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1 John Scott Russell and The Great
Wave of Translation

To the world at large, John Scott Russell is known
as the naval architect who designed The Great
Eastern, a steamship larger than any built be-
fore. But long after the Great Eastern has been
forgotten, Russell will be remembered by mathe-
maticians as the man who, despite limited mathe-
matical training and background, was the first per-
son to recognize the highly important mathemati-
cal concept now called a soliton, or as he referred
to it, The Great Wave of Translation. Here is the
oft-quoted passage from [30] in which he describes
how he first became acquainted with it.

I was observing the motion of a boat
which was rapidly drawn along a narrow
channel by a pair of horses, when the boat
suddenly stopped—not so the mass of wa-
ter in the channel which it had put in
motion; it accumulated round the prow
of the vessel in a state of violent agi-
tation, then suddenly leaving it behind,
rolled forward with great velocity, assum-
ing the form of a large solitary elevation,
a rounded, smooth and well-defined heap
of water, which continued its course along
the channel apparently without change of
form or diminution of speed. I followed it
on horseback, and overtook it still rolling
on at a rate of some eight or nine miles an
hour, preserving its original figure some
thirty feet long and a foot to a foot and
a half in height. Its height gradually di-
minished, and after a chase of one or two
miles I lost it in the windings of the chan-
nel. Such, in the month of August 1834,
was my first chance interview with that
singular and beautiful phenomenon which
I have called the Wave of Translation

You may feel that there is nothing unusual about
what Russell describes here, and indeed many be-

fore and since have watched this same scenario
play out without remarking anything out of the
ordinary. But Russell was very familiar with wave
phenomena and had a scientist’s keenly observant
eye. What struck him was the remakable stability
of the bow wave as it travelled over a long distance.
He knew that if one tried to create a travelling wa-
ter wave on say a calm lake, it would soon disperse
into a train of smaller wavelets—it would not just
go marching along as a single “heap” over a long
distance. Clearly there was something very spe-
cial about water waves travelling in a narrow and
shallow channel.

Russel became fascinated—even a little obsessed
with his discovery. He built a wave tank behind his
home and proceded to do extensive experiments,
recording the results as data and sketches in his
notebooks. He found for example that the speed
of a soliton depended on its height, and he even was
able to discover the correct formula for the speed
as a function of height, More surprising still, in
Russell’s notebooks one finds remarkable sketches
of a two-soliton interaction—something that would
evoke surprise and amazement when it was redis-
covered as a rigorous solution to the KdV Equation
(see below) more than a hundred years later.

However, as we shall see, solitons are very much
a nonlinear phenomenon, and when some of the
best mathematicians of his day, notably Stokes and
Airy, tried to understand Russell’s observations
with the linearized theory of water waves then
available, they failed to find any trace of soliton-
like behavior and expressed doubts that what Rus-
sell had seen was real.

It was only after Russell’s death, with the more
sophisticated nonlinear mathematical treatment
by Boussinesq [6] in 1871 and by Korteweg and
de Vries in 1895 [16], that Russell’s careful ob-
servations and experiments were at last seen to
be in complete agreement with mathematical the-
ory. And it took yet another seventy years before
the full importance of the Great Wave of Trans-
lation, renamed the soliton, was recognized and it
became an object of intensive study for the rest
of the Twentieth Century. In what follows we will
try to recapitulate some of the mathematics that
led to a full understanding of what solitons are and
what is behind their surprising behavior.
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2 Wave Equations

2.1 Introduction

For simplicity we will consider only waves in a one-
dimensional space. What we mean by a wave equa-
tion will be made more precise as we proceed, but
to get started we mean a certain kind of equation
that specifies how a point u in a certain vector
space U evolves as a function of “time”, t, by spec-
ifying the time derivative, ut = du

dt as a function of
u. That is our equation will be, at least formally,
a first order ordinary differential equation in U :

(∗) ut = f(u),

where on the right hand side, f is some function
f : U → U . To make this precise we must specify
the vector space U and what kind of functions f
will be permitted. For U we will take the space
of smooth (i.e., infinitely differentiable) functions
u(x) of a real variable x with values in the vec-
tor space V = Rn or Cn, and f we will be a
“partial differential operator”, i.e., f(u)(x) will be
a smooth function F (u(x), uxi(x), uxixj (x), . . .) of
the values of u and certain of its partial deriva-
tives at x—in fact, the function F will gener-
ally be a polynomial. A solution of (∗) is then
a smooth curve u(t) in U such that, if we write
u(t)(x) := u(x, t), then

∂u

∂t
(x, t) = F

(
u(x, t),

∂u

∂xi
(x, t),

∂2u

∂xi∂xj
(x, t), . . .

)
.

We will study the so-called “Cauchy Problem”
for such partial differential equations, i.e., the
problem of finding a solution, in the above sense,
with u(x, 0) some given element u0(x) of U . So
far this should more properly be called simply an
“evolution equation”, since in general such equa-
tions will describe evolving phenomena that are
not wave-like in character, and only after certain
additional assumptions are made concerning F is
it appropriate to call it a wave equation.

While we will be interested in obvious questions
such as existence, uniqueness, and general proper-
ties of solutions of the Cauchy problem, we will be
even more concerned with the origin and properties
of a certain remarkable class of solutions, the so-
called solitons, of a very special kind of equation,
the “integrable equations” such as the Korteweg

de Vries Equation (KdV), the Sine-Gordon Equa-
tion (SGE), the Nonlinear Schrödinger Equation
(NLS).

