬁ(g) into Li I(M,]R) Thus it will suffice to prove that miltiplication is a

la

continuous mltilinear map of

i R e @

i=1

Ly |q | GSR)

. 4 . ) _n_ D s s
into L __ (MR). Since k Io,'i, =3 (,ail {k P)) the condition for this is, by
Theorem 9.5, that
n z . n
km<2 - (log] - (x - 2))
4 o] >k -2 : L
i 7
where in case some lail =k -~ I—;- we must have strict inequality. Tow since Iai' <r
K= n ' K=
|O£il {(1- rE ) = lail - {k - > ), and since T lo:il <w, w(l- rp ) >
E (|cxi| - (k - %)) and the inequality is strict unless all ]cti] =r (in vhich
n
Iozil >x-2

case, since r > k - % s no l(xil equals k - -%) Thus it always suffices that

n
%Z {(k-m) + w ( 1 - k- )} Incase m>k then an additionsl requirement of Theorem 9.5
r .

is that E : (log| - (x - 2)) <n, and by the sbove it suffices that )
n _
loy | > % - 2
RS VR S _ " : _ .
w(l1-_"9 )<m or.wg =% ~li- o : L g.e.d.
. F . o 1- =5 z . ' ' i

16.11 Coroliary. IF 1 <p<® k> %-f- 4 and D= ng;‘e(E,'n) where

00 P ' . 1
w<pk then D extends to a € map of Lk(E) into LO(T]).

e




T8
16.12 Corollary. If 1<p<®, k< % +4, and D¢ Dfﬁk_rs‘e(E,ﬂ),_
o P : D
0<r<k, then D extends toa C mapof I (E) into I (1)
where é =1 - %- .
: P
pr
Proof. First we must show that pk-r < ;. p{k-r} . But
n
E—>% 50 : > —%r—-— = pk > pk-r. BSecondly we mst show
1 1 -
n k
that
n(r-2) @x s 22 (2 (k) )
D = r P
or that na% (%-(k-r)) 5 orthat%(l—m%_—zi)gl. But
s . e 1 _ plk-r _ _k-r r
again since >-k’ 1 o < 1 - = -

n

16.13 Theorem. Let k> %+ 4, 0< 4 <W<2, andlet D& DEWC(E,),

(=
where E is a ¢ fiber bundle over a- compact ¢ n-dimensional manifold
M and 1 is a ¢” vector bundle over M. Then D extends to a ¢

map of Li (E) into I‘i-w m-

§16

g.e.d.

o

Proof. Similar to that of Theorem 16.10 but using Theorem 9.16 in place of Theorem 9.5.

There is another special class of differential- operators from fiber bundles to vector

bundleg, whose importance derives from the fact that they occur as the left hand side of the

Eu.'ler-Lagrange' equations of the Calculus of Variations. They are often referred to as "differential

operators in divergence form", which explains the symbol we choose for them.

16.4 Definition. Let E be a C  fiber bundle over M and T & ¢ vector bundle

over M. We define a vector subspace Divoy(E,7|) of Dfpe(E,7) as follows:
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D= Divak(E,’n) if and only_ if D can be written as a sum of operators of the form L A wheré
i for some vector bundle g (depending on the summand) A e D, (E,;£) end L e Diff, (€,m).

| Similarly we define a vector subspace Divgg’ (€,) of ngli‘q’ (E,n) as follows

De Divgff {c :Tl) if and only if D can be written as a sum of terms of the form IA vhere

LeDiff (,1) OSr<k and Ace Df‘l‘;”(E,g) if r<g and e Dfy (EE) if r> 2.

Remark. If Fj (x,y,y‘f) is & parametric representation of D ¢ DfEk(E,'n) {see

Definition 15.8) +then it follows easily from Definition 16.1 that D e Divek(E,T]) if and

only if each Fj(x, si(x), Dasi(x)) can be written as a sum of terms of the form

20 2 W (x5, ), 2P ()

where A is a C real valued function, |of <k and the |pf] are<k. And D Divg]i‘q’ (E,m)

if moreover the functions ?a(x, si(x) s DBsi(x)) can be written as a sum of terms of the form

j : B B
; - é {x, Si(x),DYSi(x)) D 1szl(x). ..D qsﬁq(x)

d q
where |y| <4, the gl >4, ana £ gl <w ana z [gl<w-lol it lal >4 .
' i=1 i=}

16.15 Theorem. Let 1<p<®, k> %+ 4 end D e DivEe® () where

E is a Cm fiber bundle over a compact Cm menifold M and 7 is a
¢ vector bundle over M. Then D extends to a C map of LE(E) into

i.1-1,

I'?k ('ﬂ) where . 3

Proof. We cen sssume D =LA, where L ¢ ]jiffr(E,T]) for some r _<_ k¥ and -

w3 .
Aeka"e'(E,g),_ vhere w=pk-r if r>4 and w=pk if 'r< . Since L extends to a

® . . . P . D -
¢ (and in fact contimuous lineer) map of L () into I ( T it will

suffice to prove that A extends to a ¢ map of Iﬁ(E) into Ll::-—k (). 1If r> 4, so that
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W = pk-r, this is precisely the content of Corollary 16.12. On the other hand if r < £, 50 that
w = pk, then by Theorem 16.10 it suffices to verify that
1 k n
n(1-2)> r-k) + = - {k-k
(1-% (rk) v B (B - (xn))
or k Z% + r, which is clear since by hypothesis k > 1% +4 and r < 4. g.e.d.

[l
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17. LINEARIZATION AND THE SYMBOL OF A DIFFERENTIAL OPERATOR

Let El and E2 be Cm fiber bundles over a compact n-dimensional ¢ manifold M

and let D:Cm(El)

o -
> ¢ (EQ) be an element of Dfr(El’EE)’ say D= F,J , where

F1 Jr(El) > B, isa ¢ fiber bundle morphism. Let 7 satisfy (B§2) and (BS5) =0
that by Theorem 15.7 P extends to a ¢” map of mr(El) into m(EE), which we continue to

o0 - . -
denote by D. If s £ C (El) then dD, is a linear map of T(mr(El))s into T(m(Ee))DS. Tow

we have (Theorem 13.6) canonical identifications
T, (E,)), = MAT(B))  and  T(R(E,))p, = M(Tp, (B))

(recall that TS(E

*
1) is the vector bundle & TF(El) over M, where TF(El) is the vector bundle

over E., wvhose fiber at e is the tangent space o the fiber of E containing e). We shall

1 1
gsee that there exists A(D)S E Diffr(TS(El), TDSQEE)), called the ™linearization of D at s"
such that A(D) :C (T (E,)) —> (T (E,)) extends to dD . Moreover this A(D) does
not depend on % but only on D. Now the linear differential operator A(D)s has a symbol
6-1‘(1\(]))5); this is a function on T*(M), the cotangent bundle of M, and for (v,x) ¢ T*(M)

(i.e. ng*(M)x,) 5 c(A(D)S) {(v,x) is a linear map of the fiber of TS(El)X {nemely T((El)x)s(x))
into the fiber of TDS(E2)x (namely T((Ee)x)Ds(x))" Moreover gr(A(D)S) {v,x) depends only

on jr(s)(x) and v and we therefore will denote it by cr(D)(jr(s)(x), {v,x)). Note that
ar(D) is a function defined on the total space of a certain Cw fiber bundle over M, namely

. . * -
the Tiber product Jr(El) Xy T*(M), which we denote by Tr(El). Note also we have two natural

> E, and Fi T;(El) —> B, defined by ﬂ(jr(s)(x), {(v,x)) = s{x) and

f(jr(s)(x), (v,x))=F jr(s)(x) = Ds(x). These give rise to two ¢" vector bundles over

*
naps ﬁ:Tr(El)

T:(El), namely ‘.I'E*(TF(El)) and 'f*(TF(EE)) _whose fibers at (jr(s)(x), (v,x)) are respectively
T (E,), and TDS{EE)X. Thus (D) is an element of Hom (x"(Tr(E)), F (TF(E,))). This -

%
vector bundle homomorphism over Tr(El) is called the (I‘th order) symbol of the differential

operator - D. We now consider the above more formally and in detail. We maintain the notation

already introduced.
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17.1 Theorem. If E is a C  fiber bundle over M and s & Cm(E) then

there is a natural isomorphism J'k(TS(E)) " TJ' (5) (Jk(E)). Here "natursl™

i means that if f:E >E is a Cm fiber bundie morphism and s=fos

‘ : ' then there is commutativity in the diagram

: PN
TEE) ~ 1 EEE)

3,.(8_%) Bjk(s) 78

s 7 \/ Vr
. ) Jk(TE (E)) Y TJK(E)(JK(E))

: This natural isomorphism is characterized by the fact that if ¢ is

] a C  vector bundle over M snd s € Cm(g) then the isomorphism

Jk(Ts(g)) s Tjk(s)(Jk(g)) is the composite of the isomorphiasms

Jk(l) :Jk('l‘s(g)) a5 Jk(g) where l:TS(g) ~ E is the natural isomorphism

given by Theorem 12.1, and the inverse of the isomorphism

p.:Tj (S)(J'k(g)) - J'k(g) also given by Theorem 12.1.
k

Proof. Because of the existence of vector bundle neighborhoods it suffices to prove
the theorem for the category FVB, which means that we mst simply show the commtativity
of the diagram when E and % are Cn? vector bundles and f is a Cm fiber bundle morphism,

and the isomorphisms are given of eourse by the final statement of the theorem. Now if

o« CO_D(E')_ - (T (E))  then 'Jk(f)(:ik(s) +t3,.(0)) = Jk(f)(jk(s rta)) = g {f o(s +tq)) o 1o

B o e o | .

? 3
®5 () TENGRE) = F | Hle e s+t 0)
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while 5 f(g) = —=- | £(s + tg) so that

(T3 (5,60)) = 3, (8,2()) = 3, ( & NIGCERTO)
=Q

> ¢(0™(€)) is linear, its permitability with -So | is elear.

and since J,:C (§) 5T
t=0

g.e.d.

Next recall (see remarks following Theorem 12.1) that the C bundle morphi sm

r
F:0 (El)

> E, has a "vertical differential™ B&F: TF(Jr(El)) = F*TF(EE) and given

‘B g Cm(El) this gives rise to a €  vector bundle homomorphism Bj (S)F = &F » ,jr(s) of
r

r . L .
Tjr(s)(.? (El)) into T | jr(s)(EE) = TDs(EE)‘ Combining the fact with Lemms 17.1 we have

17.2 Theorem. @iven s g Cm(El) s 53. (s) F isa C vector bundle
r

homemorphism of JI(TS(El)) into TDs(EE) and hence defines an element ;

A (33)S E Diffr(Ts(El), TDS(EE)) called the linearization of D at s.

If £ is.a VBN of s in E (=0 that wemayidentify'TS(El) with

E) then, for g e C (E), A (D)Sg (x) depends only on § (s}(x) and

jr(o-)(x) and indeed is equal to SFjr(s)(x)(jr(g)(x). Moreover we have

A(D) (o) (x) = &= | (s + t0)(0)).
=0

I?roof. Everything, except perha,ias the final rema.rI;_ is easy. Now -
D(s + to )(x) = F(3,(5 + o )(x)) = F(3,(s)(x) + t3,(0)(x)). Hence

a
el

o D(s + tg )(x) = dFjr(s)(x) (ir(c)(x))"= A (D)s(cr)(x)- ' g.e.d.
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17.3 Theorem. If % satisfies (B82) and (BY5) so that by Theorem 15.7
D extends toa C. map of mr(El) into m(Ee) {sti1l denoted by D)

09 - N -
then for a s e C (El), st:T(mr(El))s _— T(?rz(EE))DS is an extension

of A(D)s. In fact more generally if s smr(El) and if g, and g,

are VBN of s and Ds in El and, E2 respectively then

d.DS:mr(gl) _— ?]z(gg) is given by ¢ t———> Bjr(s) F(jr(o-)).

Proof. We can suppose chosen so smsll that F Jr( c so that D restricts
£100L g1 §1/) 8y

toa C map of mr(gl) into m(ge) which is the composite of the continucus linear mé.p

.'ir:??lr@l)

then follows from Theorem 13.6, the chain rule, and the Ffact that a linear map is its own

> M37(g,)) and the C map m(F!Jr(gl)):m(J”(gl)) ——> M(e,) and the Theorem

differential. g.e.d.

©a
1?.3+700rollary. Let ssC_(El), Ey & VBN of s in E, and g,

1

a vector bundle neighborhbod of Ds in E,» Then for o e c”(gl)

Dis + tog) - Ds

converges in the C* topology to A(D’)S(c) as t— 0,

Proof, Given k> 0 it will suffice to prove that the convergence is Ck . Choose

m = ¢ in 17.3. Then we have d])s:ck+r(§l) —— Ck(ge) is an extension of It(D)S. Hence
A(D)S(c) = d.DS(c) = 1im %'(D(s #0) - Dg) in .Ck(ge). S q.e.4d.
: . — :

17.5 Corollary. Suppose E2 is a (:eo vector bundle over M and

De Dfr(El’EE) extends to & €  map of 7(E into 772(E2) where

1)

§17

f _ |
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8

ﬁ(Eg) is a Banach space of sections of E2 which is the completion of

Cm(EE) in a topology that is dominated by the C topology. Then for

© — .
s C(E) d: TnE)) — T (m(Ee))DSis an extension of A(D)_.
Proof. Tmmediate from 17.k.

Remark. Note that Corollary 17.5 applies in particular to Theorems 16.10, 16.11, 16.12,
16.13, and 16.15.

We next derive an expression for A(D)S in local coordinates. For this purpose we
can suppose M= Dn, and replace El and E2 with vector bundle neighborhoods of s and

Ds respectively which we -can identify with M xIRm and M X|RZ. ‘Then a section s of El

is given by m real valued functions of x = (xl,... ,xn) o

s(x) = (sl(x),.... s sm(x)()

and similerly Ds is given by g-real valued functions of x.
Ds(x) = ((Ds)l(x),---,(Ds)q(X))

and to say D g Dfr(El’EE) implies that there exist g € functions Fj (x,yi,y?) (i=1,...mn

and ¢ ranges over n-multi-indices with [a| < r) such that
o
(DS)J.(X) = Fj(x’si(x).? D Si(x))

The F;j we recall (from D_c;finition 15.8) are called the Parametric representation of D. .

" ow A(D)s £ Diffr(El,'Ee) s0 that similarly there are ¢ ¢”  functions Lj (x,yi,yg) such

that if 5 = (o'l,...,crm) is a € section of E; then

AD) () = (1 (%0, (x),0%, (1)), 1, T (5,5, (x), 2%, ().
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Moreover since !\(]3)S is a linear differential operator, the functions I'j (x,yi,y(ix) are

linear in (:sri,'yg), j.e. there exists C  functions of X, Ag and Ag{ 4 such that
3

N d d o
LJ (x’yi’yi) = E:l:- Ai(x)yi +azi A()j,i(x)yi
2

and the problem is to express these A‘J?_ and Agz i in terms of the Fj and s. The answer
e

§a7

3F. , oF,
- J _ 3 (04 3 _ 3 o
as we shell see is Ai(x) = 5%, (x,si(x), D si(x)) and Aa,i(x) = e (x,si(x), D si(x)) . We
i

state this as:
17.6 Theorem. Iet D e Dfr(El’Ee) be given parametrically by
: (¢ o
Ds(x) = (Fy (x5, (x), 2%, (), 0By (o5, (), D%, (x)))
as discussed above. -Then A(D)S is given parametrically by:

AD) (@) = (g (5,05 (), T (1)) s L (000 (), Dy ()))

where:
o ?_F.J. o a_F;L (o4 o
Lj(x,yi,yi) =£j:_ ayj_ (x"si(x): ) Si(X))Yi + azi aya (x,si(x), D Si(X))Yi .
> P
i
Eroof. By Theorem 17.2 we have
CAD) ) () = g2 | D(s +to)(x), hence

t=0

L

RACHORE AR O RRT Q)

Lj(x,ci(x), Daqi(xn = a‘% [
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from which the desired result is immediate from the "chain rule”. g.e.d.
We next recall the definition of the symbol of a linear differential operator. For
details see Chapter IV, §3 of Seminar on the Atiyah-Singer Index Theorem, Annals of Mathematics
Studies, No. 57.. Let g, and g, be ¢ vector bundles over M and let L ¢ Diffr(gl,gz).
Then if v is a cobangent vector of M at x (we write (v,x) e T*(M)) the symbol of L
at {v,x} is a linear map or(L) (v,x} of (gl)x into (§2)x defined as follows: choose

any C  function g on M such that g(x) = 0 and dg, = v and given e ¢ (gl)x choose

any C section £ of g, such that f{x) = e; then cr(L)(v,x) e = i L{g £} (x).

r!

