
Math 32a Fall 2003 R. Palais

Lecture 10
The Theorem of Frobenius

10.1 What if Time were Two-dimensional?
With our study of ODE, we have completed the review of the analytical tools that will be
required for our study curve theory. However, when we turn later to the study of surfaces,
there is an additional tool we will need. This is embodied in a theorem of Frobenius that
we consider next.

One approach to the Frobenius Theorem is consider what would become of the local
existence and uniqueness theorem for the IVP for ODE if “time”, instead of being one-
dimensional, was two-dimensional. That is, suppose that an instant of time is represented
not by a single real number t ∈ R, but by an ordered pair (t1, t2) of real numbers. (We
still assume that “space” is represented by points of a vector space, V , although shortly
we will specialize to the case V = Rn.) What is the natural generalization of an ODE and
its associated initial value problem?

The history of a smoke particle—that is, a particle that streams along with the wind—will
now be described not by a “world-line” t 7→ x(t) from R to V but by a “world-sheet”
(t1, t2) 7→ x(t1, t2), a map from our pair of “time” parameters in R2 to V . And since their
are now two time coordinates, the particle will have not one but rather two velocity vectors
associated to it at time (t1, t2), namely ∂x(t1,t2)

∂t1
and ∂x(t1,t2)

∂t2
. Thus the “wind” must now

be described not by a single time-dependent vector field X : V ×R → V , but by a pair
of time-dependent vector fields X1 : V ×R2 → V and X2 : V ×R2 → V . Operationally,
the definition of Xi(v, t1, t2) is as follows: place a smoke particle at v, and at time (t1, t2)
let it go, and measure its velocity ∂x(t1,t2)

∂ti
. In all that follows we will assume that these

vector fields X1 and X2 are Ck, k ≥ 2.

The ordinary differential equation IVP dx
dt = X(x, t), x(t0) = v0 describing a smoke particle

motion when time is one-dimensional is now replaced by a similar IVP for a “system of
first order partial differential equations”:

1) x(t01, t
0
2) = v0,

(∗) 2)
∂x

∂t1
= X1(x, t1, t2),

3)
∂x

∂t2
= X2(x, t1, t2),

An Algorithm for Constructing Solutions of the System (∗).
We now describe a simple and intuitive algorithm that we will refer to as Algorithm F for
constructing the solution x(t1, t2) of the initial value problem (∗) near (t1, t2) = (t01, t

0
2),

provided a solution exists. To be more precise, the algorithm will produce a map (t1, t2) 7→
x(t1, t2), defined for (t1, t2) in a neighborhood U of (t01, t

0
2) defined by |ti− t0i | < ε, i = 1, 2,

and for which the following five statements a) to e) are valid:

41

Math 32a Fall 2003 R. Palais

a) x(t1, t2) satisfies the initial value condition 1) of (∗),
b) x(t1, t2) satisfies 2) of (∗), at least along the line t2 = t02.

c) x(t1, t2) satisfies 3) of (∗) in all of U ,

d) x : U → V is Ck,

e) The properties a), b), c) uniquely determine the function x(t1, t2) near (t01, t
0
2), hence it

will be the unique solution of (∗) near (t01, t
0
2), if any solution exists.

The strategy behind Algorithm F comes from a subtle change in point of view. Instead of
regarding 2) and 3) of (∗) as a pair of coupled PDE with independent variables t1 and t2,
we consider them as two independent ODEs, the first with t1 as independent variable and
t2 as parameter, and the second with these roles reversed.

Algorithm F is defined as follows. First we solve the ODE initial value problem dy
dt = Y (y, t)

and y(t01) = v0, where Y (v, t) := X1(v, t, t02). By the local existence and uniqueness
theorem for ODE, if ε is sufficiently small then the solution will exist for |t− t01| < ε, and
moreover y(t) will be Ck+1. We now define x(t1, t02) = y(t1) for |t1 − t01| < ε. This of
course guarantees that no matter how we define (t1, t2) for other values of t2, statements
a) and b) will be valid. Moreover, by the uniqueness of solutions of the IVP for ODEs, it
is clear that conversely if a) and b) are to hold then we must define x(t1, t02) this way on
|t1 − t01| < ε.