In addition to a first order ODE on U , we could
also consider second and higher order ODE, but
these can easily be reduced to first order ODE
by the standard trick of adding more dependent
variables. For example, to study the classic wave
equation in one space dimension, wtt = c2wxx, a
second order ODE, we can add a new independent
variable v and consider instead the first order sys-
tem wt = v, vt = c2wxx, which we can put in the
form (*) by writing ut = F (u), with u = (w, v),
F (w, v) = (v, c2wxx).

2.2 Travelling Waves and Plane Waves

Let us recall the basic intuitive idea of what is
meant by “wave motion”. Suppose that u(x, t)
represents the “strength” or “amplitude” of some
physical quantity at the spatial point x and time
t. For example, if you think of u as represent-
ing the height of water in a canal, then the graph
of u0(x) = u(x, t0) gives a snapshot of u at time
t0, and we can understand the evolution of u in
time as representing the propagation of the shape
of this graph. In other words, for t1 close to t0,
the shape of the graph of u1(x) = u(x, t1) near x0

will be related in some simple way to the shape
of u0 near x0. Perhaps the simplest example of
this is a so-called travelling wave, namely a u of
the form u(x, t) = f(x − ct), where f : R → V
defines the wave shape, and c is a real number
defining the propagation speed of the wave. If we
define the profile of the wave at time t to be the
graph of the function x 7→ u(x, t), then the initial
profile (at t = 0) is just the graph of f , and at
any later t, the profile at time t is obtained
by translating each point (x, f(x)) of the ini-
tial profile ct units to the right to the point
(x + ct, f(x)). So, the wave profile of a travelling
wave just propagates by rigid translation with ve-
locity c. As we will see below, the general solution
of the equation ut = cux is an arbitrary travelling
wave moving with velocity c, and the general so-
lution to the equation utt = c2uxx is the sum (or
“superposition”) of two arbitrary travelling waves,
both moving with speed |c|, but in opposite direc-
tions.

There is a special kind of complex-valued trav-
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elling wave, called a plane wave, that plays a fun-
damental rôle in the theory of linear wave equa-
tions. The general form of a plane wave is u(x, t) =
Aeiφei(kx−ωt), where A is a positive constant called
the amplitude, φ ∈ [0, 2π) is called the initial
phase, and k and ω are two real parameters called
the wave number and angular frequency . (Note
that k

2π is the number of waves per unit length,
while ω

2π is the number of waves per unit time.)
Rewriting u as u(x, t) = Aeiφeik(x−ω

k t), we see it
is indeed a travelling wave of velocity is ω

k .
In studying a wave equation, a first step is to

find all travelling wave solutions (if any) it admits.
For a constant coefficient linear wave equation we
will see that for each wave number k there is a
unique angular frequency ω(k) for which the equa-
tion admits a plane wave solution, and the veloc-
ity ω(k)

k of this plane wave as a function of k (the
so-called dispersion relation of the equation) com-
pletely determines the equation, and is crucial for
understanding how solutions disperse as time pro-
gresses. Also, the fact that there is a unique (up to
a multiplicative constant) travelling wave solution
uk(x, t) = ei(kx−ω(k)t) with wave number k allows
us to solve the equation explicitly by representing
the general solution as a superposition of these so-
lutions uk. This in essence is the Fourier method.

For nonlinear wave equations, travelling wave so-
lutions are in general severely restricted. Usually
only very special profiles, characteristic of the par-
ticular equation, are possible for travelling wave
solutions, and in particular they do not normally
admit any plane wave solutions.

2.3 Some Model Equations

Perhaps the most familiar of all wave equation is
The Classic Wave Equation utt − c2uxx = 0.
As we saw above, we can reduce this to a standard
first-order evolution equation by replacing the one-
component vector u by a two-component vector
(u, v) satisfying (u, v)t = (v, c2uxx), i.e., ut = v
and vt = c2uxx. To solve the Cauchy problem for
the Classic Wave Equation, factor the wave opera-
tor, ∂2

∂t2 − c
2 ∂2

∂x2 , as a product( ∂
∂t − c

∂
∂x )( ∂

∂t + c ∂
∂x ),

and transform to so-called “characteristic coordi-
nates”, ξ = x − ct, η = x + ct. The equation
becomes ∂2u

∂ξ∂η = 0, that clearly has the general so-
lution u(ξ, η) = F (ξ) + G(η). Transforming back

to “laboratory coordinates” x, t, the general solu-
tion is u(x, t) = F (x−ct)+G(x+ct). If the initial
shape of the wave is u(x, 0) = u0(x) and its initial
velocity is ut(x, 0) = v(x, 0) = v0(x), then an easy
algebraic computation gives the following very ex-
plicit formula:

u(x, t) =
1
2
[u0(x−ct)+u0(x+ct)]+

1
2c

∫ x+ct

x−ct

v0(ξ) dξ,

known as “D’Alembert’s Solution” of the Cauchy
Problem for the Wave Equation. Note the geo-
metric interpretation in the important “plucked
string” case, v0 = 0; the initial profile u0 breaks up
into the sum of two travelling waves, both with the
same profile u0/2, and one travels to the right, and
the other to the left, both with speed c. It is an
easy excercise to derive D’Alembert’s solution us-
ing the following hint: since u0(x) = F (x) +G(x),
u′0(x) = F ′(x) + G′(x), while v0(x) = ut(x, 0) =
−cF ′(x) + cG′(x).