£ * *
I w:T (M) > M is the canonical projection then we have bundles = gl and =« §2

*

over T (M) whose fibers at (v,x) are respectively the fibers of g, and g, at n(v,x);
*

namely (gl)x and (ga)x. Hence o-r(L) £ Hom(= gl,ar*ge) (of course one must check that

o'r(L) is ¢ in the appropriate sense). Notice that it is immediate from the definition of

the symbol that if I = T, J, vhere T is a vector bundie homomorphism of Jr(gl) - into g,
then Ur‘(L)(v,x) depends on- T only through its value at x. Indeed cr(L) {(vix)e = Tx(jr{%. grf) (=)
where g and f are as above.

If we identify a neighborhood U of x in M with })n via some chart and identify

Eq and € 5 OVver this neighborhood with ' x B ana D" xRy then I is represented locally

as L= ,)j[‘ A¥x)D% where the 2% are ¢ maps of D into the space LR, 8Y) of
af <r

linear maps of W& into R, If s = (sl,...,sm) ‘1s a section of £, over D" and

Is = ((Ls)l,...,(Ls)q) then Ls(x) = [ lz Ax) % (x) or in terms of components
gl <r
(Ls)i‘(x) = ¥ ) A2 (x) 1%, (x) where A% (x) is the usual matrix representation

of the linear map Aa(x): R

>1Rq. Now let v be a cotangent vector of M over pe U

and let v= 3 vi(dxi)p. Then it follows easily that

i=1
o (v} (v,p) = 5 +"a%(p)
. laf= r
) [0
where v = vlalva % cee TV % (note the sum is over all ¢ with lal = r, not | <r). In

niatrix form
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UI‘(L)(V,P)ij = Iaif-—r va A?J(P)

Now let us return to our non-linear differential operator D = e ‘jr € Dfr(E } where

1B

A(D)B = ajr(s) F o j. e Diff (TS(El), The (EE)). Then given

* . 3 ] - . '}
(v,x) € T (M) we have qr(A(D)S) {v,x) which is 2 linear wap Ts(El)x = TF(El)s(x) into
TDs(Eie)x = TF(E2)DS (x)* Moreover as we have seen, aside from (v,x),crr(A(D)S) {v,x) depends

only on- BJ. (S)F at .x, i.e. omlyon F and ,jr(s)(x) or equivalently only on D and
r .

jr(s)(x). Hence it makes sense to define:

o (D)(3,(s)s (¥,%)) = o (A(D)_)(v,x).

o . . * Tr ¥ .
Then- o-r(D) is a function on the fiber product Tr(El) =4J (El) %, T (M). We have méps

* - * 3 -
n:Tr(El) > E, and F; Tr(El) ——> E, given by :f(gr(s)x, (v,%)) = s(x) and
f(jr(s)x, (v,x)) = F jr(s)x = Ds(x), hence the fibers of the vector bundles

Jr*TF(El) and FIF(E,) at (3,(8)s (v,x)) are respectively TR(E )y (yy S00 TR(E)p. (.

so that gr(D) is @& homomorphism of = TF(El) into F TF(EE). For reference we restate all

this as

17.7 Definition. ILet El and }E:2 be ¢ fiber bundles over M and let

. r
De Dfr(El,EQ), say D=TFy o j whe_rg FiJ(E

1) >E, isa C fiber bundle morphism.

Tet Tr(El) denote the fiber bundle over M which is the fiber product of J° (El) and
x -
T'(M) and define maps x and F of T:(El) into E, and E, respectively by

“(jr(s)x:(vax))=3(x)ani F(jr(s): (v,x)) = F(jr(s)x = Ds(x). Then the symbol of D, cr(b)’. is

* —%
defined to be the element of Hom(x ‘I‘F(El), F TF(EE)) given by

§17

> E2 is a C  fiber bundle morphism. Given s € Cm(El) we have the linearization
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o, (DI (s)p (vE)) = 5, (a,(D),) (v;%)

where Ar(D)s is the linearization of D at s (Theorem 17.2).

We next deseribe how to compute cr(D) in "local coordinates'.

=MxEY, E, =M xR’ and let D e Df (E,E,)

17.8 Theorem. Iet M=1D", E; .

be given by:
Ds(x) = (B (%5 (x), D%, (), -+, F (5,55 (=), D%, (x)))

o . - _ . .
where Fj(x,yi,yi) are ¢ functions of x = (xl,...,xn), (yl,...,ym)

and y?(i:l;... ,m and « ranges over all n-multi-indices with

1< |al <r). Then since each fiber of TF(E;) is clearly canonically

isomorphic to R~ and each fiber of TF(EE) is canonically isomorphic to

e, Ur(D)(jr(s)X’r (v,x)) is given by a g x m mabrix gij(x,jr(s)x, (v,%)). ]
n i

If v= 5 v,dx, then this mstrix is given explicitly by the formila: i
i=l olr:

_ i

afF. :
Uij(x’jr(s)x 5 (vx)) = % v 'A&L (x,si(x), Dasi(x)) ‘Ih

lal= ?y; u.\;‘i

O
where va=v01 ...vn .
1. n

Proof. Immediate from Theorem 17.6 and the remarks sbove which describe the explicit

formla for the symbol of a linear operator in matrix fTorm. . : - g.e.d,

Remark. Let'gl and §2 be Cm vechbor bundles over M and let

. coe f r X o .
D=Fy° d. € lefr(gl,ge) ‘where F: J (gl) >g, isa € vector bundle morphism. Then

it is na_tural to ask what the connection is between g'r(D) £ Hom (p*g l,p*g 2)
*
(where p: T (M)

> M is the natural projection) and
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* —% *
cr(D) £ Hom (= TF(gl), F TF(gE))’ where as above - :rr:Tr(gl) >E. is the natural map. Now

i

. % r T % % . . . . % % *
it q: T (€)=7 (€)%, T (M) > T (M) is the natural projection then ¢ p €)=m TF(g, )

{the fiber of each at (jr(s)x’ (v;x)) is canonically isomorphic o (§l)x) and
q*p*(g 2) = F*TF(g 2) S0 we can regard crr(D) {when D is considered as a non-linear operator) as

* % * % * *
an element of Hom (g p (§l), qp (§2)). Now composition with q maps Hom {(p €1oP '.';2) into

* % :
Hom (q*p (gl), q*p (§2)) and the formla "g'r(D) = qr(D) e g" expresses the relation between
the non-linear cr(D) (on the left) and the linear qr(D) (on the right). The point is that since

D is linear, A(D) =D for all s ¢ Cm( s 80 since A(D is independent of s,
8 ‘ 1 8

1t

GI(D) (jr(s): (v,x))

i.e. it is lifted from T (M).

ur(A (D)s) {v,x)) = o-r(D) (v,x) does not depend on the jr(s) component,

17.9_ Definition An element .D € Dfr(El, Eg) is called an euigf,ic differential operator
*
of order r from E, to E, if for all (jr(s), (v,x)) & Tr(El) with v # 0,

cr(D)(jr(s),(v,x)):T((El)x)s(x) — (Ee)x)bs(x) is a lipear isomorphism. We will denote the "
sel of all such D by Elptcr(El, E,)-

Remark. Clearly Elptcr(El, EE) is non empty only if E; and E, have the same fiber

dimension.
Recall that if gl and € o are Cw vector bundles over M then the set
Ellr(gl’§2) of rth order elliptic linesr differential operators from 51 to §2 is the subset

of Deg Diffr(gl,ge) such that o (D) (v,x) is a linear isomorphism of (gl)x onto (ge)x

* .
for all (v,x) e T (M)X with v # 0. Clearly Ellr(gl,ge) < E;ptcr(gl,ge). Moreover

- 17:10 Theorem. If D Elptcr(El,Ee) theh A(D)_ e Ellr(Ts('El), TDS(EE))

for all s ¢ Cm(El). . Conversely if each element of Jr(El) is the r-jet of
-2 global se_c_'bion of El then D g Elptcr(El,-Eg) " provided each linearization
of D is elliptic. ' -

Proof. Immediate from the fact that -gr(_D)(jr(s)x, {v;x)) = gr(A(D)S)(v,x).

g.e.d.
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Recall that T:(El) = Jr(El) Xy T*(M) as well as being a ¢  fiber bundle over M is a

¢" vector bundle (under the natural projection) over Jr(El) whose fiber over jr(s)x is just

i (M)x {(for indeed one definition of the total space of Tr(El) is the total space of - 5

; EN
p*(T*(M)) where p: Jr(El) > M -is the natural projection). We will denote by Tr*(El)

A ;-' the Thom space of this vector bundle. For convenience we fix a Riemannian metric in M (which

. i . * R . ~E . * *
induces a Riemannian structure on T (E,)) and identify T (E;) with BT (E.)}/ST (E,),
. 17 1l rl 1
*
i.e. the unit ball bundle of Tr(El) with the unit sphere bundle identified to a point.

Recall that if € 1 and g, are vector bundies over a "reasonable" space X and there

is given a vector bundle isomorphism f: §1,As§s §2|A where A is a "reasonable" closed subspace

then there is defined a "difference element" afg 19805 £) & K(X,A) = B(X/a). (See Seminar on

the Atiysh-Singer Index Theorem, Chapter II, 8§3). Now if D e Elptcr(El,Ea) then :r*TF(El) and
—% o * . s
F TF(EE) are ¢ vecbor bundles over BTr(El) and, by definition of elliptic, c'r(D) defines

_ N _
an isomorphism of their restrictions to STr(E:L)' Thus we have a difference element

a(x TR(E)), FIR(8,), o, (D)|ST,(2))) € R(TH(E))).

Now the natursl projection p: J l"(El) > E, is a homotopy equivalence (in fact it
can be given the structure of a vector bundle, although not in a natural way) hence, by the

: ¥ * %
covering homotopy theorem, since Tr(El) =p To(El) s there is an induced homotopy egquivalence

* AR, ~K . . . . L K
P :Tr(El) _— 'I‘O(El) which induces an isomorphism p’: K(To (El)) ~ K(Tr (El))

17.11 Definition. If D ¢ Elpte (E,,E,) then we define an element
oy K el L, % —% *
v () e (T, (B)) By ()7 a(n TR(E)), FI8(5,), 0, (D)IST,(5,))-

£ “(£,) then s it defi lement
If s ¢ l) en since A(D)S £ El]-‘r(Ts(El)’ TDS(EE)) it defines an element -

Y (D)) e R @00) by v (), = Ala"r(5)s 4T, (8, 0, (A(D) )T (M) where

@I ) ——> M. Clearly y(A(D),) = ¥ y(0) wheme F:A¥()

"
> /'fo(El) is induced by

- % *
the map (v,x) ——2> {s(x), (v,x)) of T (M) into TO(El). This follows from the definition

of cr(D') in terms of GI(A (D) S) (ef. Def. 17.7) and the functoriality of the difference

i construction (S.A.8.1.T. Chapter II, §3, Lemma 1, statement (i)).
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18. THE INDEX OF A NON-LINEAR ELLIPTIC OPERATOR

In this séction, given ¢ fiber bu:ﬁdles El and EE over a campact ¢ manifold M without
boundary we will associate to each D ¢ Elptcr(El, Ee) an element ia(D) £ K(Cm(El)) called the analytic
index of D . If we c_hoose a "base poiﬁt" s, for Cm(El) then we have a canonical augmentation map
dim:K(Cw(El)) —>7% and dim ia(D) turns out to be the usual analytic index of the linearized elliptic
operator A(D)_ : C7(T, (8)) —> c:°°(TDS (8)) , i.e. @mker (A(D)_ ) - dim coker (A(D) ) . oOf
course if E, :nd E, Oare vector bundle: and D ¢ Ellr(El’ EE) then 0Cm(El) is con'bractigle 50
d.:im:K(Cw(Eo)) —> K(pt) = 2 is an isomorphism and A(D)s =D so in this case there is no point in
distinguishing between ia(D) as an element of 1<;(c°°(El))o and as an element of % . However in the
general case, when Cm(El) is not homotopically trivial, ia_(D) can carry more informstion sbout D
than does its "dimension" and it is presumably one of the important hamotopy invarianfs of D . Aswe’
shall also sée i a(D) £ K(Cm(Ei)) is completely determined by the element +(D) e E (;0*(E1)) defined
" in Definition 17.11 and the "index problem" for non-linesr elliptic operators is the ﬁroblem of finding
an explicit formula for ia(D) in terms of (D) ({this is of course solved in the case of linear D
by the Atiyah-Singer Index Theorem). As we shall alsc see the "index problem” for non-lineer elliptic
operatqrs can be interpreted as a special case of the index problem for what is called a “pa.razneter:i._zegl
Tamily of linear elliptic operators" (provided the parameter space is allowed to be suitably general).
The latter problem has been solved, at least with suitable restrictions on the parameter space, by W.
Shih, L. Illusie, and others, and it seems likely that their results will lead to a solution of the index
problem for non-linear elliptie operators.

First we must explain how X is defined for arbitrary spaces. The basic condition we impose is
that K should be & functor from spaces and homotopy classes of maps to sbelian groups, which for com-
pact spaces 1s naturally isomorphic to the Grothendieck group of vector bundles and which is represent-
gble, i.e. K(X) should be naturally equivalent to [X,C] , +the homotopy classes of maps éf X into

& hometopy abelian H-spece C . This uniquely determines €. up to homotopy type, namely C = Z x B

G
‘where B, means the classifying space of G, and G is either 1im O(n) or 1lim U(n) depending on
: ST : — —
whether we mean K, or K; (for the most part we shall mean K, except when we explicitly complexify).

By a theorem proved independently by K. Jthich (Thesis, Bonn, 1964) and M. F. Atiysh (K Theory,

Lectures by M. F. Atiyah, Notes by D. W. Anderson, Mimeo Harvard Math. Dept., 1964) there is a partic-

ularly nice choice of C for our purposes. Namely let H be a separasble, infinite dimensional Hilbert

i
¢
i
1
i
1
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space (real or c@plex according as we want K, or KU) and let (Fred(H) denote the space of Fredholm
operators on H , i.e. bounded linear maps., T:# —= H such that ker T and ccker T are finite
dimensional (7(H) is automatically closed in H so we can take coker T = (T(H)} = ker(T*)) .

Fred(H) is topologized as a subspace of the space of all bounded operators on H with the usual norm
topology (||T]] = sup {]|Tx|| | ||x]] = 13} . If X is a space then a continuous map f:X —> Fred(H)
is called admissible if ker(f) = {{v,x) e Hx X | v € ker £(x)} and
coker(f) = {(v,x) e Hx X | v £ im f(x)"} are vector bundles over X under the obvious projectiom.
Then {cf. Atiyah, loc.cit.) if X is a compact space and vy € [X,Fred(H)] +then +y has an edmissible
representative g and the element ind(y) = [ker(g)] - [coker(g)] of the Grothendieck group K(X) of
vector bundles of vector bu.n@les over X 1s well defined {i.e. independent of the choice of admissible
g&v), end ind:[X,Frea(H)] —> K(X) is a bijection. Finally Fred(H) is ﬁomotopy abelian H-space
under usual operator composition, making [X,Fred(H)] an abelian group, and ind is even a group iso-
morphism., Henceforth we will define X(X) = [X,Fred(H)] for arbitrary spaces X .

Next let X be & paracompact space and let B, and B. be 'Hilbert space bundles over X 4

1 2 I
(with GL{H), the general linear group of Hilbert space with the norm topology as structural group). A g

Hilbert bundle morphism £:B) —> B, will be called a Fredholm bundle morphism if £,:(B)) —-> (132);c f
is a Fredholm map for each x € X . In this case we define ind{f) e K(X) as follows: by a Theorem of iy
N. -Kuiper {Topology, vol. 3 (1964), pp. 19-30) GI(H) is contractible, from which it follows that there if
exist bundle isomorphisms g:X x He B:L and h:ZB,a ~ XX H .- Theh x> hx fx g, is a map 1l
hfg: X —> Fred(H) . Moreover, again by the contractibility of GL(H) it follows that g and h are
well determined up to homotopy and hence the homobtopy class of hig is a well determined element of - ;:‘

[X,Frea(H)] = K(X) which we denote by ind(f) .