Next we consider the ODE dz
dt = Z(z, t, t1) where t1 is considered a parameter and the

vector field Z is defined by Z(v, t, t1) := X2(v, t1, t). It again follows from the local
existence and uniqueness theorem for ODE that if ε is sufficiently small, then for each t1
with |t1 − t01| < ε, the IVP dz

dt = Z(z, t, t1), z(t02) = y(t1) = x(t1, t02) has a unique solution
zt1(t) for |t − t02| < ε. We now define x(t1, t2) in U by x(t1, t2) = zt1(t2). We note that
because of the initial condition z(t02) = y(t1) = x(t1, t02), this extends the definition of
x(t1, t2) in the first part of the algorithm, so properties a) and b) still hold. But now in
addition, c) also clearly holds, and moreover in order for c) to hold then by the uniqueness
theorem for ODE the way we extended the definition of x(t1, t2) to all of U was the only
way possible; in other words property e) is established. Finally, property d) is immediate
from the Theorem of Section 8.3 (concerning the smoothness of solutions of ODE with
respect to initial conditions and parameters).

[That completes the formal description of Algorithm F. We now restate it in less formal
and more intuitive language. First find x(t1, t2) along the line t2 = t02 by freezing the value
of t2 at t02 and regarding the partial differential equation ∂x

∂t1
= X1(x, t1, t2) as an ODE

in which t2 is just a parameter. Then, regard the PDE ∂x
∂t2

= X2(x, t1, t2) as an ODE in
which t1 is a parameter, and for each parameter value t1 near t01 solve this ODE, taking
for initial value at t2 = t02 the value x(t1, t02), found in the first step.]

The question we will consider next is under what conditions the function x(t1, t2) defined
by Algorithm F satisfies equation 2) of the system (∗) in all of U , and not just along the
segment t1 = t01.

42

Math 32a Fall 2003 R. Palais

First we look at a couple of examples.

10.1—Example 1. Take V = R, and define X1(x, t1, t2) = X2(x, t1, t2) = x, so the
system of PDE is ∂x

∂t1
= ∂x

∂t2
= x. In this case Algorithm F leads to the function x(t1, t2) =

v0e(t1−t01)e(t2−t02) which clearly does solve the system (∗).

10.1—Example 2. Let V = R, define X1(x, t1, t2) = x, X2(x, t1, t2) = 1 and take as
initial condition x(0, 0) = 1. Now the system of partial differential equations is ∂x

∂t1
= x

and ∂x
∂t2

= 1. Applying Algorithm F, the first equation together with the initial condition
gives x(t1, 0) = et1 , and the second equation then implies that x(t1, t2) = et1 + t2. In this
case the first of the two partial differential equations is clearly not satisfied off the line
t2 = 0!

So we see life is not going to be quite as simple as with one-dimensional time. For certain
choices of X1 and X2 it will be possible to solve the IVP locally for every choice of initial
condition x(t01, t

0
2) = v0, while for other X1 and X2 this will not be so. Let’s give a name

to distinguish between these cases.

10.1.1 Definition. Let X1 : V × R2 → V and X2 : V × R2 → V be C2 maps. We
call the system of PDEs ∂x

∂t1
= X1(x, t1, t2) and ∂x

∂t2
= X2(x, t1, t2) is integrable, if for

every (t01, t
0
2) ∈ R2 and v0 ∈ V , their is a solution x of this system that is defined in a

neighborhood of (t01, t
0
2) and that satisfies the initial condition x(t(t01, t

0
2)) = v0

What the Frobenius Theorem does is provide a necessary and sufficient condition for a
system to be integrable. Moreover, this condition is both natural and easy and practical
to apply. Since it becomes somewhat easier to formulate in the case that V = Rn, we will
assume we are in that case from now on. (Of course this is no real loss of generality, since
it simply amounts to choosing a basis for V .)

The vector fields X1 and X2 can now be described by 2n Ck real-valued functions X1
j and

X2
j on Rn ×R2:

Xi(x, t1, t2) = Xi(x1, . . . , xn, t1, t2) = (Xi
1(x1, . . . , xn, t1, t2), . . . , Xi

n(x1, . . . , xn, t1, t2))

10.1.2 Definition. Let X1 : Rn×R2 → Rn and X2 : Rn×R2 → Rn be C2 vector fields
on Rn depending on two real parameters t1 and t2. We will call X1 and X2 compatible if
the following n conditions hold identically:

∂X1
i

∂t2
+

n∑
j=1

∂X1
i

∂xj
X2

j =
∂X2

i

∂t1
+

n∑
j=1

∂X2
i

∂xj
X1

j , 1 ≤ i ≤ n.