Remark 2.3.1. There are a number of important
consequences that follow easily from the form of
the D’Alembert solution:

a) The solution is well-defined for initial condi-
tions (u0, v0) in the space of distributions, and
gives a flow on this much larger space.

b) The quantity
∫∞
−∞ |ux|2 + ( 1

c )2|ut|2 dx is a
“constant of the motion”. More precisely, if
this integral is finite at one time for a solution
u(x, t), then it is finite and has the same value
at any other time.

c) The “domain of dependence” of a point (x, t)
of space-time consists of the interval [x−ct, x+
ct]. That is, the value of any solution u at
(x, t) depends only on the values u0 and v0 in
the interval [x − ct, x + ct]. Another way to
say this is that the “region of influence” of a
point x0 consists of the interior of the “light-
cone” with vertex at x0, i.e., all points (x, t)
satisfying x0 − ct < x < x0 + ct. (These are
the points having x0 in their domain of depen-
dence.) Still a third way of stating this is that
the Classical Wave Equation has signal prop-
agation speed c, meaning that the value of a
solution at (x, t) depends only on the values
of u0 and v0 at points x0 from which a sig-
nal propagating with speed c could reach x in
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time t (i.e., points inside the sphere of radius
ct about x.)

(Note: It is easy to prove b) by noting that
|ux(x, t)|2 + ( 1

c )2|ut(x, t)|2 = 2(|F ′(x − ct)|2 +
|G′(x+ ct)|2).)

Our next model equation is The Linear Ad-
vection Equation, ut− cux = 0. Using again the
trick of transforming to the coordinates, ξ, η, the
equation becomes ∂u

∂ξ = 0, so the general solution
is u(ξ) = constant, and the solution to the Cauchy
Problem is u(x, t) = u0(x − ct). As before we see
that if u0 is any distribution then u(t) = u0(x−ct)
gives a well-defined curve in the space of distri-
butions that satisfies ut − cux = 0, so that we
really have a flow on the space of distributions
whose generating vector field is c ∂

∂x . Since c ∂
∂x is a

skew-adjoint operator on L2(R), it follows that this
flow restricts to a one-parameter group of isome-
tries of L2(R), i.e.,

∫∞
−∞ u(x, t)2 dx is a constant

of the motion. It is also easy to prove this di-
rectly by showing that d

dt

∫∞
−∞ u(x, t)2 dx is zero.

(Hint: It suffices to show this when u0 is smooth
and has compact support, since these are dense in
L2. For such functions we can rewrite the integral
as

∫∞
−∞

∂
∂tu(x, t)

2 dx and the result will follow if we
can show that ∂

∂tu(x, t)
2 can be written for each t

in the form d
dxh(x), where h is smooth and has

compact support.)
We next consider the General Linear Evolu-

tion Equation, ut + P ( ∂
∂x )u = 0. Here P (ξ) is a

polynomial with complex coefficients. For exam-
ple, if P (ξ) = −cξ then we get back the Linear
Advection Equation. We will outline the theory
of these equations in a separate section below and
see that they can analyzed easily and completely
using the Fourier Transform. (It will turn out that
to qualify as a wave equation, the odd coefficients
of the polynomial P should be real and the even
coefficients pure imaginary, or more simply, P (iξ)
should be imaginary valued on the real axis. This
is the condition for P ( ∂

∂x ) to be a skew-adoint op-
erator on L2(R).)

Our next family of model equations is the The
General Conservation Law, ut = (F (u))x.
Here F (u) can any smooth function of u and its
partial derivatives with respect to x. For exam-
ple, if P (ξ) = a1ξ + · · · + anξ

n, we get the lin-
ear evolution equation ut = P ( ∂

∂x )u by taking

F (u) = a1u + · · · + an
∂n−1u
∂xn−1 . On the other hand,

F (u) = −( 1
2u

2 + δ2uxx) gives the KdV equation
ut+uux+δ2uxxx = 0 that we consider below. Note
that if F (u(x, t)) vanishes at infinity then integra-
tion gives d

dt

∫∞
−∞ u(x, t) dx = 0, i.e.,

∫∞
−∞ u(x, t) dx

is a “constant of the motion”, and this is where
the name “Conservation Law” comes from. We
will be concerned mainly with the case that F (u)
is a zero-order operator, i.e., F (u)(x) = F (u(x)),
where F is a smooth function on R. In this case,
if we let f = F ′, then we can write our Conserva-
tion Law in the form ut = f(u)ux. In particular,
taking f(ξ) = c (i.e., F (ξ) = cξ) gives the Linear
Advection Equation ut = cux, while F (ξ) = − 1

2ξ
2

gives the important Inviscid Burgers Equation,
ut + uux = 0 that we will meet again later.

There is a very beautiful and highly developed
theory of such Conservation Laws, and again we
will devote a separate subsection to outlining some
of the basic results from this theory. Recall that
for the Linear Advection Equation we have an ex-
plicit solution for the Cauchy Problem, namely
u(x, t) = u0(x − ct), which we can also write as
u(x, t) = u0(x−f(u(x, t))t), where f(ξ) = c. If we
are incredibly optimistic we might hope that we
could more generally solve the Cauchy Problem for
ut = f(u)ux by solving u(x, t) = u0(x−f(u(x, t))t)
as an implicit equation for u(x, t). This would
mean that we could generalize our algorithm for
finding the profile of u at time t from the initial
profile as follows: translate each point (ξ, u0(ξ)) of
the graph of u0 to the right by an amount f(u0(ξ))t
to get the graph of x 7→ u(x, t). This would of
course give us a simple method for solving any
such Cauchy Problems, and the amazing thing
is that this bold idea actually works. How-
ever, one must be careful. As we shall see, this
algorithm, that goes by the name the method of
characteristics, contains the seeds of its own even-
tual failure. For a general initial condition u0 and
function f , we shall see that we can predict a pos-
itive time TB (the so-called “breaking time”) after
which the solution given by the method of char-
acteristics can no longer exist as a smooth, single-
valued funtion.