18.1 Definition. Let X and Y be Cl Hilbert manifolds and let fiX —> Y be a Cl-ma.p.
& . *
We say f ds a Fredholm map if df:T(X) —= £ T(Y) is a Fredholm bundle morphism over X and in this
cage we define ind(f) ¢ K(X) by ind(f) = ind(af) . More generally if j:0 —> X is a contiouous map -

. * .
we say f is a Fredholm map relative to j 4f af o j: 3 T(X) —> §°F° T(Y) is a Fredholm bundie

. morphi, i.20. if . : sy = . i i
orphism (i.e. i dfg(m) T(X)J(m) > T(Y)fj(w) is a Fredholm operator for each @ £ 9 ) and in

this case we define ind(f,j) € X(2) by ind(f,3) = ind(af ° j) .

Remark, If f:X —> 7Y is a Fredholm map then clearly f is a Fredholm map relative to any

- - -*- -*
J:t —> X and then ind(f,J) = j ind(f) where j :K(X) —> K(Q) is the functorial k(3) .
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We are now in a position to define the index of a non-linear elliptic differential operator.

18.2 Theorem and Definition. Let M be a compact, n-dimensional C  menifold

Lre]
without boundary, let El and E2 be € fiber bundles over M and let

D g Elpte (E,,E,) . Let k> 2+ r , soby Theorem 35.7 D:C (E.) —> C (E.)
E 4 » 1’2 - e 5 3 o Ly - H 1 o

extends to & € map of Hilbert manifolds Dy o(E) —> L _(E,) . Then D)

is a Fredholm map relative to the inclusion map lk:CW(El) —_— Li(El) and moreover i
o0
ind(D(k) s )\k) e k{¢ (El)) is independent of % and hence defines an element

1 (D) e K(CW(El)) called the analytic index of D .

. oo 2 2
Proof. Given s g C (El) let E = 'I'S(El) and §, = TDS(EQ) so 513(1.1{(El))S = Lk(gl) s
T LBy = T (5) 5 TR () =12 (8) , end a(Dy): 12(5) —> 12 (£) id the
| B p(Bpllpg = I (85) Y p\Bollpg = Iy 1 (85) » {(x)’'s* ALY Ty p\S2
‘ continuous extension of A(D)S: cm(gl) _— Cm(gg) by Theorem 17.3. Now by Thecrem 17.10
A(D)s e EJ_'!.I_(l;l, §2) » hence by a standard result (e.g. see Theorem 6 of Chapter XI of Seminar on the
Atiyah-Singer Index Theorem, referred to as 8.A.S5.I.T. below) it is a Fredholm operator and hence by -
definition D(k) is Fredholm relative to lk .
The proof that md(D(k), lk) = md(D(k+l)’ lk—l-l) depends on singular integral operators and

will only be skeiched. By 5.A.8.I.T., Chapter XI, Thecrem 13 we can choose L]S‘: Cw(gl) —_— cm(gl) an

1 1
slement of Int(%), &) such that o) (L )(v,x)e = llvlle , and so that L} maps 12, (5)

isomorphically onto L]E;(gl) « Morecver we can choose 'i.i‘ cantinuously with s so that we have a

Hilbert bundle isomorphism over Cw(El)

Bt Ny T (B) —> N wIi(E)

Similarly there is a Hilbert bundle isomorphism over Cm(El_)

I Ny D?kﬂ) iy 5 (Bp)) —> % Ty T (7))

o«
which for g g C (El) is given by an I%S 3 Intl(ga, §2) whose symbol at (v,x) is multiplication by

1

[vll . Now since 1 ana (Le)_l ﬁa.i; into GL(H) , which is a contractible subset of Fred(H),

ind(1,™) = ind(L,) = 0 , hence ina(1?)™L - Dy ° Y = ana(z®) 1) + na(,2 ) + ina(L) = ina(p, ,3)
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Thus it will suffice to show that (1,2)'l o dD( o Tt and 4D have the same index, i.e. are

k) (1)

i | i * 2 _(E)) —>2¥ ¥ 2 . But h
homotopic as Fredholm bundle morphisms of 2. T(Lk+1(El)) > Ny D(k+l)T(Lk+l-r( Eg)) ut over eac

|

g
[
g

s e Cm(El) their difference is given by an extension of A(D)S - (Lgs)_l ° A(D)s s L]S' which is an

element of Intr(gl, §2) whose rth order symbol is clearly zero and which hence is an operator of

order r-1 and therefore defines a compact linear map of I'lzg-l-l(ge) . Thus the result follows from the

! following lemma.,

18.3. Lemma. Let £, f: X —> Fred(H) be continunous maps such that fl(x) - fo(x)

ig a compact operator on H for all x ¢ X . Then fo and fl are homotopic maps of

X into Fred(H) and hence define the same element of K(X) .

Proof. - Let .ft(x) = fo(x) + t(fl(x) - fo(x)) . CQlearly (t,x) —3> ft(x) is a continuous

maps of I x X into the bounded operators on H so it suffices to prove that ft(x) e Fred(H) . But

t(fl(x) - fo(x)) is compact and the Lemma follows from S.A.S.I.T., Chapter VII, Corollary 1 of Theorem2. |

g.e.d. :

’

Remark. Actually it can be shown that D(k): I,E(El) — Li__r(EE) ig & Fredholm map and hence

k
- * ‘
topy equivalence (see the remerk following Theorem 13.9) At K(Ii(El) —_— K(Cm(El)) is an isomorphism, #

defines an element ind(D(k)) £ K(Li(El)) . But since the inclusion 2 : Cm(El) —_ LIE;(EZL) is a homo- b

J g0 we lose no information by only considering ?x*ind(D(k)) = i_nd(})(K) 5 lk) = ia(ZD) . ;

~

As we have remarked 'ia(D) £ K(Cm(El)) depends only on (D} ¢ K(TO*(E]_)) . Both in order to
establish this fact and to indicate how one might hope to calculate ia.(D) fram (D) {i.e. "solve the
index problem"} it is convenient to introduce the notion of a "parameterized family of (linear) elliptic
operators". ‘

In what follows € will be a paracampact space {the parameter space) and M a compact
n-dimensional Cw 'mifbld without boundary. We shall put B = @ x M (actually most of what we say
wor_ks also wher B 'is a fiber bundle over § with fiber M amnd structural grouvp the group of diffeo-

morphisms of M) . We put M - {wl x M considered as a ¢ manifold in the obvious WS-.,V apd if §
ié a .vector bundle over B we put §w = §|Mw « If . 7] and & are Cuu vector bundiles over M then
.. recall that Hom(ﬁ, ¢) = CWL(T[, £) so that Hom(T, {) has a patural " ¢ topology" and =0 doss the

open subspace Iso(T, £} . In particular if U is a space then U x 7 and U x { are vector bundles

over UxM and if §:Ux NwUx { is ¢° vector bundle isomorphism such that q;u:{u} x N ful x¢

o
ig in Iso{n, L) (i.e. dis € ) for all u ¢ U, then it makes sense to say that | defines a

— | L —




96

contimuious map {u ¥—3> ‘I’u) of U into Iso(m, {) .

18.3. Definition. We define a cabegory V'BQ(M) whose objects, called € families of

vector bundles on M parameterized by 2 , are defined by the following given:

1) a vector bundle £ over B=0 x ¥

2) An open cover {005}@8A of Q and for each @ e A a € vector bundle N oOver M
and a vector bundle isamorphism @G x T, = §|(Ga x M) , such that for each
o8 & A, cpél * 9yt (0N 0 x Ny~ (0 10,) x T, defines = continuous map of O (N Oy into
Iso(‘ﬂa, 1 B) « If s is a section of E then s ° cpc;l is a section of oa’ x M, which is the same as
amap of & , 1into the sections of 1, . If for each @ this is a continuous map of Ga into Cm('na)
(where the latter space has the €~ ‘topology) them we say that s e c“n(g) and we note that c‘”g(g)

¢learly = vector space.

Remark. As usual with such definitions the "atlas" f{g : O x M ~E| (O, x M)} is con-
tained in a unique meximal atlss. It is clesr how to define the Whitney sum in the category VB, (#) and
nore generally any "C” funétor“ of objects in VTBQ(M) « Tu particular if £ and T are objects of
VBQ(M) we can define I{(£, ) (the bundle whose fiber at b is the space of linear meps of §  into
'l]b) as an cbject of VBQ(M) . The morphisms of VBQ(M) are of course defined by Hom(g,T)= CmQ(L(g,T})l
It follows that we have the usual bilinear pairing Hom(g,7) x cmg(g) —_ Cmg(ﬂ ).

If we have a C° vector bundle £ over M then we get an object g, =0 xE of VBQ(M) .
such a bundle is called "parametrically trivial®. In particular we have the family ‘I’*Q(M) which plays
an important role in what follows_.

If £ ¢ VBQ(M) then of course each £ {(w e Q) isa C° vector bundle over M* = fw}xm,
It is easy to see how to define J'g(l;) e VB, (M) so that Jg(g)‘”: = (9. Moreover we then have s

k-jet extension map 5 Cm9 () — CmQ (J:;(g)) such that jk(s)|§w = jk(sjgw) .

e £:9, —> 92 is & continuous map, then there is a canonical map f£¥:V3 2(M) —3> VB 1(M)
If § E VZB (M) then as a vector ‘bundle f*& is the bundle over :zl X M induced from the vector bu.ndle '
13 oﬁr 9.2 xM by the map fx 16.. Ql XM — Q xM, and it is easy to see how to pull back the
extra structure. It is also obv:_ous how morphisms pull back, so that f* becomes a covariant functor..'

In what follows we will write Hk('n) to denote the Sobolev Hilbert space 1-12{(11) where 1 i

a ¢ vector bundle over M . For each § £ VB (M) we shall now define a Hilbert space bundle il (§)

over @ whose fiber HY {§) over a point ®w £ 0 is Hk(g ) . The Hilbert bundle structure of
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}%‘(g) will be defined in terms of the ¢ : 00: x Ny~ £] (Ga x M) of Definition 18.3.
Namely, given « and ® £ 0O, we have a map :pa(w) € Hom(ﬂa, £)  gefinea by cpa(u))(e)cha(m,e),
and by the functoriality of L-[k (nemely the fact that I-Ik = Li satisfies Axiom B § 1 of Section U)
cpa(w) extends to an isomorphism of topological vector spaces )(m) Hk( nct)N Hk(g Y, and we define

a trivialization of HW(E)| C

o) o xE(n) ~H(D)] 0,

by ( )(w,s) (k)(u))(s) To prove that this defines a Hilbert bundle structure for Hkﬂ(g) we must
show that given « and B the map wr—> (np‘gk)(m))‘lo tpék)(w) of G, N GB into L(Hk('na), Hk(’ﬂﬁ))
is continuous (in the norm topology). Now by Definition 18.3 w+—> cpél(w) cpa(w) is a continuous map
of Oy N0, into Hom(1 , » _'nﬁ) s where Hom(T, , 'nﬁ) = ¢ 1My, » nﬂ) is given the C" +topology.
Thus it will suffice to show that the map £ +—> £U5) (vhere €5; #(n,) —> H(k)(nﬁ) is the con-

tinuous linear map which extends f: c’*"(na — (1 B)) is continuous from Hom(1,, 1]5) with the b

¢® topology into L(Hk(‘na) s Hk('ns)) . But from Corollary 9.7 follows the stronger fact that the map !
(£,8) —> f(k)(s) is a continuous bilinear map of Han(T, , T]B) x Hk('na) —_— Hk.('i]sj when "
Han(T,, » M 13)= c“(L(na s 115)) is given the topology induced from wt(z(n o’ ﬂﬁ)) provided : i
£ > max(k, %— aim M) . , , i
If £ ¢ VBQ(M) then a €~ Riemannian structure for & is of course given by a ng section
of the bundle of symmetric bilinear forms on & which is everywhere positive definite. Th:l.s induces a b
Riemannian metric on each Em' and hence, given a strictly positive smooth measure on M , an inner pro-
duct on each Ho(gm), which is easily seen to defime a C” Riemannian structure on the Hilbert bundle
jind (t;:,) If for k> o we define Hék(g) to be the dual bundie of }rg(g) (the anti-dual in the complex
case) then the Riemammian structure for H° (§) together with the embedding iy (g) c i (l;) defines

an embedding H° (E) CH k(g)

' Remark. - It is here (as A. Donady poinbted out to me) where one uses in an essential way
that B=Q x M is. a product bu.ndle over M and not just a fiber bundle with fiber M and struc-
tural group tT.f_Le_group_ of dlff_eomorphlsms of M. Indeed let F : Q@ xXxM-——>0 xM be a map of the form

F(w,y) = F(w)(y) where F ‘is & continuous map of © into the group of diffeomorphisms of M (with the

. *
¢® topology). Given £ & VBn(M) we con define in an obvious way an 'I]m = F{w) £ ana there is a

natural map F(w),: Hk(g)m--—> }Ik(_'l])w, nemely s 4—> s © F(w). The problem arises because F is not

a bundle isomorphism. That is, if we represent € and 1T over Go: as 00,' x E'-’o: and Cra x 1 o then as
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a map of Go: — L(Hk(ga), Hk('na)) F 1is continuous when L(Hk(ga), Hk('[]a)) is given the "strong.
operator topology" but.not when it is given the norm (also called uniform) topology. Thus the Hilbert
bundle structure of Hkﬂ(g) dei)ends on the representation of Q& x M as a product bundle over » and
ag a result it is not possible to give a natural Hilbert bundle structure to {Hk(gw)} when we replace

B=0xM by a fiber bundle with fiber M .

18.4. Lemma. Let M be a compact C° manifold without boundary and with a
strictly positive smooth measure and let £ ¢ VBQ(M) have a C° Riemannian structure.
Then for all r;k £ Z, = > 0, there is a Hilbert bundle isomorphism

jik)w : 1"5(%) —_— ng_r(JIQ(g)) such that for each weQ +the map

jl(_k)m : BY(e®) —> B T(IT(Y) is the continuous exbension of 32— (T (M)

Proof. By choosing a trivialization g, : Oy * My~ €| G, xM one casily reduces to the
case E =0 x 7 in which case Hkﬂ(g) =6 x Hk('ﬂ) and jx(.k) = id x Eﬁk) where E:E_k): Hk(ﬂ)ﬂ;>}ﬂ§'r(ﬂ)
is the contimious extension of Jpt () —> ¢®(a7 (1)), which is an isomorphism by the very definition
of Hk('n) in case k =r and in general by Theorem 5.3 But in this case the lemms is trivial.

q.e.d.

18.5. Lema. Let M be a compact C manifold without boundary, E,1) sVBQ(M) and
T ¢ Hom(g,M) + Then for all keZ there is a Hilbert bundle morphism T(k):HKQ(g)_mk(n)
such that for each ® £ the map T(gk): Hk(gw) — Hk('i]w) is the continuous extension

of (T )yt C7(Y) —= ¢™(1") , wheve T, = T/ e Hom(g®,7") .

Proof, Again we easj.ly reduce to the case E =8 x Cl s 8nd TM=90x 1;2 » S0 that
Hom(g,T) can be identified with continuous maps of @ into Hom(Cl,Ca) = c‘”(L(a;l,a;E)) {with the ¢
topology), and the Lemma amounts to proving that the natural bilinear map CW(L(Ql, 52)) x c”(cl)—>c°“(g2)
extends to a continuous bilinear map of Cm(L(Cl,CE)) x i{k(gl) — Hk(Ca) . But as remarked shove
-Corollary 9.7 implies the stronger fact that it extends to 2 continueous bilinear pairing of
H(1(0,,¢,)) % B5(C,) provided £ > max G,k amw) .

g.e.d.

18.6. Definition. Given E,T e VBQ(M) we define a subspace Diffnk(g,n) of the vector

space of linear maps of Cwﬂ(g) into -Cmn('n) as follows: D:c“g(g) —_ CWQ(T]) belongs to




i
]

f8 - 99
Diffg(g,'n) if and only if 1t can be factored as D = Fyo j, where j :¢” (£) —> c”g(JkQ(g)) is the
k-jet extension mep and F:Jkn(g) —> 1 is in Hom(Jkg(g),T[) = CWQ(L(JkQ(g),T])) . Tor each

we®, ¥ = FM e Hom(s(6"),1") aefines Dy = Fyo dyt C°(1") , ean element of Dpirg (¢%1%) . D win
be referred to as a family of kth order linear operators from £ to 1N and Dw will be called the

member of the family D corresponding to the parameter velue w and we ghall often denote D by

{Dw}meg or simply {Dw] .
. - . . . fﬂ . k
Remark. We note that D> F is a linear isomorphism of Dif k(f;,'n) with Hom{J Q(§),'[]) .