Frobenius Theorem. If Xi : Rn ×R2 → Rn i = 1, 2 are two C2 vector fields on Rn,
then the system of PDEs ∂x

∂t1
= X1(x, t1, t2) and ∂x

∂t2
= X2(x, t1, t2) is integrable if and

only if X1 and X2 are compatible.

43

Math 32a Fall 2003 R. Palais

PROOF. We first check the necessity of the condition. We assume the system is integrable
and show that the compatibility identities hold at an arbitrary point (x0, t01, t

0
2) ∈ Rn×R2.

Let x(t1, t2) be a solution of ∂x
∂ti

= Xi(x, t1, t2), i = 1, 2 defined near (t01, t
0
2) and satisfying

x((t01, t
0
2)) = x0. From d) and e) above we know that x is C2, so in particular its second

cross partial-derivatives at (x0, t01, t
0
2) exist and are equal. If we differentiate the equation

∂xi(t1,t2)
∂t1

= X1
i (x(t1, t2), t1, t2) with respect to t2, using the chain-rule, we find:

∂

∂t2

∂x(t1, t2)
∂t1

=
∂X1

i (x, t1, t2)
∂t2

+
n∑

j=1

∂X1
i (x, t1, t2)

∂xj

∂xj(t1, t2)
∂t2

=
∂X1

i (x, t1, t2)
∂t2

+
n∑

j=1

∂X1
i (x, t1, t2)

∂xj
X2

j (x, t1, t2),

so if we interchange the roles of t1 and t2, set the cross-derivatives equal and evaluate at
(x0, t01, t

0
2) we get precisely the compatibility identities at that point.

Now assume that X1 and X2 are compatible. Given (x0, t01, t
0
2) ∈ Rn×R2 use Algorithm F

to define x(t1, t2) in U and define z(t1, t2) in U by z(t1, t2) := ∂x(t1,t2)
∂t1

−X1(x(t1, t2), t1, t2).
To complete the proof we must show that z is identically zero in U . But for that it will
suffice to show that z satisfies the linear ODE ∂z

∂t2
=

∑n
j=1

∂X2

∂xj
zj . For zero is a solution

of this equation and z has the initial value zero at t2 = 0 by property b) of Algorithm
F, and then by uniqueness of solutions z must be zero. From the definition of z and the
chain-rule,

∂z

∂t2
=

∂

∂t2

∂x(t1, t2)
∂t1

− ∂X1

∂t2
−

n∑
j=1

∂X1

∂xj

∂xj

∂t2

=
∂

∂t1

∂x(t1, t2)
∂t2

−

∂X1

∂t2
+

n∑
j=1

∂X1

∂xj
X2

j


=

∂

∂t1
X2(x(t1, t2), t1, t2)−

∂X1

∂t2
+

n∑
j=1

∂X1

∂xj
X2

j


=

∂X2

∂t1
+

n∑
j=1

∂X2

∂xj

∂xj

∂t1
−

∂X1

∂t2
+

n∑
j=1

∂X1

∂xj
X2

j


=

∂X2

∂t1
+

n∑
j=1

∂X2

∂xj

∂xj

∂t1
−

∂X2

∂t1
+

n∑
j=1

∂X2

∂xj
X1

j


=

n∑
j=1

∂X2

∂xj

(
∂xj

∂t1
−X1

j

)
=

n∑
j=1

∂X2

∂xj
zj

44

Math 32a Fall 2003 R. Palais

10.2 Fifth Matlab Project.

Your assignment for the fifth project is to implement Algorithm F in Matlab. This should
consist of an M-File, AlgorithmF.m, defining a Matlab function AlgorithmF(X1,X2,...),
together with various auxilliary M-Files that implement certain subroutines required by
the algorithm. (As usual, it is a matter of programming taste to what extent you use
subfunctions as opposed to functions defined in separate M-Files.)