The Korteweg-de Vries (or KdV) Equa-
tion ut + uux + δ2uxxx = 0. If we re-scale
the independent variables by t → βt and
x → γx, then the KdV equation becomes:
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ut+
(

β
γ

)
uux+

(
β

γ3

)
δ2uxxx = 0, and by appropri-

ate choice of β and γ we can obtain any equa-
tion of the form ut + λuux + µuxxx = 0, and any
such equation is referred to as “the KdV equation”.
Common choices, convenient for many purposes,
are ut ± 6uux + uxxx = 0 and we will use both.
This is one of the most important and most stud-
ied of all evolution equations. It is over a century
since it was shown to govern wave motion in a shal-
low channel, but less than fifty years since the re-
markable phenomenon of soliton interactions was
discovered in the course of studying certain of its
solutions.

2.4 Linear Wave Equations; Disper-
sion and Dissipation

Evolution equations that are not only linear but
also translation invariant can be solved explicitly
using Fourier methods, and are interesting both
for their own sake, and also because they serve as
a tool for studying nonlinear equations.

The general linear evolution equation has the
form ut + P ( ∂

∂x )u = 0, where to begin with we
can assume that the polynomial P has coefficients
that are smooth complex-valued functions of x
and t: P ( ∂

∂x )u =
∑r

i=1 ai(x, t)∂iu
∂xi . For each

(x0, t0), we have a space-time translation opera-
tor T(x0,t0) acting on smooth functions of x and t
by T(x0,t0)u(x, t) = u(x − x0, t − t0), and we say
that the operator P ( ∂

∂x ) is translation invariant
if it commutes with all the T(x0,t0). It is an easy
excercise to see that the necessary and sufficient
condition for P ( ∂

∂x ) to be translation invariant is
that the coefficients ai of P should be constant
complex numbers.

There are at least two excellent reasons to as-
sume that our equation is translation invariant.
First, the eminently practical one that in this case
we can use Fourier techniques to solve the initial
value problem explicitly and investigate the solu-
tions in detail. But there is frequently an even
more important physical reason for postulating
translation invariance. If we are trying to model
the dynamics of a fundamental physical quantity
u by an evolution equation of the above type, then
x will denote the “place where”, and t the “time
when” the quantity has the value u(x, t). Now, if
our proposed physical law is truly “fundamental”,

its validity should not depend on where or when it
is applied—it will be the same on Alpha Centauri
as on Earth, and the same in a million years as it
is today—we can even take that as part of the def-
inition of what we mean by fundamental. The way
to give a precise mathematical formulation of this
principle of space-time symmetry or homogeneity
is to demand that our equation should be invariant
under some transitive group acting on space and
time. In any case, we will henceforth assume that
P does in fact have constant complex numbers as
coefficients.

If we now substitute u(x, t) = ei(kx−ωt) into our
linear equation, ut + P ( ∂

∂x )u = 0, then we find
the relation −iωu + P (ik)u = 0, or ω = ω(k) :=
1
iP (ik). For u(x, t) to be a plane wave solution,
we need the angular frequency, ω, to be real, so we
will have a (unique) plane wave solution for each
real wave number k just when 1

iP (ik) is real (i.e.,
P (ik) is imaginary) for k on the real axis. This
just translates into the condition that the odd co-
efficients of P should be real and the even coeffi-
cients pure imaginary, and we assume this in what
follows. As we shall see, one consequence will be
that we can solve the initial value problem for any
initial condition u0 in L2, and the solution is a su-
perposition of these plane wave solutions—clearly
a strong reason to consider this case as describ-
ing honest “wave equations”, whatever that term
should mean.

The relation ω(k) := 1
iP (ik) relating the angu-

lar frequency ω and wave number k of a plane wave
solution of a linear wave equation is called the dis-
persion relation for the equation. The propagation
velocity of the plane wave solution with wave num-
ber k is called the phase velocity at wave number
k, given by the formula ω(k)

k = 1
ikP (ik) (also some-

times referred to as the dispersion relation of the
equation). Note that the dispersion relation is not
only determined by the polynomial P defining the
evolution equation, but conversely determines it.

Now let u0 be any initial wave profile in
L2, so u0(x) =

∫
û0(k)eikx dk, where û0(k) =

1
2π

∫
u0(x)e−ikx dk is the Fourier Transform of u.