18.7. Theorem. Iet M be a canpact n-dimensional manifold without boundary

and with a strictly positive smooth measure and let E,7 eV‘BQ(M) have a C*
Riemazmian structures. If D EDiffS(g,'n) then for each ke Z there is a Hilbert
bundle morphism DX, Hkn(g) —_— Hkgr(n"“) such that for each ® ¢ @ the map
D(‘Ek)(gw) —_ Hk-r(nw) is the continuous éxtension of the differential operator

D,:C°(8") —> ¢™(1") .

Proof. TImmediate from lemmas 18.4% and 18.5 .
% % -
Now let E,7 and D be as in the above theorem and let T n(M) =QxT (M) . Let
w: T n(M) > & xM be the natural projection (i.e, ={w,(v,x)) = (w,x)}) . Then « & and = 17 'are -
o

*
C” bundles over T Q(M) whose fibers at (w,(v,x)) are respectively g;’ and Tﬁ . We define

: % % : th
crk(D) e Hom(z E,n 1)) , called the (k  order) symbol of D as Ffollows:
0. (DMw;(v;x)) = o (D Yv,x) : E2 —> 10
k A TOTEM @M ey > Ty
‘ o ' ' *_ ¥ oL, ¥_ ¥ .
The fact that o‘k(D) 1s really an element of Hom(x E, 7) = C L{x E,x M) follows easily

from the fact that if §l and §2 are two € fiber bundles over M then the map

o @ Dirt, (g ,E,) —>.1;0in(st*§l,=r*gg)' 1is continuous when Diffk(gl?ge}' r CVL(7(5,),E,) eud

Hom{x g,% 1) = C°L{x E,x 1) ‘are given the C* and ¢° topologies respectively.

18.8. Definition. If D¢ Diff‘]z(g,'n) then D {Dm} is called amn elliptic family of

58 order linear differential operators if ck(D)(w, {v,x))

§$ —_— Tg is an isomorphism for v £ 0,

or equivalently if for each wef® , D e piff, (£%,1") belongs to E1L (%, 1") . We denote the set of
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such D by Ellk(g,'n ). If we give M & Riemennian structure then for D ¢ Ellk(g,'n) s crk(D)]ST Q(M),
. * -
the restriction of ck(D) to the unit sphere bundle of T Q(M) » 1s an element of ¥so(£,1), where
~ -~ * * ¥*
E and T are respectively the restrictions of = £ and = 1 to &7 Q(M) s hence the difference con-
L, * * x ~ * * ~ *

struction defines an element 8(x &,a 1, 6 (D)[ST (M) of K(BT (M), ST () = K(T (M) where

* * * ¥* ¥ *
BT Q(M)_ is the unit ball bundle of T Q(M) and ’T‘Q (M) = BT n(M)/ST Q(M) is the Thom space of T n(M).

_—
We denote this element of K(T Q(M)) by (D) .

18.9. Theorem, Iet M be a compact ¢ manifold without boundary and let

E,M = V‘BQ(M) have Riemannian structures, If D ¢ Ellf_(g,'r[) then for each k g Z
the Hilbert bundle morphism p(k), Hkn(g) —_ Hkg'zr('ﬂ) of Theorem 18.7 is &
Fredholm bundle morphism and hence defines an element ind(D(k)-) of K{(n) .
Moreover this element of K(Q) is independent of k , so D defines an element

ia(D) e K(2), called the amalytic index of D , by ia(D) = ind(D(k)) .

Procof. With some fairly obvious changes the proof is similar to that sketched for Theorem
19.2 and will be cmitted.

We now . sketeh briefly the Index Theorem (or conjecture) for families of elliptic linear dif-
Terential operé.tors. Much of what follows must be regarded as prmrisional- since there are a great many
technical details to be checked and I have not by ary means checked them all carefully.

In vhat follows M is a O compact n-dimensional Riemannian manifold without boundary.
If €¢ VBR(M), E denotes p*g where p is the projecfion of the unit sphere bundle of T*Q(M) onto
2 xM . As usual §.A.5.I.T. refers to Seminar on the Atiyah-Singer Index Theorem, -

First given E,7 ¢ VBQ(M) one defines Intﬁ(g,'ﬂ) » the space of families of k" order
integro-differential operators frem € +to T . An element L = {L }

W we
such that if seC” () then (Ls)M’ = 1, (sM”) where I e Tnt (£%,1") (S.A.8.I.T. Chapter XI end
Q . w ? \

isamap L : cwg(g)————> Cmn('n)

Chapter XIV) and moreover o +—> L, is "eontinuous" in the sense that if we represent £ and 1 over
an open set € Q .as O x € and O x €, where (, end [, are ¢” vector bundles over M ,
then wi—> L ¢ Intk(Cl,i;e). is continuous fram O into Intk(Cl,CE) . The topology of Intk(Cl,QE)_
is the weskest topology meking the following maps continuous: (1) the map

o Tty (€),6,) ~—> subL (€,,C,) = Hom(E,,E,) vmere G, is ¢,

. *
, pulled back to ST (M) and

Hbm(Cl,Ce) = ¢ I.(l;l,ce) has the campact open topology; (2) and each of the "extension" meps

Illtk(Cl,Ca) e L(H!(Cl) 3 H‘l'k(ce)) which assigns to each T ¢ In‘hk{cl, GE) the continuous extension

t
(8, BH(C,) > B'(C,) . Tt follows that if L e Tt(g,M) then for each £ £ Z we have & Hilbert
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bundle morphism Lu): ng(g)—-> H'es;k (n) such that for each weq , Lw(z)i H’g(g“’) — Hz'k('nw) is

the continuous extension of Lyt (") — e™(1") . It also follows that we get an element

crk(L) £ Hom(g,ﬁ) » called the symbol of L , if we define cyk(L) (0,(v,x})) = o (L ¥v,x) for

% 3
(wy(v,x)) € 8T (M) =0 x ST (M) . Of course I is called ko2 order elliptic if & (L) £ Iso(g,‘n)

and we denote the set of all such L by E, (g >N) . Then we have a map

Yo B (§,n) —_— K('I' (M)) =X (BT (M), st (M)) given by the difference operation: +(I) = 5(:r g,7 T],,

where ¥ : BT (M) —> 0 xM, Also for I g Ek (g,n) 3 L( ) is Fredholm, and ind(L(z)) iz independ-
ent of ! and defines i (L) e K(2) . Of course Diff,] (g, ) c Tnt, (g,n) if k>0 and o, extends
the symbol map on Diff, e, M) so that 11 Y(g,m) = Diff, e, m) so that Euk(g,n) Dirri (s, n)n B (5,1
and moreover the maps vy: Ek(g 1) —> K@ {(M)) and i B (E,T}) —> K(Q) are extensions of the maps
-already defined on Ellk (€,m) . I£ I, I e Ek (€,M) ana ck(Ll) = ok(Lg) then for all we @,
ck(Li) = ck(Lg) hence L? - Ifg is in opk_l(rg"’,n"’) (i.e. extends to a continuocus linear map of H’(g“’)
into Hz—k+l(1]w) and hence (S.A.S.I.TA. Chapter X §4, Cor. 1 of Theorem 3) to a compact map
H‘(g‘”) —>H 'k(’ﬂ ) so by Lemma 18.3 ind (L (2 >) = ind (L (!)) or i (L V=i (L ) . In other words
for L g Ek (€,m, 1 (L) e K(Q) depends only on o (L) £ Iso (§ 1])

Now using property 55 of Int, (8.A.8.I.T. Chapter XI) and a ;pe.rtition of wnity argument one

can define a map X Hom(E,7) —> Int ﬂ(g »N) whick is a continuous right inverse for o

% 2 and by

restriction we get ty ! Iso(g ,T[) —_ E (g,'n) It follows that we can define a map
gk). Iso(g,'ﬂ) —= K(Q) such that i (L) (k) (c (L)) for L ¢ Ek (E;M) . Using the element
L'e Int (F_; E) defined in the proof of Theorem 18.2 cne shows easily that 1(k+1) g(lk) 80 we can

think of i, = 1( k) being defined on ISO(E,TN) . Moreover if g, - and o; are "homotopic" elements of

' Iso(E,7) (i.e. ’chere is a continuous arc g € Iso(E,M) t & [0,1] having o, and o, as endpoints)

t
then q;k(ct) is a cont:.nuous arc in Ek (€,m} ana \;rk( ) ‘n(g) ! i (’ﬂ) is a continuous arc

“of Fredholm bundle morphlsm so i (o)) = :Lnd(\jjk(co) = .‘7.11113.(‘1rk(t3'l)‘E =1i(oy) d.e. 4i: ISO(§ 'ﬂ)—'"> k()

a
1s constant on homotopy classes ( arc components ) .

The final reduction is to show that 1, can actually be defined on K (T (M)) This means

that every element of K (T (M)) is of the form (L) for some L ¢ Ek (€,m) (for some choice of €

and 1) and that if y(L)_'y(L) for Llszg_l(gl,'nl) and I, EE;?(EE, ) then § (L)= i )_

and hence we can define a map 1, X (T, (M)) —> K(9) such that if L ¢ E (€, -n) then i (L) = 1t(y(L))
The a.rguments here are generalizations of Chapter XV of S.A.S.I.T. The function :Lt. K(T (M) )—= K(2)
is ca.]_'l_ed the topolog:l.ca.l index and the "index problem" for families of elliptic operators is to give a

purely topological descrlptlon of this map. Weishu Shih hag indicated such a description, at least for
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We will end this chapter with a descwiption of how the index problem for non-linesr elliptic
differential operators can he reduced to the index problem for families, so that a complete solution of
the latter implies a solution of the former, at least in a formal sense.

Let El and E2 be two Cgb Tiber bundles over & compact ¢® manifold with boundary M and
let Q= c”(El). Given D ¢ ka(El,Eg) we will define two elements §,7 = VBQ(M) and A(D) £ Diffﬁ(g,ﬂ),
Moreover A(D) € Eu_kﬂ(g,n) if and only if D e Elptck(El,Eg) and in the cage ia(l)) = ia(A(D)). Finally
when D e Elptck(El,Ee) we gha.].l see how (D) € E ('I.'Z (Ei)) determ:i:nes v{A{D)) e g (T*Q(M)).

If s Q= Cm(El) then E° = TS(El) =5 TF(El) . TFor the indexing set of the open covering
of .Q we take the set of all vector bundle neighborhoods. T of El and we define 071 = Cm(T[) s an open
set in Cm(El). For s e G

1

the isomorphism Py G,n X T~ §](G x M}. If we denote the resulting & ¢ VBQ(M) by Toe (E )(El) then

we have a corresponding Taw (E )(E ) e VB, (E )(M) Since D:Cw(E ) —_ C°°(E2) iz a contlnuous map,

we have a canonical isomorphism of T with T (El) = TS(T[) which defines

we have an induced element 1 £ VB (M) defined by 1 = D Too (E )(E . OF course

of D at s . If D=F, °j_ where F: J‘k(El) —>E, isa ¢® fiber bundle morphism, then

TDS(EE) . Needless to say A(D )S-: Coo (§ Y — ¢*(1°) is just the linearization

i

A(D) = 8Fy © 4

s 5] . . . .
=57 55 —1°, so AD) e pifg, H(E,M) . The definitions of ellipticity for both D and

whersa SF:Jkﬂ(g) —= 7} is the morphism of the category V.Bn(M) defined by

A(D) are the same, namely th:;.t A(D)S a.El:Lk(gs, 7°) for all s £Q . It is also clear that when
De Elptck(El,Eg) the definitions of i, (D) end i (A(D)) coincide. |

Finally there remains the question of relating v{D) E'E (’T\O*(El)) and v(AMD)}) € E (Tﬂ*(M))
when D g Elptck'(El,EE) . We claim that in fact Y(A(D)) = i (D) where j&@ﬂ*(M) — T:(El) is the
msp induced by the map (s,({v,x)) +—> (s(x),(v,x)) of (BT (M), ST ,(M))  imto (BT (1) 87" () ).
£ i K (T (M)) —= K{Q) is the "topological index" map defined above then we can define a topologi-

*
cal index map - 3, K (T (E )) —> x(2) by i, =i, °J, so that if E, is any c® fiber bundle over

M and D e Elpte (El,E ) -then i (D) =i ('\((D)) . The "index problem“ for non-linear elliptic operators

is of course to f:Lnd an explicit: topologlcal description of i K (T (E )) —_— K(Cé(El)) .
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19. THE CALCULUS OF VARIATIONS

In this section M will denote a compact € n-dimensional manifold with boundary and with
a strictly positive smooth mesmsure ® , and E will denote a ¢ fiber bundle over M . As usual
IRM will denote the product one dimensional vector bundle M x IR over M .

19.9. Definition. By a kth order Lagrangian on E we mean an element of ka(E, IBM) .

" We denote the vector space of kth order Lagrangisns on E by Lgnk(E), and Lg:{s'E(E) will denote

the vector subspace DfE;E(E, BM) {see Definition 16.1).
If L e Lgnk(E) we define a map 7% Cm(E) —> R by JL(s) = J‘ Lis)(x)ap{x) . If M is
8 section functor satisfying (B§2) and (BY5) we say that L ¢ Ig-nk(E) is M-smooth if - I extends

toa C. map of M(E) into Li( ZIRM) .

19.1. Theorem. If L sL@k(E) is M -smooth-then JL extends to a Cm map

J:m (E) —>R and for s ¢ C (B) a7 (0) = [ M) (o)(x)au(x) for o= T (E) .

Proof, If we define {: Li( ]RM) ~>R by £(s) = ‘r s(x)ap(x) then £ is a continuous
linear functional on L]o'( ZIRM) so that if F is a C map of a Banach menifold X into Li( ]RM) .
o :
£ °F 388 C mapof X into R and -d(Z ° Fx) = £ ° dF, . Since JU =1 o1 the theorem follows

from Theorem iT7.3.

19.2. Theorem. IT ‘Lngnk(E) and 7 satisfies (BE2) end (BE5) them L is Wz(kr)

smooth.

Proof. By Theorem 15.7 I extends to a continuous map of Wz(k)(E) into M( ]RM), and by

‘% - (BH) there is a continuous inclusion map of W( ERM) into ¢%( BM) . Fipally the inclusion of CO(I&)

: 1 . <
into .Lo( :BM)_ 1is conbinuous. .

q.e.d.

19.3. Corollary. If L e Lgnk(E) then I is CS-smooth.

9.k, Corollary. If Le Lgnk(E) and T >% then I is L!P&ﬂ ~smooth.
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19.5. corollary. If k> % +12 and w <pk then any L ¢ Lgnxﬂ(E) is

Lﬁ -smooth. In particuler if p and k are positive integers and k >%

and LeLgn]I;k(E) gn}!;k °(E} then I is Lﬁ—smooth.

Proof. Corocllary 16,11,

19.6. Definition. Let M satisfy (B§2) and (B§5) end let f & M(E).

We define a subset ‘]]zaf(E) of M(E); nsemely ?]zaf(E) is the closure in M(E) of the set of g eM(E)

such that for some neighborhood U of M {depending on g) flU = glU .

19.7. Theorem. If M satisfies (B¥) end (B5) then for ¢ ¢ M(E) ,

Map(E) s @ closed € submanifold of M(E) . In fact if 5 €My o(E) end
€ is any VBN of s, in E then (&) ﬂmaf(E) = s, +m°(g) , where, as in
section 6, M°(g) is the closed linear subspa.ce of M(£) obtained by taklng

the closure of C (§) fsegcC (E)I support s is disjoint from M} .

Proof. Clearly soiaM = leM and it follows that if h ¢ Cm(M) is identically one in a
neighborhood of oM and venishes outside & sufficiently small neighborhood of M then-
g = hf + (l—h)so eME) . Now g =f in a neighborhood of M and it follows that ma (E) =7Raf(E) s
hence we can suppose that £ ¢ M(E) . Since M(E) is open in M(E) it follows that s eM(E) nmaf(E)
if and only if s = 11:iim Sy where 8, € M(E) and g - T=0 in a neighborhood Un of oM, i.g.
if end only if s € £+ X where X is the closure of the set of o & M{E) such thet o =0 in =
neighborhood U(c) of oM . Given such & ¢ there is by (B®H) =& sequence o, € c°°(§) such that
g, —> ¢ in mE) . If ne Cm(M) is identically one on M - U(s) and has support aisjoint from
3M then hg, —> ¢ in- m(g) and ho e C (g) » proving thet X =R°(E), soM(g) nmaf(E) f+771 (g)
Stnce £q & ME) N MaelB) , 2 -5, 6 ) 50 M(S) MMyg(B) = 5, + (£-)) +mO(E) = 5, +7W°(E) .