Let’s consider in more detail just what the inputs and output to AlgorithmF should be.
First, the output should represent the function x(t1, t2) that solves the IVP (∗). But since
we are going to get this solution by solving some ODEs numerically (using Runge-Kutta),
in Matlab the output x will be a two-dimensional array x(i,j) of vectors of length n, To be
specific, we take the domain U of x to be a rectangle a1 ≤ t1 ≤ b1 and a2 ≤ t2 ≤ b2, and
we will use (a1,a2) for the point (t01, t

0
2) where the initial condition x(t01, t

0
2) = x0 is given.

So far then we see that the first line of our M-File will look something like:

function x = AlgorithmF(X1,X2,x0,a1,a2,b1,b2,...)

We still have to specify the size of the output array x. This is given by two positive integers,
T1Res and T2Res that give the number of subintervals into which we divide the intervals
[a1,b1] and [a2,b2]. Let’s define h1 := (b1 - a1)/T1Res and h2 := (b2 - a2)/T2Res. We
take T1Res + 1 subdivision points in [a1,b1], a1 + i * h1, i = 0,1, ..., T1Res, and similarly
we take T2Res + 1 subdivision points [a2,b2], a2 + j * h2, j = 0,1, ..., T2Res, It will
be convenient to store these in arrays T1 and T2 of length T1Res + 1 and T2Res + 1
respectively. That is, T1(i) = a1 + i * h1 and T2(i) = a2 + i * h2. Then the array x(i,j)
will have size T1Res + 1 by T2Res + 1. Namely, we will store at x(i,j) the value of the
solution x(t1, t2) of (∗) at the point (T1(i),T2(j)), or more exactly the approximate value
found by our implementation of AlgorithmF in which we solve the ODEs approximately
using Runge-Kutta. So now the first line of our M-File has become:

function x = AlgorithmF(X1,X2,x0,a1,a2,b1,b2,T1Res,T2Res,...)

There is still one more input parameter needed, namely a real number StepSize that
determines the accuracy of the Runge-Kutta algorithm. Strictly speaking StepSize is not
the actual size of the steps used in the Runge-Kutta integration, but an upper bound for
it. When we propagate the solution of an ODE y(t) from a value t = t0 where we already
know it to a next value t = t0 + h where we need it, we will divide h in a number N of
equal steps to make h/N less than StepSize and use that many steps in our Runge-Kutta
method. (Since we will usually settle for accuracy of about 10−8 and Runge-Kutta is
fourth order, in practice we usually take StepSize approximately 0.01). So finally the first
line of our M-File has become:

function x = AlgorithmF(X1,X2,x0,a1,a2,b1,b2,T1Res,T2Res,StepSize)

The first two input parameters X1 and X2 represent the vector fields defining the system
of PDE we are dealing with. Each is a function of n + 2 variables, x1, x2,...,xn,t1,t2, In
practice the actual functions substituted for these parameters will be taken from functions
defined either in an M-File or an inline expression.

45

Math 32a Fall 2003 R. Palais

Once you understand the above discussion well you should find writing the actual code for
AlgorithmF to be straightforward. We start by assigning to x(0,0) the value x0, Then, for
i = 0 to T1Res, we inductively find x(i+1,0) from x(i,0) by using Runge-Kutta to solve
the ODE ∂x

∂t1 = X1(x, t1, a2) on the interval [T1(i),T1(i+1)] with initial value x(i,0) at
time t1 = T1(i). Then, in a similar manner, for each i from 0 to T1Res, and each j from
0 to T2Res, we inductively find x(i,j+1) from x(i,j) by applying Runge-Kutta to solve the
ODE ∂x

∂t2 =X2(x,T1(i),t2) on the interval [T2(j),T2(j+1)] with initial value x(i,j) at time
t2 = T2(j).

After the solution array x is constructed, it should be displayed either in wireframe (using
meshgrid) or in patch mode (using surf).

Here is an “extra credit” addition to project 5. Write an M-File that defines a function
that checks whether the two vector fields X1 and X2 are compatible. I suggest that you
do this by checking numerically whether the two sides of the n compatibility conditions
are equal at the points (T1(i),T2(j)). Here, to allow for roundoff errors, “equal” should
mean that the absolute value of the difference is less than some tolerance. Use centered
differences to compute the partial derivatives. See if you can make your test of equality
“scale invariant”. This means that if it succeeds or fails for X1 and X2, it should do the
same if you multiply both X1 and X2 by the same scalar.

46