If we define û(k, t) = e−P (ik)tû0(k), we see that
û(k, t)eikx = û0(k)eik(x−ω(k)

k t) is a plane wave
solution to our equation with initial condition
û0(k)eikx. We now define u(x, t) (formally) to be
the superposition of these plane waves: u(x, t) ∼
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∫
û(k, t)eikx dk. So far we have not used the fact

that P (ik) is imaginary for k real, and we now no-
tice that it implies |e−P (ik)t| = 1, so |û(k, t)| =
|û0(k)|, hence û(k, t) is in L2 for all t, and in fact
it has the same norm as û0. It then follows from
Plancherel’s Theorem that u(x, t) is in L2 for all
t, and has the same norm as u0, and it is then
elementary to see that our formal solution u(x, t)
is in fact an honest solution of the Cauchy Prob-
lem for our evolution equation, and in fact defines
a one-parameter group of unitary transformations
of L2.
We now consider briefly what can happen if we
drop the condition that the odd coefficients of P
are real and the even coefficients pure imaginary.
Consider first the special case of the Heat (or Dif-
fusion) Equation, ut−αuxx = 0, with α > 0. Here
P (x) = −αX2, so |e−P (ik)t| = |e−k2t|. Thus, when
t > 0, |e−P (ik)t| < 1, and |û(k, t)| < |û0(k)|, so
again u(k, t) is in L2 for all t, but now ‖u(x, t)‖L2 <
‖u0(x)‖L2 . Thus our solution is not a unitary flow
on L2, but rather a contracting, positive semi-
group. In fact, it is easy to see that for each initial
condition u0 ∈ L2, the solution tends to zero in L2

exponentially fast as t → ∞, and in fact it tends
to zero uniformly too. This so-called dissipative
behavior is clearly not very “wave-like” in nature,
and the Heat Equation is not considered to be a
wave equation.

2.5 Conservation Laws

We now return to the consideration of a conserva-
tion law

(CL) ut + f(u)ux = 0.

We will usually assume that f ′(u) ≥ 0, so that f
is a non-decreasing function. This is satisfied in
most of the important applications.

Example 2.5.1. Take F (u) = cu, so f(u) = c and
we get once again the Linear Advection Equation
ut−cux = 0. The Method of Characteristics below
will give yet another proof that the solution to the
Cauchy Problem is u(x, t) = u0(x− ct).

Example 2.5.2. Take F (u) = 1
2u

2, so f(u) = u
and we get the important Inviscid Burgers Equa-
tion, ut + uux = 0.

We next explain how to solve the Cauchy Prob-
lem for such a Conservation Law, using the so-
called Method of Characteristics. We look for
smooth curves (x(s), t(s)) in the (x, t)-plane along
which the solution to the Cauchy Problem is con-
stant. Suppose that (x(s0), t(s0)) = (x0, 0), so
that the constant value of u(x, t) along this so-
called characteristic curve is u0(x0). Then 0 =
d
dsu((x(s), t(s)) = uxx

′ + utt
′, and hence

dx

dt
=
x′(s)
t′(s)

= − ut

ux
= f(u(x(s), t(s)) = f(u0(x0)),

so the characteristic curve is a straight line of slope
f(u0(x0)), i.e., u has the constant value u0(x0)
along the line Γx0 : x = x0 + f(u0(x0))t. Note
the following geometric interpretation of this last
result: as we promised to show earlier, to find
the wave profile at time t (i.e., the graph
of the map x 7→ u(x, t)), translate each point
(x0, u0(x0)) of the initial profile to the right
by the amount f(u0(x0))t. The analytic state-
ment of this geometric fact is that the solution
u(x, t) to our Cauchy Problem must satisfy the im-
plicit equation u(x, t) = u0(x − tf(u(x, t))). Of
course the above is heuristic—how do we know
that a solution exists?—but it isn’t hard to work
backwards and make the argument rigorous. The
idea is to first define “characteristic coordinates”
(ξ, τ) in a suitable strip 0 ≤ t < TB of the (x, t)-
plane. We define τ(x, t) = t and ξ(x, t) = x0

along the characteristic Γx0 , so t(ξ, τ) = τ and
x(ξ, τ) = ξ + f(u0(ξ))τ . But of course, for this to
make sense, we must show that there is a unique
Γx0 passing through each point (x, t) in the strip
t < TB. The easiest case is f ′ = 0, say f = c, giving
the Linear Advection Equation, ut + cux = 0. In
this case, all characteristics have the same slope,
1/c, so that no two characteristics intersect, and
there is clearly exactly one characteristic through
each point, and we can define TB = ∞.

From now on we will assume that the equation is
“truly nonlinear”, in the sense that f ′(u) > d > 0,
so that f is a strictly increasing function. If u′0 is
everywhere positive, then u0(x) is strictly increas-
ing, and hence so is f(u0(x)). In this case we can
again take TB = ∞. For, since the slope of the
characteristic Γx0 issuing from (x0, 0) is 1

f(u0(x)) ,
it follows that if x0 < x1 then Γx1 has smaller
slope than Γx0 , and hence these two characteris-
tics cannot intersect for t > 0, and again every
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point (x, t) in the upper half-plane lies on at most
one characteristic Γx0 .

Finally the interesting general case: suppose u′0
is somewhere negative. In this case we define TB to
be the infimum of [−u′0(x)f ′(u0(x))]−1, where the
inf is taken over all x with u′0(x) < 0. For reasons
that will appear shortly, we call TB the breaking
time. As we shall see, TB is the largest T for which
the Cauchy Problem for (CL) has a solution with
u(x, 0) = u0(x) in the strip 0 ≤ t < T of the
(x, t)-plane. It is easy to construct examples for
which TB = 0; this will happen if and only if there
exists a sequence {xn} with u′0(xn) → −∞. In
the following we will assume that TB is positive,
and that in fact there is a point x0 where TB =

−1
u′0(x0)f ′(u0(x0))

. In this case, we will call Γx0 a
breaking characteristic.

Now choose any point x0 where u′0(x0) is nega-
tive. For x1 slightly greater than x0, the slope of
Γx1 will be greater than the slope of Γx0 , and it
follows that these two characteristics will meet at
the point (x, t) where x1 + f(u0(x1))t = x = x0 +
f(u0(x0))t, namely when t = − x1−x0

f(u0(x1))−f(u0(x0))
.