Q.'ef_d'.. ..

19.'8. Corollary. If gl .af(E) then maf(E) = mag(E)

We can now explain the generalized "Dirichlet Problem” in the ecalculus of variations. Given

a Lagrangian- I ¢ Lgnk(E) which is % -smooth and hence defines s € map (E) —>R , namely
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8 —— f L(s)ap , and given f & M(E) we get by restriction of J to maf(E) & C map

Ju 'ma f(E) —>R . The dirichlet problem with this date is to describe the critical locus of J .-

There are a number of subproblems which are often considered:

1) Existence: Prove that {with suitable assumptions on 1) J assumes an absolute minimum

|
- on Wtaf(E) end/or on each component of M 3 f(E) . More generally prove that J satisfies the
‘L conclusions of Iusternik-Schnirelman theory, e.g. that on each component of M 3 f(E) J has at least

as many critical points as the Lusternik-Schnirelman category of that component (i.e. the smallest

integer n such that the component can be covered by n closed sets each contractible in that

component, or * if there is no such n). If M = Lg for some r , so that M af.(E) is a Hilbert
manifold then one may try to find hypotheses on T so that J is a "™Morse function" i.e_. so that for
"elmost all" (in some appropriate sense) f , J has only non-degenerate critical points whose type
numbers satisfy the Morse inequalifies.

2) Uniqueness problems. Prove {again of course with suitable hypotheses on L )} that the i

solutions of the Dirichlet problem (i.e.' the critical points of J ) are unique in some sense, For 1

example that the only critical point of J in a given component of N 3 f(E) iz a single absolute i

minimum. Or that the critical locus of J is discrete (lécel uniqueness of solutions of the Dirichlet
problem), if not for all choices of f then perhaps at least for "almost all" £ .

3) Smoothness Problems. Prove (again with suitable hypotheses on L ) that the solutions of
the Dirichlet préblem have & given degree of smootlmess provided f has some other degree of smoothness.
For example one might try to prove that if £ &M r(E) then sny solution of the Dirichlet problem
(i.e. any critical point of J in W 3 f(E)) mugt also be in M r(E) ‘e If this is true for all r when
m =-]'.§’1 then by the Sobolev theorems it follows that if f ¢ Cm(E) then any criticel point of J is
elso C . This is the analogue of the classical "Weyl Lemma" din the classical Dirichlet problem.

Dirichlet type problems are perhaps the most important, or at least the most studied, of Calculus

of Variations problems. However hefore going on to consider them in more detail we will stop to mention

scme of the more important other types of probléms.

Free boundary problems. Here we look for the critical points of si—> ‘f I{s)an on 'the

| entire manifold #(E) . Note that in case 3M = § -there is no distinction between the Dirichlet

‘problem and the free boundery problem. However as we shall see it is necessary to make minor modifi-

H
H
f

cations of the treatment of the Dirichlet problem in this case.

- _
"End manifold™ problems. Here we are given a closed € sub-bundle G of E|3M and we define

i %(E) = {s ¢ M(E) s(3m) cG}. If s¢ mG(E) then we can find a VBN £ of & in E such that

.y
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GN(EloM) =y is a VBN of s|3M in G . Then M(E) NM(E) = {s e M(E)]s(M) C y} which clearly is
& closed linear subspaceof M(§) (since vy is closed in £ ) which proves that WIG(E) is a €

submanifold of  M(E) (and also makes its tangent space cleer). The problem now is to find the

© eritical points of s +——2 I L(s)du on WIG(E)

Non-linear eigenvalue problems, Let M denote either maf(E) s M(E), or (E) as

gbove and let J: M—>R be the function & > j‘ L{s)dy . Suppose that in addition to T ¢ Lgnk(E)
we are given a second Lagrangisn K ¢ Lgnk(E which is also M -smooth amd hence defined a C map
F: M\——>R given by s —> J‘ K(s)dp . This is the data for what is classically called a "lagrange-
multiplier” problem or a "Variational problem with side-condition”. Recently F. Browder and some of
hig students have considered problems of this sort under the name of "Non-linear elliptic eigenvalue
problems” (see - e.g. Bull. Amer-. Math. Soc. 71 (1961) pp. 176-183 and Annals of Msth. » 82 no. 3
Nov. 1965 pp. U59-U77). The problem is to find extremals of the function J subject o the side
condition K =e¢ . We assume that ¢ e B is a regular value of K » i.e. that K has no critical
points on W% = KMc) . Then M° isa C* submanifold of M and 3° =3[m® 1sa ¢ map of
m® into R and the problem is to Pind the critical points of J° . Now clearly if s & M° then
'1'(77t¢)s = {oe T(??z)s I dFS(O’) = 0} , while since sz = dJSlT(:mc}S the condition for s +o be a
eritical point of J° is that dJS(o) = 0 whenever dFs(c) = 0 . Since s is mot a critical point of
F, dFS- # 0, and since the null space of a nomn-zero linear functional on a vector space determines the
linear functional up toc a scalar multiple, it follows that for some scalar X (the "Lagrange
meltiplier™) &J = MF_ , or equivalently 4a(J - -lF)S =0 . Thus if we can find all the eritical
points on M for the functions J 2 5T ~ A F (which are associsted to the Lagrangiang 5! =L -2 K)
then the soclutions of our non-linesr eigenvalue problem follow; they are precisely the points 3 ¢ 771
which are s:.multaneously critical points of some ,Ql and solutions of F(s) =¢ . This is of course
the standard La.grange-—multlpller reduction of a variational problem with side condition to a para-
neterized. family of variational problems without side condition. If T and X are the Euler-La.grange
operators for the lagrangians L enmd K (differential operators of order 2k defined below) then to
find the eritical poinbs of g A is the same as to find solutions of T (s) A K (s), _ﬁh:ich expia.iﬂé_ :
why this is called a non-linear eigenvalue problem. ' |
We shall now give a fairly detailed discussion of a special but importent case of the Dirichlet

problem. We suppose p and k are positive integers with k>% and we let I g Ignﬁk(E) . For

fe Iﬁ(E) we will put 2(f) = (Lﬁ)af(E) . Then as we have seen above s b—> I L(s)dy extends to a

¢ map of 0(f) into R which we denote vy 5T o stmply 3: a(f) —> R .
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We first compute dJ . BSinece this is & local quest:_on we replace E by a VBN £ so that by
Theorem 19.7 if we choose 5 € Lk (€) N a{f) then locally we cap identify o(f) with s, + Lk(g)

and T(n(f))S is canonically identified with Lk (£)° , end by Theorem 19.1 for o ¢ Lk (£)°

(o) = [A(@), (o) an .

Classically this is what is called the "first variation of J in integrated form". To get the more
familiar "Buler-Iagrange" form of the first variation we proceed as follows. The Lagrangian L is

given by L =F, o where TF: Jk(g) -——-—>IRM isa C bundle morphism and i : cm'(g) —_— Cm(Jk(g))

jk

is the k-jet extension map. Az usual let BF denote the vertical differential of ¥ . Note that
*

5F is a C  bundle homemorphism of JNE) imto LEIS(E), Ry) = J5(2)" . Then by Theorem 17.2

A(L) = (63 (S)F)* ° J) vhere Bjk( )F: J'k(g) ~~> Ry, 1is the vector bundle homemorphism ;

@ #

(¢ if s is C ) defined by (5a (s )F)(x) = SJ (s)(x)F . Next we choose Riemannian structures for

£ and Jk(g) {and we emphasize that the Euler-Lagrange form of the first variation of J will depend i

%) ) . *
on these choices). Then we have a canonical €  vector bumdle isomorphism £ -—3 £ of Jk(g) with

~

Jk(g) given of course by E(jk(c)(x) =<4, jk(c)(x) > , If we compose BF with this isomorphism we
- .
get a € fiber bundle homomorphism VEF; Jk(g)-aa~> J‘k( € ) which we call the vertical gradient of F .

For e ¢ J‘k(g) we define V F e J'k(g) by VeB; = VF(e) so that we have
A(L)S(O‘)(X) = (Sjk(s)(x)F) (.‘ik(a)(x) =< ij(s)(x)F: jk(u‘)(x) >
and we may write for o € Iﬁ(g)":
V(o) = [ < 7y () lo) > o

[Note that since cn-—-> gk(o') maps Lk(g) isomorphically to LP(g) , V. 3,0 g)f €L (g) , where

S1.1

—+§ =1 audmfact S b— Vv, ()F isa C  mapof s +LK(§)° into Lp(g) (this can be
seen another way: . since L ¢ Di‘p (g IBM) it follows easily that s —_— Y, ( )F is in

Dka“k(g,Jk(g)) s then use Corollary 16 12)]
We are now a2ble to do the usual mtegration by parts. In the present' set-up this is accomplished

[r <]
as follows. Since J, : C (g) — Cm(J'k (8)) isa ¥ order linear differential operator and since
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we have specified Riemannian structures on both £ and -Jk (5) and a measure on M there is a uniquely
determined "adjoint" linear differential operator of order k , hMENY (J‘k (§)) —> ¢ (E) which is

characterized by the identity
‘j‘<lj(o)>dp._—]<j A, o> dp
? Yk k7’

k- oo
for X eC (Jk (8)) and o £ C () provided at least one of A and o has support disjoint from JM .
By continuity this continues to hold provided A g Lg(a'k(g)) and ¢ is in the closure of c:(g) in

Lﬁ(g) , mnamely in Lﬁ(g)" . Thus we can write aJ, in the Euler-Lagrange form:
a7 () iy ), o> a
g\C =I<Jk(vjk(S)F,G> b

The map §+—3> jk( VJ. (S)F) of C () into c™(E) is called the Euler-lagrange operator for the
k

problem. Since §+—> V jk(S)F is in Dfik‘k(g,Jk(g)) and j: £ Diffk(Jk(E,),E,) it follows fram
Definition 16.4% that the Buler-legrange operator is in Divgi(l:;,g) and hence by Theorem 16.15 that it
extends to a C map of s+ Lﬁ@)O into LE{(%) . 8ince L?k(g) is the dual space of

Lﬁ(g)" = 7(a(f)), it follows that s 'is a critical point of J (i.e. 47 = 0) if and only if

j’k" ( Vj (s)F) =0, d.e. if and only if s satisfies the Euler-Lagrange equation of the problem.
K . :

Let us next see what the Euler-Iagrange operator looks like in "local coordinates" . We
assume that local coordinates in an open set U of M are chosen so as to be "unimodular" with
respect to B, i.e. the coordinate representation for du is dxldxa...dxn . This is always

possible locally. Over U we represent £ as U x V and J'k () as Ux ?B V . For simplicity
gi<k

we shall suppose that V has an orthogomal structure and thet over U +he Ricmennisn structures for
E and Jk (E) are derived from it via the above local product representations, A section of E is

given over U by s: U-—> 7V, jk(s) is given by [Das} and L{s) = F(x,Das(x)) where

o<fa]<k

o0 - -
F: U xlalegk V—> R is C . Then (see § 17 following Corollary 17.5) .

M) ()w) = 5 Eal) 1y

{sl<x P

from which it follows that i
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3 angzDas!x)) '
" = Y oclelcx e
o .
ar (o) = IBI < mi‘al’—%ﬁl s DPo(x) > dxy.rudx
< P

Y

and integrating by parts {or eguivalently using the fact that the formal adjoint of pP is (-1} DB)

l
() =< T () Blnﬁ WD) o(x) > dx,...ax

[B] <k 3p
lel ¢y
so that the Buler-lagrange cperator is T (1) P (w ) :
: Ial <x ®

We are going to treat the global questions of existence, uniqueness, and smoothness of critical i

points of J in a somewhat more specialized (and more tractable) setting. Namely we shall assume that

our " fiber bundle E is & product bundle M x W and that the fiber W is & closed C° submsnifold
of an orthogonal vector space V¥ . Thus E is a closed Cm sub bundle of the Riemannian véctor bundle
M=K xV and sections of E (respectively 1 )} are maps of M into W {respectively V) . We
will also assume that L e Lgn.ﬁk(E) is the restriction of an £ ¢ I:gnik(‘n) which has a specialized
form (spelled out below) in terms of the linear structure of N . While this is a substantial reduetion
of the generality we have been considering up until this point, it does include a number of important
special cases and leads %o some fairly strong consequences in those situations to which it applies. -
We begin with some remarks on the analytical consequences of these ﬁew assumptions, ‘In the first
place if X is a C  vector field on M (i.e. X e CN(T(M))) we can regard X as an element of
Diff ('ﬂ, M) as follows: if s ¢ Cw('n ) then s isa C_}m map of M into V &6 for x € M we have
ds: 'I‘(M) —> V end we define X5 ¢ cm(n) by (Xs)(x) = as (x ) . We note then L{7, 7} ) = M x I(V,V)
is a product Riemarnnmian vector bundle over M so that we may also regard X as an element of
Diff (L(n, s L('n, 1 )) We also have & bilinear map (H,g) V> Ho of C (L(n,'n))x c ('q) —>C ('n)

given by (Hc)(x) = H(x)cr(x) and clearly X(Ho) = (XH)o + H(Xo)

Recall that there is a natural norm -|] || q on Lg‘('[] ); namely
L

Hsll o = (f Ho(1® au(x))¥/e
L
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We will define specific norms on each of the Banach spaces L%('T] } {and L%(L(T\ > M)). Choose a finite
set of smooth vector fields on M, say X, ..., X, which are ample (i.e. each v ¢ T(M)x can be

written as a linear combihation of the (Xi)x) . Then we make the

19.8. Definition.

2 r 1/‘1

= z . ] q
”S“L‘?L (j=0 iy eigml “Xil lesliLq)

o}

It is easily seen that this is an admissible norm for L%('n ) (and even a Hilbert space norm when gq = 2)

We note that as an immediate consequence of the definition:

19.9, Theorem. If SEL%.,.]_('H) then
r 1/q
= g A aq
lall o = CUsll, + 2 Tlxell2,)

247, o £

19.10. Lemms, ILet + >% and 0 <s<t . Then the bilinear map (H,0) —> Ho of

oo o0 o
C(Ln, M) xc(n) —> ¢ () extends to continuous bilinear maps

(L0, M) = IE(7) —> 1B(7)

and
L2(L(n, 1)) x () —> 18(1)

Proof., 1In case "n =M xR this is just Corollary 9.7. The general case is an gasy consequence

of this s_pecial case. .
_ 'q.e.d_.
 Wext let Tifq —> (N, M) bea ¢ fiber bundle morphism. oFor s e Cw('n) let

o« : .,
T(s) £ € (1{n,M)) denote the map x > T(s(x)). Then as we know if M 1is a section functor
satisfying (B§2) end (B§5) the map s +—> T(s) extends toa wap (namely M (T)) of %(n)
into  M(L(M, N)) , which we contimue %o denote by s+> T(s) in the present instance. In particular

taking 7R=L£ (where as usual k>%) ve get & C map §+—> T{s) of ]‘..112(1]) into- Lﬁ(L('n,T])).
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19.11. Lemma. Let T:—> L(T, M) be a ¢ Tiber bundle morphism and let
k>nfp . If {si} is any bounded seguence in I.i('l]) then passing to a suitable

subsequence we can suppose that for all ¢ wvector fields X -on M

(X(T(Si))) (Sj - Si) + (T(Si) - T(Sj)) (ij)
tends to zero in Lllz-l(n) .

Proof. Choose O <eg<1l sothat k-g > n/p . Then by the corollary of Theorem 9.1 the -
inclusion of Lﬁ('ﬂ) into Ll’;_E(-'n) is completely continuous so passing to a subsequence we can suppose
€0
that s, —> s in Lﬁ_a('n) . Since as we have just remerked s r—> T(s) is C and hence

continucus from Lﬁ_s(n) to Li_g(x.(n,n)) it follows that T(s,) — 7(s,) in iji_g(L(‘n,T])) and

hence that ”T(Si) - T(Sj)” P —> 0 , and of course ”sl - S;j” —> 0 also. Now by Lemms

Lk—e Iﬁ-s

19.10 (teking + = k-g and s = k-1)

(e, 0) (sg = 8) + (aley) - 7)) (RapI
. | o1

is less than a constant times

”X(T(Sl))H p ”Si - Sj” D + ”T(si) - T(sj)“ o ”XSJ.” o

Lk-l Lk- £ -£ Lk- 1

and by Theorem 19.9 the latter is less than a constant times

+ |lrs, - Tsjll 0 llsjll o -

el sy - sl
o Iil: ' ’ I‘ﬁal_ _Lk-s

Since “51” o is bounded by hypothesis it will suffice to prove that ”TS:L” o is bounded so the

following lemma cempletes the proof. . . ' i
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19.12. ZLemma, Ir ‘J!:’g',:L e §2 is a Cno Fiber bundle morphism of wvector bundles

over M then, for k > % 5 T maps bounded sets in Lﬁ(gl) into bounded sets in

() -

Proof. We reduce easily to the case M = Dn, §l =M x]Rr, §2 =M xR . Then referring to

Lo ]
the proof of Lemma 19.9 we see it is suffieient to prove that if cp:gl —_ §2 is a € fiber bundle

morphism then ¢ maps a bounded set B of Co(gl) into a bounded set of c°(§2) . But there is a I

compact set K c gl such that im(s) CK if s £ B apd ¢ is bounded on K and the lama follows.

g.e.d.
For each w ¢ W let q(w) denote the orthogonal projection of V = T(V)W onto ‘].‘(W)W . Then
q isa C mep of W into the vector space L(V,V) and since W is & closed C  ° submenifold of v,

-] <0
it extends to a C map of V info L(V,V) . Then if we define Q(x,v) = (x,a(v)), @ isa C fiber

bundle morphism of =M x V into IL{(7,M) =M x L{V,V) and justifies the following definition.

