
Math 32a Fall 2003 R. Palais

Lecture 1
Introduction

1.1 Origins of my teaching this course
I have taught Math 32 many times since I came to Brandeis in 1960—in fact probably

as often as everyone else in the department combined. But this time it is going to be
somewhat different and I want to tell you a little about how I happen to be teaching it
again seven years after I became emeritus.

I became interested in mathematical visualization (using computer graphics) about a
dozen years ago, and I have been working on a program called 3D-XplorMath that dis-
plays a large number of mathematical objects and processes ever since. In fact I retired
from teaching earlier than I otherwise might have in order to have more time to think
about Mathematical Visualization and continue development of the program. If you are a
Mac user and would like to try out 3D-XplorMath, it is available from my web-site:

http://rsp.math.brandeis.edu/3D-XplorMath/TopLevel/download.html
or from VersionTracker.

The program should be thought of as a Mathematical Museum. Although it wasn’t
originally designed as a teaching tool many people started using it as an adjunct to their
instruction and wrote back to me encouraging me to add more features for that purpose.
So about two years ago I applied for an NSF CCLI grant for funding to turn 3DXM into a
curriculum enhancement tool. I am the Principle Investigator on the grant and about six
other mathematicians from all over the world (The 3DXM Consortium) are working with
me on it.

As part of the grant activity we proposed to develop curricula for courses in ODE and
differential geometry, using 3DXM to enhance the teaching in those subjects, and to give
some courses in these subjects to test the new curricula. We gave the first of those pilot
courses last winter in Taiwan to a class of about this size. It was a ”crash course” that
met six hours a week for six weeks and I was part of a team of five who participated in
the instruction.

I think that we were all very surprised at how well the course went and at the enthusiasm
of the students for the way it was taught. In the end we all felt that the success of the
course came not just from using 3DXM to help the students visualize the concepts of the
course, but even more from another learning technique that we stressed. Namely we had
the students form into teams, tht worked together to write their own software to implement
the theoretical material of the course algorithmically. In fact I was so impressed by the
students enthusiasm that I asked to teach Math 32a this Fall and use the same approach.

What does it mean to “implement the theoretical material of the course algorithmically”?
That may sound like just fancy jargon, but I have something very real and specific in mind

1



Math 32a Fall 2003 R. Palais

and since it will play an important role in the way this course is taught, I want to try to
explain it to you now—or at least start.

Mathematical theorems are often described as being either constructive or non-construct-
ive. What exactly is the difference? Let me illustrate with two very famous theorems,

Banach Contraction Principle. If X is a closed subset of Rn and F : X → X sat-
isfies ‖F (x)− F (y)‖ ≤ K ‖x− y‖ for all x, y ∈ X with K < 1 then there is a unique
point p of X such that F (p) = p, and moreover for any point x of X the sequence
F (x), F (F (x)), F (F (F (x))), . . . converges to p.

Brouwer Fixed Point Theorem. If D s the unit disk in the plane and F is any con-
tinuous map of D into itself, then there is a point p of D such that F (p) = p.

These two theorems may appear superficially similar in that both assert the existence
of point p left fixed by a particular kind of map. However, while in the first case the proof
(and the very statement of the theorem) give an algorithm for finding p, in the second case
there is no such algorithm, Instead the proof is by contradiction—it shows that if there
were no such p, then it would be possible to continuously map the disk onto its boundary
by a map leaving each point of the boundary fixed, and this is known to be impossible.

. 1.1—Exercise 1. Let X = [0, 1] and define F : X → X by F (x) = cos(x). Use the
Mean Value Theorem to prove that F satisfies the hypothesis of the Banach Contraction
Principle, and use a hand calculator to estimate the fixed point of F to two decimal places.

1.2 Algorithmic Mathematics
By doing mathematics algorithmically I mean using a computer and some programming

system to actually “create” mathematical objects from constructive proofs of their exis-
tence. But what does it really mean to construct some desired mathematical object on a
computer?

1) First one has to define data structures that describe the mathematical object one is trying
to create and also the other objects that arise in the existence proof. (For example, a
point in the plane is described by a pair (x,y) of floating point numbers, and a triangle
is described by three such pairs.)

2) Then one has to translate the mathematical algorithms for constructing the mathemtat-
ical object into subroutines in the programming system that act on the given data
sructures to construct a data structure describing the desired object.

3) Finally, one has to write graphical procedures to display the data describing the created
object in a meaningful way.

If one has to start from scratch, using a standard low-level programming system like
Pascal, or C or Java, this can be a very difficult task and time-consuming task. But
fortunately there are several excellent “high-level” mathematical programming systems
that have already done much of the work of defining good mathematical data structures
and writing important functions and subroutines that act on these data structures as well

2



Math 32a Fall 2003 R. Palais

as easy to use routines for displaying these mathematical data structures visually. Perhaps
the three most popular are Matlab, Mathematica and Maple.

Mathematica and Maple are fairly similar. Both were designed to work primarily with
symbolic expressions, so they are particularly suited for doing algebra and simplifying com-
plicated expressions. Matlab is primarily a system for doing numerical analysis. Its basic
data structures are vectors and matrices, so it excels in problems that involve numerical
linear algebra. And all three have good visualization “back-ends” for displaying the results
of computation.

It turns out that Matlab’s strong points make it particularly well-suited to carrying out
the sort of projects we will encounter in this course.

In the Taiwan course, we used both Mathematica and Matlab, and students were able
to carry out the projects with both, but our experience was that it was easier to teach the
sudents Matlab and the students found it easier to work with. However, if some of you
already know Mathematica (or Maple) and would likem to use it to do the projects, that
is fine with me.

What are the main programming projects I have in mind. Three of the central theorems
in curve and surface theory have very beautiful construcive proofs. When I taught these
theorems before I never stressed their constructive nature. But in fact actually translating
these theorems into code is quite feasible even for programming beginners, and doing so
will not only make the meaning of the theorems and the proofs much clearer for you, but
also it will be an excellent way for you to become expert in Matlab, a skill that you should
find very useful in the years ahead,

1.3 What next?
That finishes my introduction to the course. In the next lecture we will begin by trying

to make sense of the question, “What is ”Geometry?” Geometry seems such a familiar and
ancient notion that you may be surprised to hear that the mathematicians current concep-
tion of the subject underwent a substantial reformulation a little over a century ago by the
German mathematician Felix Klein in his so-called “Erlanger Program”. As preparation
for my lecture, try looking up “Felix Klein” and “Erlanger Program” on Google.

3