It is now an easy excercise to show that TB is the
least t for which any two characteristics intersect
at some point (x, t) with t ≥ 0, and also that there
is always at least one characteristic curve passing
through any point (x, t) in the strip 0 ≤ t < TB.
(It is also not hard to construct counterexamples
to these statements if u′0 is not required to be con-
tinuous).

Thus the characteristic coordinates (ξ, τ) are
well-defined in the strip 0 ≤ t < TB of the (x, t)-
plane. Note that since x = ξ+f(u0(ξ))τ , ∂x

∂ξ = 1+
f ′(u0(ξ))u′0(ξ)τ , and ∂x

∂τ = f(u0(ξ)), while ∂t
∂ξ = 0

and ∂t
∂τ = 1. It follows that the Jacobian of (x, t)

with respect to (ξ, τ) is ∂x
∂ξ = 1 + f ′(u0(ξ))u′0(ξ),

which is positive in 0 ≤ t < TB, so that (ξ, τ) are
smooth coordinates in this strip. On the other
hand, if Γx0 is a breaking characteristic, then then
the Jacobian aproaches zero along Γx0 as t ap-
proaches TB, confirming that the characteristic co-
ordinates cannot be extended to any larger strip.

By our heuristics above, we know that the solu-
tion of the Cauchy Problem for (CL) with initial
value u0 should be given in characteristic coordi-
nates by the explicit formula u(ξ, τ) = u0(ξ), and
so we define a smooth function u in 0 ≤ t < TB
by this formula. Since the map from (x, t) to

(ξ, τ) is a diffeomophism, this also defines u as a
smooth function of x and t, but it will be sim-
pler to do most calculations in characteristic co-
ordinates. In any case, since a point (x, t) on the
characteristic Γξ satisfies x = ξ + f(u0(ξ))t, we
see that u = u(x, t) is the solution of the implicit
equation u = u0(x − tf(u)). It is now obvious
that u(x, 0) = u0(x). Next use the chain-rule:
ux = uξ

∂ξ
∂x and ut = uξ

∂ξ
∂t to compute the par-

tial derivatives ux and ut as functions of ξ and τ :

ut(ξ, τ) = − u′0(ξ)f(u0(ξ))
1 + u′0(ξ)f ′(u0(ξ))τ

and

ux(ξ, τ) =
u′0(ξ)

1 + u′0(ξ)f ′(u0(ξ))τ

and and it follows from this that u actually satisfies
the equation (CL) in 0 ≤ t < TB, and so solves the
Cauchy Problem.

To see how things go wrong at the breaking
time TB , we can check easily that along a break-
ing characteristic Γx0 , the value of ux at the point
x = x0 + f(u0(x0))t is given by u′0(x0)TB

TB−t . (Note
that this is just the slope of the wave profile at
time t over the point x.) This allows us to see a
qualitative but very precise picture of how u devel-
ops a singularity as t approaches the breaking time
TB, a process usually referred to as shock formation
or steepening and breaking of the wave profile.

Namely, let Γx0 be a breaking characteristic and
consider an interval I around x0 where u0 is de-
creasing. Let’s follow the evolution of that part of
the wave profile that is originally over I. Recall
our algorithm for evolving the wave profile: each
point (x, u0(x)) of the initial profile moves to the
right with a constant velocity f(u0(x)), so at time
t it is at (x + f(u0(x))t, u0(x)). Thus, the higher
part of the wave profile, to the left, will move faster
than the lower part to the right, so the profile will
bunch up and become steeper, until it eventually
becomes vertical or “breaks” at time TB when the
slope of the profile actually becomes infinite over
the point x0 + f(u0(x0))TB. (In fact, the above
formula shows that the slope goes to −∞ like a
constant times 1

t−TB
.) Note that the values of u

remain bounded as t approaches TB. In fact, it is
clearly possible to continue the wave profile past
t = TB, using the same algorithm. However, for
t > TB there will be values x∗ where the vertical
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line x = x∗ meets the wave profile at time t in two
distinct points (corresponding to two characteris-
tics intersecting at the point (x∗, t)), so the profile
is no longer the graph of a single-valued function.

For certain purposes it is interesting to know
how higher derivatives uxx, uxxx, . . . behave as t
approaches TB along a breaking characteristic, (in
particular, in the next section we will want to com-
pare uxxx with uux). These higher partial deriva-
tives can be estimated in terms of powers of ux us-
ing ∂

∂x = ∂
∂ξ (∂x

∂ξ )−1, and ∂x
∂ξ = 1+f ′(u0(ξ))u′0(ξ)τ .

from which it follows easily that along a break-
ing characteristic Γx0 , as t → TB, uxx = O(u3

x) =
O((t− TB)−3), and uxxx = O(u5

x) = O((t− TB)−5).

2.6 Split-Stepping

We now return to the KdV equation, say in the
form ut = −uux − uxxx. If we drop the nonlinear
term, we have left the dispersive wave equation
ut = −uxxx, that we considered in the section on
linear wave equations. Recall that we can solve its
Cauchy Problem, by using the Fourier Transform.

On the other hand, if we drop the linear term,
we are left with the inviscid Burgers Equation,
ut = −uux, and as we know it exhibits steepen-
ing and breaking of the wave profile, causing a
shock singularity to develop in finite time TB for
any non-trivial initial condition u0 that vanishes at
infinity. Up to this breaking time, TB, we can again
solve the Cauchy Problem, either by the method of
characteristics, or by solving the implicit equation
u = u0(x− ut) for u as a function of x and t.