19.13. Definition.  We demote by Q:f)-—> L(1,7) & C fiber bundle morphism such that

for e g B Q{e} is the orthogonal projection of T(Tlx)e onto T(Ex)e .

19.14. Theorem. If s ¢ L]!;{E) then there is a continuous linear projection. PS

of (W) onto IL(E)) = {0 () | ofx) e (&) s(x)} @iven explicitly by
: P = Q(s), i.e. (Ps(c))(x) ='.Q,(s(x))o(x} .« It 2 e Q(f)} then P, restricts o
: a continmuous linear projection of Iﬁ('ﬂ)o onto T(a(f)} = {o = Lﬁ('ﬂ)o]c(x) € T(Ex)s(x)}'

Moreover the mep si—> Py isa c” map of Lﬁ(E) into the Banach space L(I.ﬁ(n), :

IcE(T]) ) of bounded linear maps of Lﬁ(‘n) into itself which takes Lﬁ('ﬂ) bounded *

sets to bounded sets.

: ' Proof. Thet P = Q(s) is well defined and that s > P is ¢" follows from Lemma 19.10 ;

and the remerks preceding Lemma 19.11. Recalling that Q(s(x)) is the orthogenal projection of V' on ¥
i 2 : P

T(E,), (x) 1b follows that F_=P. and that P o= g if and only if ofx) e T(Ex)s(x) for all x ,

i.e. if and only if ¢ ¢ T(I-E(E))S » S0 that P is a projection on ’.I?(Ii(E))S . Clearly if o

vanishes in & neighborhood of oM so does PS(U) " and by continuity it follows that P maps Lﬁ(E)o

| into itself, hence if & ¢ Q(f) then P projects Iﬁ(‘n)o onto T(Q(f))S .
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The final remark follows from Lemma 19.12.
gq.e.d.

We are now eble to state and prove the result we have been leading up to. While it looks a

little technical, it expresses what I believe is a very important property of the way Lﬁ(E) is embedded

in LE('I]) and it plays @ crueial role in what follows. Tt is due to Karen Uhlenbeck.

19.15., Theorem. Given any sequence {si} in I.lli(E) which is bounded in Lﬁ('ﬂ):

by passing to a sub-sequence we can suppose that (I - P )(si - Sj) tends to zmero

i 12(n) . '

Proof. Since Q(si(x)) is an orthogonal projection in Vv, |[(T - Q(Si(x)))c(x)“ < He)|I,

hence by definiticn of it is clear that [|(I - P ) ol o < REIR , @nd in perticular
i I L

Il
q
I, ) o

- - _ . . D P .
[z Psi)(si SJ')”LP < ”si SJ'“LP . Now by Theorem 9.2 the inelusion Lk('n) g Lq('n) is

o] 8]

completely contimuous so by passing to a subsequence of {sl } we can suppose that {si} is Lg -Cauchy

and so ”(I - PS )(si - Sj)“ D —> 0 . Hence by Lemma 19.9 it will suffice to show that by passing
i I
o

£o a subsequence we can suppose for all ¢ vector Pields X on M that x{(T - P )(si - sj)) tends
- i
to zero in L!P;_l('ﬂ) « This in turn will follow from Lemma 19.11 if we estseblish the identity

i

XUT -2, (s, - 8)) = (X(@s))(sy - 5,) + (@s;) - @s))) (Ks))

oo
Wow if s £C (E) and o ¢ cm(n) then X(PSG) = X(Q(s)o) = (X(a(=)))o + Q(s)(Xg) and since both sides
. . . . o ) Pro v . P -
are (as functions of s and o ) continuous and in fact C  from I‘k(E) x Lk('n) into '!:k-l(n) by
Lemma 19.10 and the remarks that foliow it, the same continues to hold for s g LE(E) and o € I-IP;(TI) P

hence the two sides of the proposed identity are easily seen to differ by

(%s, - s, )(Xs,)) - (Xs; - (s;)(Xs,))

. 80 it will suffice to show that Xs = Q(s)(Xs) for s e 131';-(5:) . Now since 5+—> Xs is in Diff,(n,My

it is a continuous linear map of Lﬁ(n) to I.E_l('[]) s hence both s+—> Xs and & —> Q(s)x(s) are

by Lemma 19.10 continuous linear maps of Lﬁ(E) into I'JI::.-J_( T} and it will suffice to prove they agree
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on the dense subspace Cw(E) . But if s ¢ Cm(E) then s isa C mapof M into W so ds  maps B
E[.'(M)x into T(W)S(X) = T(Ex)s(x) so (Xs){(x) = dsX(Xx) £ T(Ex)s(x) . Then since Q(s(x)} is a pro-
jection on T(Ex)s(x) the equality Xs = Q{s)(Xs) is immediate,
g.e,d.
For the definition and basic properties of Fingler manifolds we refer to "Lusternik-Schnirelman b

theory on Banach menifolds” , Topology, Vol. 5 (1966), pp. 115-132 which in the sequel we refer to &s

[ISTRM]. Tn particular the following result follows from the Corollary of Theorem 3.6 of that paper.

19.16. Theorem. For k >-% the Banach manifold Lﬁ(E) and its closed submanifold

Q(f) are closed submanifolds of the Banach space Lﬁ('ﬂ) and hence are complete Finsler

manifolds in the Finsler metric induced from the flat Finsler structure on LE(Tﬂ) .

Now if X is a Finsler manifold then there is a Finsler structure on its cotangent bundle

T*(X) , the norm in T*(X)P being given of course by |[2|] = Sup {.!(v)-lv £ T(X)P s vl = 1} . Ef

*
T is a submanifold of X with the induced Finsler structure and £'g T (Y)p is the restriction of

{e T*(X)P to T(Y)p then clearly [le]] < [Tel] . I particular if F:X —>TR is a ot map and

£ = FlY then at = d_FpIT(Y)p g0 depll < Hd;E'p“ . We shall use the above freely in what follows.

19.17. Theorem, Tet ‘Q:Iﬁ(ﬂ) —>R bea C map such that d ¢: LIP;(T])—> Iﬁ(n)*

maps bounded sets to bounded sets. Let & :Lllz(E) —> R dencte the restriction of ¢

and let [si} be an Lﬁ(n)' bounded seguence in Lllz(E) such that ||dJ'S‘i” — 07.
Then passing to a sub-sequence we can suppose

dﬂsi(si - Sj) —> 0
The same holds if we replace I.]Pi(E) by (£} .

Eor (e - ) =, (B, (o - ) % af, (TR, Moy - e ) =

P s 7 R - PRI : N . - 8. ] . .~ 8. ¢
dJsi( si(sz. SJ)) + dﬂsi((I Psi)(s.1 SJ)), Hence ldﬁsi(si SJ).I < ”dil‘si” ”Psi” ”Sl SJ“ o |

¥ l Ird‘gsi“ . !I(I_st;)(si - Sj)” p " Now by hypothesis “Sn.” (2nd hence ”si - st ij and

I
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it is assumed that X and F are 03 » but N. Euiper has recently extended the results o the 02 case.
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”dﬂs “ are bounded, and by Theorem 19.14 so also iz ”Ps ” . Since ”dJ’S H —=> 0 and since by
i i i

Theorem 19.15 we can suppose (by passing to a sub-sequence) that ”(I-PS )(Si - s )] tends to zero
the result follows for L‘E(E) . If we replace LLP;(E) by Q(f) the proof is the same once we note that
the difference of two elements of Q(f) lies in Lﬁ(‘n)" , for it then follows that

PS.(S__.L - sj) £ T(R(f))s_ and hence again thaj dﬂs.(Ps.(Si - sj)) = eLJS.(PS_(sJ.L - sj)) .
1 1 1 1 1 i

g.e.d.
Our existence theorems for solutions of Dirichlet problems is based on the following concept

introduced by the author and S. Smale.

19.18. Definition. Let X be a Cl Finsler manifold. A C- map F:X —>R is said to

‘satisfy eondition (C) if given any subset 8 of X such that 'F, is bounded on S but ||dFH is

not bounded away from zero on 8 , there is a critical point of F adherent to 8 .

19.19. Theorem.  Let X be a complete C° Finsler menifold and let F:iX ——> R

be a C° function which is bounded below and satisfies condition (C) . Then F
assumes a minimum on each component of X . In fact F satisfies the conclusions
of Imsternik-Schnirelman theory [LSTEM, ‘Iheorem T.1] and in particular on each
component of X there are at least as many critical points of ¥ ag the Tusternik-.
Schnirelman category of that camponentt, If X 1s Riemammisn and the critical points
of £ are é.il noﬁ-degenerate than F satisfies the conclusions of Morse Theory and
in particular the fype numbers of ¥ and the betti-numbers of X satisfy the Morse

inequalities.

The meaning of the last statement of the sbove theorem is expiained in "Morse Theory on Hilbert
Manifolds", Topology, vol. 2 (1963), pp. 299-340, referred to as [MTHM] in the sequel. TIn that paper
Sl
What we shall now do is give a general condition on a €2 function @ :L]l';(n) —>R that insures
that the function J:Q(f) —>R given by J = $a(f) satisfies the conditions imposed in Theorem 19.19
on FiX—>R . We wili then discuss the question of what conditions on ¢ Lgnllzk("n) will insure

that  #(s) = Ia&(s)dp. will have the desired properties.
* This also follows from results in Smale's "Morse Theory and a non-linear generalization of the
Dirichlet Problem", Annals of Math. (80), Sept. 1964, pp. 382-396.
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19.20., Theorem. Iet #: Li('n) —>TR bea C° funchion such that
*
ag: Lﬁ('ﬂ) — Lﬁ('ﬂ) maps bounded sets tec bounded sets. Assume in addition

O
that for s, 5, e £+ Li('ﬂ,)

(*) (ag 5 ag Se) (sy - 5,) > Hsjy- SEH D qJ(Hsl - saH P)

+
where ¢ 1is a strictly monotone map of R to itself satisfying 1im @(t) = 0
t—=o

and 1im (t) = © . Then the restriction of § to @(f) is a €2 function
-t_ o

J:9(f) —=>TR which satisfies the hypotheses of Theorem 19.19, i.e. J is

bounded below and satisfies condition (C) .

Proof. We note that Q(f) € f + 1'11;(71)0 , and in fact reealling that 0{f) = (Li)af(E) it is
clear from the argument of proof of Theorem 19.7 that Q(f) = (£ + L'E(T])O)ﬂ Lﬁ(E) . Since 4 Lﬁ(n)"
is convex it follows the convex hull of Q(f) is included in £ + Ll'-g('n)o . Thus if we choose

a € 0(f) and for amy other s & Q(f) put o(t) = a + t(s-a) then oft) ¢ T + Ll‘:('ﬂ)o for 0<t<1

1 CEI f_dﬂa) (t(s-a)) 2 t|[s-all o (el |s-al] 2 -
Thus
i ) 1 .
| §(s) = §(a) + [, ad 4y (s-2) at
1 | |
= §(a) + g (o) + [ 5 (a8 yy - 28,) (b(s-e)) @t
2 §(a) +ag (oa) + IIs-aI_Ilﬁ Jo @ (t“s'a“r{) at
| - .
i , > Q(a)+(fow(t||s—allp) at - ) |ls-al]
|

where K is any positive number greater than |[a ﬂa” . Since lim o{t) = ® we can choose r > 0O
=
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“condition {C) "-is_-'_sat_isfiea.
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so that o (-;'—r) > 2(1+e)X where e > O . Then since 9 1is positive and monotonically increasing for

[|s-a]] o > r we have f; o(t)ls-al ] I'))dt > _ri 2(1+e)Kat = (1+e)K . Thus for |[s-al] p > T We have

5 Tie

8(s) > $(a) + £k [[s-all p? while for |ls-a]] <1 we have y(s) > #a) -K |ls-all p” $(a)-Kr,

P

so that J is bounded below by J(a) - Kr . Now if S is'a subset of 0{f)} on which J is bounded,

- say by C , then for s € 8 we have

< C - (=}
P - e K

Ty

Hs-all

and hence ”s“ < ”a” P—+gﬁ‘§£a‘—) provided ”s—a” P >r , while of course
L

k , Y
1sl] <Ha”P+r if “s-a“p<r . Hence 8 is an Lﬁ('{]) bounded set. We now assume in

oy I Iy

addition that |[as|] is not bounded away from zevo on § and choose {s;} in s with Hda'S [ |l—=0.
_ . i

By Theorem 19.17 we have after passing to a subsequence that 4 ‘QS (si - sj) ——> 0 and hence
i

(a gy - dgs.) (s; - sj) —> 0 so that by (%)
.t J

Hsi - sj|| p @ (Hsi - SjHLﬁ) >0
Given €3> 0 ; sinece lim ¢(t) = 0 and ¢ is strictly monotone, it follows that e ¢(e) > 0 and
=0
moreover if & @(t) < e @(e) then t < e . Thus if we choose T so that i, j > N dmplies

”Si - SJ.” o ® (Hsi - Sj” P) < e ¢{e) it also implies that ||si - Sj” D < g , Hence {si} is

T

I_.ﬁ -Cauchy and, since Q(f) is closed in Lﬁ('ﬂ) s sl —> s £ 9(f). Moreover, since |lag]| is

'contiz_m_ous,_ ”dJS” = l:.ml [dJS || =0 sc g Isa critical point of J which is adherent to S and |

1

d.e.d.

i
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19.21. Theorem. If the fiber of E is compact then in Theorem 19,20 we can replace

the condition (¥} by the following weaker condition:

(x%) (ad 5" ag 52)(51 - 5,) > ”sl - 82” p @ (”sl - 32l| p)

- ||Sl - SEHLP s (“Sl - SEHLP)
o Q

where ¢ as in Theorem 19.20 and :}R+ ————>JR+ maps bounded sets to bounded sets.

Proof. Since E has compact fiber it follows that Q(#) (and in fact Lﬁ(E)) is an LE(T])
bounded set and hence so also is its convex hull. Choose B > O so that qf(t) < B for

PI s is in the convex mull of Q(f)} .
Ii

o
since |lsl] < sl ;, for s, and s, in the convex hull of Q(f) we have
P = Lﬁ 1 2

- B) . Then if we replace K by K + B in the

T

first part of the proof of Theorem 19.20 (where it is proved that J is bounded below and thet J

(ag 5 - a8, )ay - 5p) 2 Ifs, - SQIIL£ (9 [ls; - s,ll

bounded sets are LIP{(T}) bounded) we get the same results in the present case. In proving that conditim
-(C) is. satisfied, the sequence {'Si} vhich we must show has a Lﬁ -Cauchy subsequence is known to he

Lﬁ ~bounded and hence has an LE -Cauchy subsequence by Rellich's Theorem, and hence we may assume that

”si - Sj”_LP ) (”Si - SjHLP) tends to zero. Since as before we lmow that (4 f S;,_ dé_lsj)(si - sj)
o . o
)
P
R

tends to zero and the remainder of the proof is the same. _ ' ' _ RS

tends to zero for a suitable subsequence we can by (¥*) assume that ”Si - Sj” 2 @ (”s:.L - _sjll

q.e.d.

19.22. Definition. Let Ul"" ’Ur be .orthogonal vector spaces and let Ci =Mzx Ui be the

corresponding product Riemannian vector bundles over M . -If Ai 3 Diffk('r] 3 Ci) i=14...,¢ then we

say that {Ai} is an ample family of kth order linear cperators for T provided there exist constants
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o
¢, =ad C, such that for all U e Lﬁ('ﬁ)

r
P P P
Hull®) < ¢, Z IIAiUHLP + CEHUHLP
o

and we shall say that {Ai} is strongly ample if we can choose C 0.