Now, in [5] it is proved that KdV defines a
global flow on the Sobolev space H4(R) of func-
tions u : R → R having derivatives of order up to
four in L2, so it is clear that dispersion from the lin-
ear uxxx term must be counteracting the peaking
from the nonlinear uux term, preventing the devel-
opment of a shock singularity. In order to under-
stand this balancing act better, it would be useful
to have a method for taking the two flows defined
by ut = −uxxx and ut = −uux and combining
them to define the flow for the full KdV equation.
(In addition, this would give us a method for solv-
ing the KdV Cauchy Problem numerically.)

In fact there is a very general technique that
applies in such situations. In the pure mathe-
matics community it is usually called the Trotter

Product Formula, while in the applied mathemat-
ics and numerical analysis communities it is called
split-stepping. Let me state it in the context of
ordinary differential equations. Suppose that Y
and Z are two smooth vector fields on Rn, and we
know how to solve each of the differential equa-
tions dx/dt = Y (x) and dx/dt = Z(x), meaning
that we know both of the flows φt and ψt on Rn

generated by X and Y respectively. The Trotter
Product Formula is a method for constructing the
flow θt generated by Y +Z out of φ and ψ; namely,
letting ∆t = t

n , θt = limn→∞(φ∆tψ∆t)n. The in-
tuition behind the formula is simple. Think of ap-
proximating the solution of dx/dt = Y (x) + Z(x)
by Euler’s Method. If we are currently at a point
p0, to propagate one more time step ∆t we go
to the point p0 + ∆t (Y (p0) + Z(p0)). Using the
split-step approach on the other hand, we first
take an Euler step in the Y (p0) direction, going to
p1 = p0 +∆t Y (p0), then take a second Euler step,
but now from p1 and in the Z(p1) direction, going
to p2 = p1+∆t Z(p1). If Y and Z are constant vec-
tor fields, then this gives exactly the same final re-
sult as the simple full Euler step with Y +Z, while
for continuous Y and Z and small time step ∆t
it is a good enough approximation that the above
limit is valid. The situation is more delicate for
flows on infinite dimensional manifolds, neverthe-
less it was shown by F. Tappert in [26] that the
Cauchy Problem for KdV can be solved numeri-
cally by using split-stepping to combine methods
for ut = −uux and ut = −uxxx.

Split-stepping suggests a way to understand the
mechanism by which dispersion from uxxx balances
shock formation from uux in KdV. Namely, if we
consider wave profile evolution under KdV as made
up of a succession of pairs of small steps (one for
ut = −uux and the one for ut = −uxxx), then
when u, ux, and uxxx are not too large, the steep-
ening mechanism will dominate. But recall that
as the time t approaches the breaking time TB, u
remains bounded, and along a breaking character-
istic ux only blows up like (TB − t)−1 while uxxx

blows up like (TB − t)−5. Thus, near breaking in
time and space, the uxxx term will dwarf the non-
linearity and will disperse the incipient shock. In
fact, computer simulations do show just such a sce-
nario playing out.
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3 The Korteweg-de Vries Equation

We have just seen that the Korteweg-de Vries
equation,

(KdV) ut + 6uux + uxxx = 0,

expresses a balance between dispersion from its
third-derivative term and the shock-forming ten-
dency of its nonlinear term, and in fact many mod-
els of one-dimensional physical systems that ex-
hibit mild dispersion and weak nonlinearity lead
to KdV as the controlling equation at some level
of approximation.

As mentioned earlier, KdV first arose as the
equation modelling solitary gravity waves in a shal-
low canal. Such waves are rare and not easy to
produce, and as discussed in the first section, they
were apparently first noticed by Russell in 1834,
and early attempts by Stokes and Airy to model
them mathematically seemed to indicate that they
could not be stable—and their very existence was
at first a matter of debate. Later work by Boussi-
nesq and Rayleigh corrected errors in this earlier
theory, and finally a paper in 1894 by Korteweg
and de Vries [16] settled the matter by giving a
convincing mathematical argument that wave mo-
tion in a shallow canal is governed by KdV, and
showing by explicit computation that their equa-
tion admitted travelling-wave solutions that had
exactly the properties described by Russell, includ-
ing the relation of height to speed that Russell had
determined experimentally in a wave tank he had
constructed.

But it was only much later that further remark-
able properties of the KdV equation became evi-
dent. In 1954, Fermi, Pasta and Ulam (FPU) used
one of the very first digital computers to perform
numerical experiments on an elastic string with
nonlinear restoring force, and their results contra-
dicted the then current expectations of how energy
should distribute itself among the normal modes of
such a system [10]. A decade later, Zabusky and
Kruskal re-examined the FPU results in a famous
paper [29], where they showed that the FPU string
was well approximated by the KdV equation. They
then did their own computer experiments, solving
the Cauchy Problem for KdV with initial condi-
tions corresponding to those used in the FPU ex-
periments. In the results of these simulations they
observed the first example of a “soliton”, a term

that they coined to describe a remarkable particle-
like behavior (elastic scattering) exhibited by cer-
tain KdV solutions. Zabusky and Kruskal showed
how the coherence of solitons explained the anoma-
lous results observed by Fermi, Pasta, and Ulam.
But in solving that mystery they had uncovered a
larger one; the behavior of KdV solitons was unlike
anything seen before in applied mathematics, and
the search for an explanation of their remarkable
behavior led to a series of discoveries that changed
the course of applied mathematics for the next
thirty years. We next fill in some of the mathe-
matical details behind the above sketch, beginning
with a discussion of explicit solutions to the KdV
equation.

To find the travelling wave solutions of KdV is
straightforward; if we substitute a travelling wave
u(x, t) = f(x − ct) into KdV we obtain the ODE
−cf ′ + 6ff ′ + f ′′′, and adding as boundary con-
dition that f should vanish at infinity, a routine
computation leads to the two-parameter family of
travelling-wave solutions:

u(x, t) = 2a2 sech2(a(x− 4a2t+ d)).

These are the solitary waves seen by Russell, and
they are now usually referred to as the 1-soliton
solutions of KdV. Note that their amplitude, 2a2,
is just half their speed, 4a2, while their “width” is
proportional to a−1; i.e., taller solitary waves are
thinner and move faster.

Next, following Toda [27], we will “derive” 1 the
2-soliton solutions of KdV. Rewrite the 1-soliton
solution as u(x, t) = 2 ∂2

∂x2 log cosh(a(x− 4a2t+ δ),
or u(x, t) = 2 ∂2

∂x2 logK(x, t), where K(x, t) := (1+
e2a(x−4a2t+δ)). We now try to generalize, looking
for solutions of the form u(x, t) = 2 ∂2

∂x2 logK(x, t),
with K(x, t) := 1 +A1e

2η1 +A2e
2η2 +A3e

2(η1+η2),
where ηi = ai(x − 4a2

i t + di), and we are to
choose the Ai and di by substituting in KdV
and seeing what works. It is easy to see that
KdV is satisfied for u(x, t) of this form and arbi-
trary A1, A2, a1, a2, d1, d2, provided that we define

A3 =
(

a2−a1
a1+a2

)2

A1A2, and solutions of KdV aris-
ing this way are called the KdV 2-soliton solutions.

1This is a complete swindle! Only knowledge of the form
of the solutions allows us to make the clever choice of K.
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It can now be shown that for these choices of a1

and a2,

u(x, t) = 12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)
[cosh(3x− 36t) + 3 cosh(x− 28t)]2

.

In particular u(x, 0) = 6 sech2(x), for t large
and negative, u(x, t) is asymptotically equal to
2 sech2(x − 4t − φ) + 8 sech2(x − 16t + φ

2 ), while
for t large and positive, u(x, t) is asymptotically
equal to 2 sech2(x− 4t+φ) + 8 sech2(x− 16t− φ

2 ),
where φ = log(3)/3. (For details see [27], Chapter
6.)

Note what this says. If we follow the evolution
from −T to T (where T is large and positive),
we first see the superposition of two 1-solitons; a
larger and thinner one to the left of and overtak-
ing a shorter, fatter, and slower-moving one to the
right. Around t = 0 they merge into a single lump
(with the shape 6 sech2(x)), and then they sepa-
rate again, with their original shapes restored, but
now the taller and thinner one is to the right. It
is almost as if they had passed right through each
other—the only effect of their interaction is the
pair of phase shifts—the slower one is retarded
slightly from where it would have been, and the
faster one is slightly ahead of where it would have
been. Except for these phase shifts, the final result
is what we might expect from a linear interaction.
It is only if we see the interaction as the two soli-
tons meet that we can detect its highly nonlinear
nature. (Note that at time t = 0, the maximum
amplitude, 6, of the combined wave is actually less
than the maximum amplitude, 8, of the taller wave
when they are separated.) But of course the really
striking fact is the resilience of the two individual
solitons—their ability to put themselves back to-
gether after the collision. Not only is no energy ra-
diated away, but their actual shapes are preserved.
(Remarkably, page 384 of Russell’s 1844 paper has
a sketch of a 2-soliton interaction experiment that
Russell had carried out in his wave tank!)

Now back to the computer experiment of
Zabusky and Kruskal. For numerical reasons, they
chose to deal with the case of periodic boundary
conditions—in effect studying the KdV equation
ut + uux + δ2uxxx = 0 (which they label (1) ) on
the circle instead of on the line. For their pub-
lished report, they chose δ = 0.022 and used the
initial condition u(x, 0) = cos(πx). With the above

background, it is interesting to read the following
extract from their 1965 report, containing the first
use of the term “soliton”:

(I) Initially the first two terms of Eq.
(1) dominate and the classical overtak-
ing phenomenon occurs; that is u steep-
ens in regions where it has negative slope.
(II) Second, after u has steepened suffi-
ciently, the third term becomes impor-
tant and serves to prevent the forma-
tion of a discontinuity. Instead, oscilla-
tions of small wavelength (of order δ) de-
velop on the left of the front. The am-
plitudes of the oscillations grow, and fi-
nally each oscillation achieves an almost
steady amplitude (that increases linearly
from left to right) and has the shape of
an individual solitary-wave of (1). (III)
Finally, each “solitary wave pulse” or
soliton begins to move uniformly at a
rate (relative to the background value
of u from which the pulse rises) which
is linearly proportional to its amplitude.
Thus, the solitons spread apart. Because
of the periodicity, two or more solitons
eventually overlap spatially and interact
nonlinearly. Shortly after the interac-
tion they reappear virtually unaffected
in size or shape. In other words, soli-
tons “pass through” one another with-
out losing their identity.Here we have a
nonlinear physical process in which inter-
acting localized pulses do not scatter irre-
versibly .
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