2:

Remark. In the inequality defining smpleness we can replace HU” P by | |U| I D and the
L
o] -1

resulfing condition is equivalent. TIn one direction this is clear and in the other:it follows from the
well kmown fact (sometimes called the Poincare inequality) that given e > O there exists\\c > 0 such

that ”U”I&’;-:LE € IIUIIL£+CII§IIL1; .

19.23. Theorem. If {Ai] is an émple family of kth order linear operators for

T then a nessary and sufficient condition that it be strongly ample is that the only

ue L}Z(ﬂ)o for which all Aiu =0 48 u=0 .

Proof. Necessity is clear. Conversely if {Ai} is not strongly ample then we can find a

sequence [un} in Li(ﬂ)o with ||un”

i

sub-seguence we can suppose {un] converges in the weak topology of 1.1];(1])0 to an element u . Since

=1 and Au —>0 in I(f) for all i . Passing to a

A: I%(’n)o _— Lg('q) is linesr and continuous s it is also continuous when both spaces have their weak
topologies, and since A,u ~ converges strongly (hence weakly) to zero im . L:g(n) it follows that

Aiu =0 for all i . Hence to prove sufficiency of the condition it will suffice to prove that u # 0.
But by Rellich's Theorem we can {passing to a éubsequence) suppose [un} converges (strongly) in Lg(‘n)

£ . .
to a limit w . Since u  converges to u weakly in Lﬁ('ﬂ) and hence a fortiori weakly in LE('{]) it

‘follows that = _1._;* » Then from the ampleness inequality and the fact that ”un” P — ”u” D

) o o
1

while lIAiunlle —>0 1 follows that llulll’P > >0, hence ufo.

I

(]
- o} [o)

q.e.d.
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. Now let {Ai} be as in Definition 19,22 and let A = 49...84 ¢ Diffk('q, §) where

£=¢ ®.,..9 L,=MxU vwhere U=U &..® U, . Note that

a2 = 2, 11auGl[2 so tnat

r T
L s Hau@! P < Hm@IP < = |law@)]]®
r . 1 o 1
i=1 i=1
and integrating over M
1 r . hig
= % llaull® < [[mll® < g ||au®
SIRE IS R TR LE T Lg

from which it is immediate thai - {Ai} is ample if and omly if {A}] is emple, and since Au = O if and
only if all Aiu = 0 the same holds for "strongly ample" . In other words we can always replace an
ample family by a single ample operator. WNobe also that ck(A) = ck(Al) D...® ck(Ar) so that

crk(A)(v,x) is injective if and only if the intersectifm of the kernels of .:yk(llli)(v,x):'\']X — (gi)x

is zero.

19.25. Theorem.. If A, e Diff (7, ¢;) are as in Definition 19.22 then a

necesgsary and sufficient condition that {Ai] be an ample family of o8 order
A _ .
linear operators for 1 is that for each non-zero cotangent vector (v,x) & T (M)x

the intersection of the kernels of the linear symbol maps gk(Ai)(v,x):'ﬂx — (Ci)x

iz zero,

Proof. By the preceding remark we can suppoge {Ai} = {Al &0 ocur condition is that

ak(A) (v,x):fnx —_— c;x' is injective for each non-zero cotangent vector (v,x) , and the condition for

. ampleness is then just the usual "s priori estimste™ for such overdetermined elliptiec operators. We

skétcil +the proof. Given an injective linear mep TV —3> U let PT he the orthogonal projection of

U on im(T) end define F(T):V—>U by F(T)(u) = T"H(Bu) . Then it is easily seen that F is a

o3 : .
C map of the open sutmanifold of I(V,U) consisting of injective maps to L(U,V) and it follows that

if we define g{v,x) = F(ck(A)(v,x)) then g is a symbol of order -k so we can find & pseudo differ-

ential operator B fram { %o 1 such that o,(B) = o . Clearly o (B&) = o (B) o (&) = o (1) ,

T T T T e
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1 : hence BA =TI + 8 where S is a pseudo differential operator of order -1 . Then

Il < Hlamll o isall < ayllaall o agllall

I i L, R I,

and then using the remark following Definition 19.22 the smpleness of A 1is iwmediate.

g.e.d.

Examples. Tt follows from Definition 19.8 that if X_L’ ’Xr is an ample set of Cm vector

fields on M (considered as elements of Diff, (1,1 )) then (%, %, ... X ) e piff(n, T}, with the
i 12 k

indices ij varying independently fram 1 to r , forms an ample family of kth order linear operators

for 7T . However by the preceding theorem it follows that there are much smaller ample sub-families.

T o Bt

For example Xﬁ, Xl;, veny XJ:_ is ample. Indeed if ({v,x) is a cotangent vector of M +then it is easily

seen that crl(Xi)'(v,x) is multiplication by f(Xi) , hence ok(}g;)(v,x) is multiplication by v(Xi)k.

ST

Since (xl)x’ vees (Xr)x spans the tengent space of M at x it follows that if v # O then some

v(xi) #£0 =0 ck(XE)(v,x) is injective. Also since ck(}t_ll“ . X]:)(v,x) is multiplication by

i
|
]
j
}
1

z k ' th
z V(Xi) it follows that for k even the single k~ order operator ()11{ + L.t XE) is an ample

i=1
B

W

order linear operator for 1) as is ()fi toae. Xf)e whose symbol at (v,x) is multiplication by

k
2.2 . .
(z 'V‘(Xi) Y" . Also in the case of even k we can choose as & single ample K order linear operator
1

a/2 where A is the Laplace-Beltrami operator of any Riemsnnian metric for M ; for ck(Ak/ 2)(v,x) is

! multiplication by ||v]]¥ .
o0
It 2elgn (1) =D (M,R) , then £(s) = F(j (s)) where F:Jk('n)-———>IRM is 2 C fiber
bundle morphism. Then for each x ¢ M the restriction of F +o J‘k (1'])x is & c” real valued function
i F* on the vector space = ('f})x and for any jk(s)x in J% (1), we can therefore form the second

Coa. . 2. x 2 . . . .
i differential (& F )jk(s)(x) = & ij(s)(x) which is a symmetric bilinear form on Jk'('n)x .

The following definition and theorem are essentislly due to Karen Uhlenbeck, with some small

T e T

modifications by the author.

19.26. Definition. If #£¢ I@k(n) » say £=T, ° 4., then we say that £ is (strongly)

p-coercive if there exists a (strongly) ample family {Ai} of k" order linear operstors for 1T such

» o0
that for 211 s, u ¢ € (1)
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T
. . - 2

19.27. ILemma. If U is an orthogonal vector space the given m> 0 there is a

¢ >0 such that for a1l x, y e U

‘[i Hx + ty] Mas > ellyl® .

Proof, We can assume y # 0 so dividing by “yl ]m we must prove that
F{x,7} = J‘i Hx + ty | [®ag >c¢>0 for all y on the unit sphere. If [|x]] > 2 +then [z + ty” >1
go F(x,y) > 1 . On the other hand F is a continuous positive function on the compact

{x eul |zl <2} x{y eul liyll = 1} and hence bas a positive lower bound there.
d.e.d. .

19.28. Theorem. If £ ¢ Lgnk('i]) -is p-coercive then there exist e, > 0O

1
and ¢, > O such that for all S5 8, € Cw(‘n) we have

[ (a), - a(2), sy - a2 eyllsy - syl - oyl - AL

M _ o]

Moreover if # is strongly p-coercive we may take ¢

2:0.

Proof. Iet &£ = Fy o jk where F satisfies the inequality of Definition 19.26 and the Ai

satisfy the inequality of Definition 19.22 . Put

a = jk(sl)(x), b = jk(se)(x), e(t) = b + t (a-b), x, = Aise(x), and ¥; = Ai(sl__ sej(x) .

Then by Definition 19.26 we have

S%C(t)(a-b,a-b) > ;

21 |12 S .

Now ﬁ Szf‘c(t)(a-b,a-b)dt = (BFa - 8F )(b-a) , so that using Lemma 19.27 and recalling that

. : : r
ML)g(u)() =87 o () (Byalx) we £ima (A Ly - ML ey - 5) 2 e ifll l8;(s; = )P
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If we now integrate over M with respect to the measure K and use Definition 19.22 we get the desired

result.
g.e.d.

We now come to our maln existence theorem for a class of Dirichlet variational problems. For
convenience we restate a mmber of the definitions we have been using as part of the hypotheses of the

theorem.

N .
13.29, Theorem. Let M be a compact n-dimensional € manifold {possibly with

boundary) with a smooth measure B . Let V be an orthogonal vector space end W

& cloged submanifold (without boundary) of 'V . Let T denote the product Riemammian
bundle M xV and E the closed C sub-bundle M xW . Let k be a positive
integer, p > 2 an integer with pk>n and let - £ ¢ Lgn.ﬁk(ﬂ) = Dfﬁk('q,IRM) be
p-coercive, and if W is not compact assume £ is strongly p-coercive., Define

a ¢ map §: Lﬁ(n)—>IR by f(s) = I:&(s)du (Corollary 19.5) and for

f e I2(E) let J denote the restriction of § to 0(£) = (£ + Lﬁ(n ¥n (x) =

the closure in LII;(E) of those g ¢ LI?;(E) which agree with f in a neighborhood

of 8M . Then, regarding Q{f) a5 a Finsler manifold in the Finsler structure induced
from the flat Finsler structure of Ii('[]), Ji(f) —>R is ¢ map which is bounded
below and satisfles condition (C) . Hence (Theorem 19.19) J assumes sn absolute
minimum on each component of @(f) , and on each component of Q(f) J has at least

as many critical points as the Iusternik-Schnirelman category of that component.

Proof, Let £ =TF » J, where F:J‘k(‘n) —>R, isa ¢” fiber bundle morphism, Then _
¥ ’ @ o *
8P:I(1) —> J5(N)° is & ¢ fiver bundle morphism vhich defines an element of DEL(n, T5(1))  ana

- *.
by Corollary 16.12 a C map Lﬁ('\‘]) —_ LE(Jk(’q)) where %‘—+ = 1 . By the argument of Lemms 19,12

W)+

the latter map takes boundedrsets to bounded sets. Since 4 ys(u) = ‘r aFa. (S)(jku)dp. it follows thaet .

* N .
ag: I-i('n) —_— L]lz('n) maps -bounded sets to bounded sets. Since for s Cm('ﬂ) we have

.A( i)s = Bij(s) °J, end since 4 ﬂs(u) = ‘]' A £)S(u) we have fram Theorem 19.28

: D
(a ﬂsl - 610?52)(8l -5,) > clel - SEH‘P - °2H51 - S2”ip
o)
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(where if W is not compact we can take c, = 0) at least for 815 85 E Cm(‘n) . However both sides of
the above inequality are continuous functions of 5 and Sy in the I.II; topclogy so the inequality in
fact holds for all Sz 8 Lﬁ('ﬂ) « The Theorem now follows from Theorems 19.20 and 19.21.

q.e.d.

We will now show how to find a rich supply of p-coercive Lagrangisns in I@m]pik(ﬂ) .

19.30. Lemma. Tet m be a positive integer, p = 2m and let T:V —> U
be a linear map of a finite dimensional real vector space into an orthogonal vector
space. Then f£:V ~—>R defined by f£(x) = ||m][I? is a polynomial mep of degree

P and
-2
af_(w,u) > nf | os| |22 | |2
Proof. Since £(s) = (Ts,Ts)" and the immer product is bilinear f is & polynomial of degree

2m =3p end dfs(u) = m(Ts,Ts)mhl(Ts,v) 50 that

dafs(u,v) = m(Ts,Ts)m—l(Tu,Tv) + m(m-—l)(Ts,Ts)m'e(Ts,Tu)(Ts,Tv)" and hence

nl[2s]1272] fal 12 + mm1)| fos]|2*(rs,20)2 = m] J2s] 2] [mal (21 + (mo1) — (5}

2
a™f (u,u)
s 12512} {za] 12

g.c.d.

19.3i., ThHeorem. If {Ai} is a (strongly) ample set of k" order linear

operators for 1M and we define #£(u) = £ HAiul [P where P is an even
i

positive integer, then #£ is in Lgnllik(n) and is (strongly) p-coercive.

k s o s _ o 4
Proocf. That &£ ¢ Lgnk ('ﬂ) is dimmediate from Theorem 16.7.‘ If we write Ai = Ti I

o
Ti:J'k(Tl)-——> Ci is & C vector bundle homomorphism (Ci =Mx U:i.) then for each x ¢ M we have a

linear map T{::Jk('n)x —> (g;), = U,

where

defining a map ff.fzak(n)x —>R by
£ ) = 17F 5GP = [as@[® . men by Lems 19.30. 7
aatf;‘);,k(S)(x)(jku(xmku(x»a ml I3, () P25, () ()12 = lAis(;)l P2 . Now
FIJJ‘(g)x =3 o aeij(s)(x)' -z (daf’i‘)jk(s)(x) so we have 62F§k(s)(jku,jku) 2> mlla sl 125 |a,ul 12

which by Definition 19.26 completes the proof.

q.e.d.
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There is an important generalization of the siutation of Theorem 19.31 in the case p =2 . Tet

{Ai} be a (strongly) ample set of k2 order operators for T end let Hs) =% HAiSI '22 . Given
: i
[o]

fe Li(E) let us subtract the essentially irrelevant constant ${f)} getting
Hs) = 46} - §8) = J{s-2)E) - 4) = 2 (8 (o0, (5-2))+ 2 ZayT,8, (5-1)

Then for s ¢ f+1§(1])0 we may write g?(s) = {L(s-£),{s-1)) + 2(Tf,(s-F)) where L ¢ Diffek('l], 1) is
the self adjoint, stro;agly elliptic, non-negative cperator L = E A;‘_‘Ai « The strong ellipticity of L

is trivially equivalent to the ampleness of {Ai} and L is strietly positive if and only if the {Ai}
are strongly ample. This suggests the following generalization of the results impliied by Theorems 19,29

and 19.31.

19.32, Theorem. Let M, 7, E be as in Theorem 19.29 and let k > .,

Le‘t; Le Diffek('ﬂ 3 'n) be a strongly elliptic, self adjoint operator,.snd if
W (the fiber of E ) is not compact assume in addition that L is positive.
Given f ¢ Li(E) define & C  real valued function 3:f+L12§(1])0 —> R by
#s) = (Ls,s) - (1£,£) = (L(s-£),(s-F)) + 2(1f,(s-£)) . Let J denote the
restriction of § to the closed sumenifold 0(f) = Io(E) N (£ + LE(T])O) of
the Hilbert space 112{('[1) . Then regarding O{f) as a Riemannien manifold in
the Riemannian structure induced from Li('n), J:0(f) —=> R is bounded below

and satisfies condition (C) .

Proof. Since I extends to a continuous linear map of Lf:(n) -into L%k(Ti) = (Li('q)°)*
(Theorem 6.5) and since the immer product ( , ) in Li('r;) extends to a continuous bilinear pairing
of Li(n) x Lfk(n) —>M® (i.e. I° is self-dval) it follows that § is in fact a quadratic poly-
nomial on £ + I%(T[) . Thus @ is c“i and ags(u) = {Is,u) for s ¢ ffli('n)o and _

u e T(f + Li('n)o) = Li(n)°, i.e. df =1 which is bounded from Li('{]) to L%k(n) . The second
condition of Theorem 19.20 is met because if S5 8o e £ 4 Lﬁ('[])o then s, - s, ¢ 112:(13)0 so by

Garding's inequality

(dcgsl - 6&32)(51 - 32) 'V(I’(Sl - 32): Sl = 32)

v

-5 012, - e lls, - 8, li7
"'1, Isl 52” o = Clls) = 85l o
Inc I,
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where ¢, >0, ¢, >0 =and if L is positive we can take c, = 0 . Then the theorem follows from

2
Theorems 19.20 and 19.21 (the assumption in 19.20 that § was defined on all of LII;(T]) rather than only
f+ Lﬁ('ﬂ)O was clearly unnecessary).
qg.e.d.

Essentially the above theorem was proved by John Saber in his thesis (Brandeis 1965), except that
Seber assumed that L was "scalar" in the sense that uEK(L)(v,x) was multiplication by a scalar.

We are now in & position to give a number of interesting applications of Theorem 19.29.

Firsf let us consider the case n =1 . In this case we have either M = I = [0,1] or
M= Sl =1R/Z . Choose p as small as possible, namely p = 2 (so we are in the situation of Hilhert
manifolds) we must have 2k = Pk >n = 1 so again choosing k as small as possibie we have k=1 .

Ain obvious choice for an ample lSt _order linear operator is A = € Diffl('n, TN). Then the solutions

4
dx
of u' = Au =0 are just the constant maps of M into V . Now if M = I then clearly L?_(Tj )°
‘consists of all u e L?_('q) which vanish at O amd 1 , hence there is no non-zero u & L_$_(n)°

satisfying M = O , while if M = S*

then A = o f(n) = Li('ﬂ) end the kernel of AlIS(1)° is
one-dimensional. Hence A is strongly ample in case M = I , but not in the case A = S;L so in the
latter case we must assume W (the fiber of E) is compact. Following 19.31 we define £ e Lgni(ﬂ)
o 26 = Hasll® = sl g1fn) —>m oy g(o) =f3 [s'1iPat . 12 £ e 12(E) them
(for M=1) a(f) = {s e I5(=)]s(0) = 2(0) and s(1) = £(1)} while for M = s%, a(£) - 13(8) so that

by Theorem 13.9 up to homotopy type 9(f) is the loop space of W when M =T s While in the case
1

M =5 o(f) is a fiber space over W (the projection being s +—-> s{0)) whose fiber is the loop space
of W . Now 'A(i)s(u) = 2(As,8u) = 2(s‘,u') 80 dys(u) =2 ‘fg)'(s'(t),u'(t))dt. If & is a critical -
point of J them s is C (see [MTHM, §1b, Theorem 5] or the general smoothness theorem below)} hence
if 47 =0 ‘then for all u e T(a(£)), < L(N)° we can integrate by parts and (since u(0) = u(1) = 0)
a7 _(u) = -2 Ig)‘(s"(t),u(t))dt =0 . Since T(a(£)), consists of all u e To(7)° such that u(t) is
tangent to W at s(t) it follows easily that s"™(t) is orthogonal to W at s{t) and conversely if
s e o(f) is 02 and Safcisfies this condition then s is a critical point of J . By a well-known
result of differential gecmetry it follows that the critical points of J are exactly the closed
_geodesics of W (if -M = §%)} or the geodesics of W joining -f(O) to £(1) (if M =1I) in both
cases the parameter being proporticnal to src length. Also it follows easily from Schwartz's E‘Lnequality

(see [MTHM p. 334]) that at a point of ©(f) where J assumes its minimum on a given component, so does

the length function s +—> j';l Is(£)}lat . It now follows from Theorem 19.29 that in every homotopy

class of CF paths in W from p to g there is ome {a geodesic) of minimal length and (if W is
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compact) that in each free homotopy class of maps of s' into W there is one {a geodesic) of minimal

length, Note thet the last statement is clearly false for the surface of revolution of ¥ = e® so that

campactness of W is really a necessary assumption in general,

: We can also regard the above as a special case of Theorem 19.32, where for L ¢ Diffg('ﬂ > M) we
b 2

take % » the Taplace (-Beltrami) operator for M .

;‘ dx :

; : . This suggests natural generalizations of the geodesic theory for W . The interval {circle) is

replaced by DV (s™) (in the latter case W must be compact) and the operator I of Theorem 19.32 is

- taken to be Ak » Where A is the Iaplace-Beltrami operator on i {or Sn) and k >5;— . More generally
we can take instead of DV or & any compact Riemannian manifold M of dimension n and let L = Ak

where A is the Laplace-Beltrami operator for M {provided in case W is not compact A% = 0 has no

| non-trivial solutions in Lo(1)°) . Strictly speaking oF e Diffy (Ry ,Fy), but if e, wovp e is

a basis for V then any s € Cm(n) =c (M x V) can be written uniquely in the form s = N

* . k I . . k
where f. £ ¢ (]BM) and we define A'g = (A fl)el+...+ (A s)em . This defines A" as an element of

BiffEk(’q s M) and the definition is independent of the choice of €12 sevy B One important

3 difference should be noted between this and the geodesic case. In the geodesic case J (s) is essentially

;
;
i
i
]
i

‘ I”s'(t)l [2at ; vhich depends only on the intrinsic metric properties of W (for if s e Q(f) then
. . .
é {t) & T(W)s(t))_’ hovever in the general case above when n > 1 J depends on the _embeddlng of W
in V!
-~ -

I we are willing to go outside the Hilbert category there are other natural generalizations of

the geodesic theory. The controlling inequality is pk>n . As n gets large if we want to keep

P=2 wemust let k get large, Alternatively we can keep k =mall if we let p get large. If we
take p = 2m then wer can take M(s) = I E “Aisl [Pay , where {Ai} is any ample set of kU¥ order
linear operators for 17 . It seems to me that an interesting case to consider gseriously would be k=1
and for {Ai} the single operator d ¢ Diffl('n, T*(M) ®17) . Note that T*(M) ® 1T has a natural
Riemannisn structure coming from those of T(M) and M. Also cl(d)(v,x)e =v® e so o-l(d)(v,x) is
indeed injective for w 74 0, and hence 4 is ample. Finally du =0 if and only if u is a constant

map, hence if 3M £ § then du = O has no non-trivial scolution in Lp(‘n) 5o in this case, d is

Strongl.y ample and W need not he -cempact (but if W = ¢ we must assume W compact), What. makes this

case particularly interesting is that J depends only on the Riemanmian structure of M and W and not

-on the embedding of W in V, g0 the critical points of J should have intrinsic geometric meaning,

1 Just as in the geodesic case. To make the sithation even closer to the geodesic case take M = D"

p/2

Hs) = I( )3 ( ) ) dx;...dx ~and it is an easy exercise to derive the Buler-Lagrange equations
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explicitly.

We now take up the question of smoothness theorems, i.e. theorems to the effect that (under
certain assumptions on the Lagrangian of the Dirichlet problem J:0(f) —>R ) if ot » which a priori
is only in LIP{(E) s should happen to be in 'i'£+r(E) then all the eritical points of J are likewise in
1P, .(E), so in particular if £ e C (B) (or if oM = §) then all critical points of J are ¢ . I
belleve such a theorem always holds under the hypotheses of Theorem 19.32, however at present we need the
additional hypothesis that the strongly elliptic operator L which defines the problem is "gquasi-scalar"
in the sense defined below.

in element D of DifkalZM, :BM) defines an element D' of Dii‘fk('ﬂ, T ) for amy product buhdle
T=MxV (vhich is characterized by D'(£v) = (DE)v for £ ¢ C( Ry veV)and o(0)(w,x):V—>7

is multiplication by the scalar ck(D)(v,x) . Such an operator D' is called & scalar operator .

;9.3‘37. Definition. If M isa C vector bundle over M snd D Diffk('ﬂ, M) then D is

% .
called guasi-scalar if for each (v,x) ¢ T (M) ck(D)(v,x):'ﬂx > T, 1is multiplication by a scalar.

19.34. Lemma. Let T =M xV be a product vector bundle over M and let

D e Diffk(ﬂ, 1) be a quasi-scalar operator. If X5 wees X, is an ample family

o0
of vecfor fields for M then there exist ¢ real valued functions ci 3 lk
. 172"

on M (ij =1, +ssy r ) such that

D-%e, . 5 Xi Xi '”Xi
tosrdy 1 1o k

is in Diffk_l('ﬂ, m .

. . s s : o . in ¢ ,
Proof Cover M with a finite family of open sets j such that in 3’ XJ (1)’ 3 X;} (2)

[+-]
is a basis of sections for T(M)] Gj =7( oj) , and leg {cpj} be a. C partition of unity for M

éubordinate to {Oj} . 'I‘l:_len for (v,x) e T ()] oj R ck(D)(v,x) is multiplication by a scalar which is

" & homogeneous polynomial of degree k in v with coefficients Cw functions of x , say

o (D) (v,x) = & c;?_l_”_%(x) USRI C

(1)’
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J ' :
Th 2. ix) oY L (x) XL vl WXL, has the same symbol as D and hence differs from D by an
o cP.J( ) 11---J1§( ) 3075, i : v

element of Diffk_l(‘n, n).

d4.e.d.

In what follows N=MxV,E=MxW asusual and P and Q@ are as defined in 19.13 and 19.1k4

i ' 19.35. Lenma,. It k> 123 and we choose 0> g > 1 so that k-g > 321- then given any
iy
b

r veector fields on M (r < 2k} the map

5 F—> Ps()Ll...er) - (X__Ler)

of Cw(E) into Cm('ﬂ) . extends to a continuous map of I.E(E) into Ii-r+e(n) .

Procf, For r =1 and s ¢ Cm(E) we have Xs(x) = ds(XX) £ T(W)s(x) hence

PS(XS)(x) = Q(s(x)) (¥s(x)) = orthogonal projection of Xs(x) om T(W)s(x) = Xs(x), so PS(Xs) =Xs and

. - oo
the case r = 1 Is trivial., We Proceed by induefion. For s = C (E} we have

R S)(XE'"XI‘S)). = (Xl(Q ° s))(Xe...er) +(Q - s)(xl.;.xrs) and since Po = (Q ° s)o it follows
that '

PS(Xl...er) - (xl...xrs) = xl(PS(xe...xrs') - (XE...XTS).)
- (0@ < 8))(%,. 0% 8)

Since X e Diffl( Ms M) it follows from the inductive hypothesis and Theorem 6.5 that

s — Xl(Ps(XE"'XrS) - (XQ...XIS)) extends to a continuous mep of LE(E) into Lles-r'i-e(n) . Since
QN —> L(f, 1) is a.-fiber bundle morphiém 8 +—> Q(s) extends toa C map (namely LE(Q,)) of
Ii('n) into Li(L('n, M)} and(by restriction) o a ¢ map of I.IE;(E) into Li(L('n, M)) . Hence again
by Theorem 6.5 gr—> K_L(Q, °5) extends toa C. map of Lk(E) into Lk l(L{'ﬂ, 1)) while (once more
by Theorem 6.5) - — (Xa...X 8) extends toa C map -of Lk(E) into I‘k rﬂ(n) Thus it will
suffice to prove that the map (T,0) —> To of € (L('n, M) xc (T|) into C°(1). extends to a con-

tinuvous map Lk__l(L(‘l'] s T|)) x I'k-r (M) into Lk- I._l_s('ﬂ) provided 2 <r < 2k . By choosing a basis for

V end writing out what this mesns in terms of matrices we see it is equivalent to prove this in the cage
V=R, i.e. that multiplication extends from & bilinear map of ¢ (:BM) xC (IRM) inte ¢ (JRM) to
& continuous bilinear map of Lk 1( IBM) X Lk r-l-l( JRM) into Lk r+e( JBM), i.e. of

Lk-s (1_8)(IBM) x Lk__s (r- l_e)(IRM) into 1% e-(r- 28)(JRM) Since k-g > % » 1-e> 0, r-1-g > 0, and

H
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+
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(1-e)} + (r-1-€) = r-2¢ > 2 (k-¢) this is a special case of Theorem 9.16. .

g.e.d.

19.3. Lemma. Itk >52‘- and we choose O < g <1 so that kee > g

then for any D ¢ Diffek('ﬂ, N} which is guasi-scalar the map s+—> P Ds - Ds
of C (E) into 'Cw('n) extends to 2 continuous mep of L%(E) into L%-—Eﬁg(n)
provided £ >k .

Proof. Since as noted above s b—> Qfs) is a continuous map of Li(E) into Lf(L(T], 1)) and
since by Theorem 9.13 it follows that (T,s) > To is a continuous bilinear map of
2 2 . 2 2 ' ; ; .
LI(L('I}, ) x 1.2”21&1(11) into Lz_akﬂ(n) c Lz-ema(“)’ the lemma is clear if D ¢ lefak_l(n, 1) .
It is also true for D if it is true for two operators in Diff,, (1, N) whose sum is D , so the lemma
follows fram 19.34 and 19.35 (where in 19,35 we take the k of that lemma to be £ and the r of that

lemma fto be twice the k of the present lemma) .

g.e.d.

We next reca.j.l the smoothness theorem for strongly elliptiec opersators.

19.37. Theorem. Let M be a compact n-dimensional manifold, possibly with

boundary, with a strictlf; positive smooth measure. Tet 1T be a ¢ Riemannian
vector bundle over M and L g Dif:f’2k('n » I} a strongly elliptic operator, If

g e Li(n)‘) and if for some p>0 ILg ¢ Li&p('n) thgn g e 1.12{+p(n) .

Proof. See for example S. Agmon's recent "Lectures on Flliptic Boundary Problems", van Nostraml

1965, Theorem 9.7 covers the case p>k while the case 0 < p <k follows from Lemma G.5.

19.38. Smoothness Theorem. Let the notation and assumpiions be as in Theorem
19.32.311& a.ss{zme_ 1n addition that 1 is quasi-scalar. Them if f ¢ Li_l_r(E) for
some positivg r it feollows that all the critiecal point's-. of J:0({f) —>R | lie
in I§+T(E) . In particulér if M=¢ orif £ eC (E) then all the.ciitical

points of J are ¢ .

Proof. Choose the & of Lemma 19.36 so that for scme integer my, m € = r . We will show that
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if s is a critical point of J and g = s-f then if g ¢ I§+js(ﬂ) where =0, 1, ..., (m-1)
then it follows that g & I§+(j +1)E(n) . Since we kmow a priori that g e Ii(n) (because both £ and
s 1ie in 0(f) CIL(E) © I2(M)) 1t will follow by a finite induction that g e Lﬁme(n) =2, (0.
Eince by assumption € ¢ I2, (1) it will further follow thet s =g+ f ¢ 12, (1) and hence -
g € 1'12:+r(ﬂ) n Li(E) = Li-l-r(E) as was to be proved. ,
Now since s e 9(f) c £ + LE(T})O, g=(s-F) ¢ Li('n)o . 'Phus the implication

g e 1-12&35(11) = p g 1'12{+(j+1)e {(j =0, 1, cevs (ﬁ-l }) will follow from Theorem 19.37 if we can prove
the implication g ¢ L§+j€(ﬂ) > Ig g I° Tet(ger)e 0 =05 Lrevos(m-1) ). Wow since Ig = Is - Lf and
since Lf e 12, (1) © L€k+(j+l)a (3 =0, 1... (m-1)) 4t will in turn suffice to show that
g e I‘i-fje(n)"> Is ¢ L2k+(j+l)e(n) (3=0, 1... (m-1)) . PFinally since f ¢ Lf:ﬂ,('n) les('n) R
g & Lk__'_JE('I]) s> s =g+ f - I.k_l_Je('ﬂ) » 5o it will suffice to show that if = ¢ Ik+ E(E) then
Ls ¢ 1? e _!_1)8(1]) Now recall that by Lemms 19.36 = —> Ls - P.Ls is a continuous map of I'k-rrJ |
into I k+(3+l)a(n) » hence it will suffice to prove that when s is a critical point of J, P Is = 0.
Now & p_z_-_m_ﬂ PLs £ L ('n) = (Lk('n) ) 80 what we must show is that for all u g LK(T]) we have
(PSLs,u) = 0 . Since PS is a self-adjoint zero order ope:rato_r this is equivalent to showing
(Is, Pu) =0 for ue If;(n)o . By Theorem 19.14 P_ maps Lf:('ﬁ)o onto T(R(£))_ . On the other
hand since o) = (Io,o0) - (If,f) we have ag {u) = (Ls,u) and hence, since |

= gla(s) , a7 (W) = af (w) = (Ts,u) for all we T(a(f)), . Since 4F_ =0 it follows that
(Ls,u)‘= 0 for all u ¢ T(Q(f))s s hence (Ls, Psu) =0 for all u g LE(T])O .

g.e.d.

Remark. If in Theorem 19,32 we take, instead of the J given there, the function defined by

s !——-> _r Z‘ ”A s(x)“ dp{x) where {A } is an ample family.of kP order scalar operators for 1},

then we still get the same smoothness theorem as sbove. For up to an additive constant (which does not

change the criticel points) this funetion is equal to the one given in Theorem 19.32 if for L we take
*
E Ai A:.L -

Essentially the above theorem was proved by John Sgber in his thesis (Brandeis, 1965) .

Added in Proof: In her thesis, Karen Uhlenbeck ‘has broved Theorem 19.38 without the assumption
that L is quasi- sealar. Also, she has shown that if J 4is ag in Theorem 19.29 where

#u) = ||au][? , &e pife (‘n,‘ﬂ) being a scalar elliptic operator, then each critical point of J
1

belongs to 5" DT in the interior of M,




