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Lecture 11
Differentiable Parametric Curves

11.1 Definitions and Examples.

11.1.1 Definition. A differentiable parametric curve in Rn of class Ck (k ≥ 1) is a Ck

map t 7→ α(t) = (α1(t), . . . , αn(t)) of some interval I (called the domain of α) into Rn.
We call α regular if its velocity vector, α′(t), is non-zero for all t in I. The image of the
mapping α is often referred to as the trace of the curve α.

Some Conventions To avoid endless repetition, in all that follows we will assume that α is
a regular, differentiable parametric curve in Rn of class Ck (k ≥ 2), and we will abbreviate
this by referring to α as a “parametric curve”, or just as a “curve”. Frequently we will
take the domain I of α to be the closed interval [a, b]. In case n = 2 we will often write
α(t) = (x(t), y(t)) and similarly when n = 3 we will often write α(t) = (x(t), y(t), z(t)).

11.1—Example 1. A Straight Line. Let x0, v0 ∈ Rn with v0 6= 0. Then α(t) = x0 + tv0

is a straight line in Rn with constant velocity v0. The domain is all of R.

11.1—Example 2. Let r > 0, n = 2, take I = [0, 2π] and define α(t) = (r cos(t), r sin(t)).
The trace of α is the set of (x, y) satisfying x2 + y2 = r2, so α is a parameterization of the
circle of radius r centered at the origin.

11.1—Example 3. Let r, b > 0, n = 3, I = R, and define α(t) = (r cos(t), r sin(t), bt).
The trace of α is a helix of radius r and pitch 2π

b .

11.2 Reparametrizaion by Arclength.
Suppose φ : [c, d] → R is Ck and φ′(t) > 0 for all t ∈ [c, d]. Then φ is monotonic and
so a one-to-one map of [c, d] onto [a, b] where a = φ(c) and b = φ(d). Moreover, by the
Inverse Function Theorem, ψ = φ−1 is Ck and ψ′(φ(t)) = 1/φ′(t). If α : [a, b] → Rn is a
parametric curve, then α̃ := α ◦ φ : [c, d] → Rn is a parametric curve with the same trace
as α. In this setting, φ is called a parameter change and α̃ is called a reparametrization
of α. Since α and α̃ have the same trace, in some naive sense at least, they represent the
same “curve”.

Of course for many purposes, the way a curve is parametric is of crucial importance—for
example, reparametrizing a solution of an ODE will nearly always result in a non-solution.
However in geometric considerations it is natural to concentrate on the trace and regard
two parametric curves that differ by a change of parameterization as representing the same
object. Formally speaking, differing by a change of parameterization is an equivalence
relation on the set of parametric curves, and we regard the corresponding equivalence
classes as being the primary objects of study in differential geometry. This raises a problem.
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Whenever we define some property of parametric curves, then we should check that it is
independent of the choice of parameterization. As we shall now see, there is an elegant way
to avoid this complication. Namely, among all the parameterizations of a parametric curve
α there is one that is the“most natural” choice, namely parameterization by arclength, and
in our theoretical study of curves and their properties we will usually pefer this one over
others and define properties of a curve using this parameterization.

Recall that in elementary Calculus, if α : [a, b] → Rn is a parametric curve, then its length
L is defined as L :=

∫ b

a
‖α′(t)‖ dt. More generally, the arclength along α is the function

s : [a, b] → [0, L] defined by s(t) =
∫ t

a
‖α′(τ)‖ dτ . Since s′(t) = ‖α′(t)‖ > 0, as remarked

above it has a Ck inverse t : [0, L] → [a, b], and α̃ : [0, L] → Rn defined by α̃(s) = α(t(s)) is
a reparameterization of α called its parameterization by arclength. Note that by definition,
the length of α̃ between 0 and s is s, so the name is well-chosen.

. 11.2—Exercise 1. Show that a parametric curve α is parametrized by arclength if
and only if ‖α′(t)‖ is identically equal to 1.

11.2.1 Remark. From now on we will usually assume that α is parametrized by its
arclength. It is traditional to signify this by using s as the variable name when dealing
with such paths.

Notation If α(s) is a curve parametrized by arclength, then we will denote its unit tangent
vector at s by −→t (s) := α′(s).

11.2.2 Remark. In R2 there is an important orthogonal transformation that we shall
denote by Rπ

2
. It is defined by Rπ

2
(x, y) = (y,−x), and geometrically speaking it rotates

any vector v through 90 degrees into a vector orthogonal to v. If α is a curve in R2

parametrized by arclength, then we define its normal at s by −→n (s) = Rπ
2

−→
t (s).

11.2.3 Remark. In Rn for n > 2, there is no natural way to assign a normal to a curve
at every point that works in complete generality. To convince yourself of this, just think
of the case of a straight line in R3—there is a whole circle of directions at each point that
are normal to the line, and no way to prefer any one of them. However, at a point where
α′′(s) 6= 0, we define the unit normal −→n (s) to α at s by −→n (s) := α′′(s)

‖α′′(s)‖ . (Recall that
since ‖α′(s)‖ is identically equal to one, it follows that its derivative α′′(s) is orthogonal
to α′(s).)

. 11.2—Exercise 2. Show that when the straight line α(t) = x0 +tv0 is reparametrized
by arclength the result is α̃(s) = x0 + su where u = v0

‖v0‖

. 11.2—Exercise 3. Consider the circle of radius r, α(t) = (r cos(t), r sin(t)), with
I = [0, 2π]. Show that s(t) = rt, so that t(s) = s/r, and deduce that reparameterization
by arclength gives α̃(s) = (r cos(s/r), r sin(sr)), and −→

t (s) = (− sin(s/r), cos(s/r)).

What is the Curvature of a Curve?

How should we define the “curvature” of a curve? For a plane curve, α(s) = (x(s), y(s))
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there is a natural and intuitive definition—namely the rate at which its unit tangent
vector α′(s) = (x′(s), y′(s)) is “turning”. Now since α′(s) is a unit vector, we can write it
as α′(s) = (cos(θ(s)), sin(θ(s))) where θ(s) is the angle α′(s) makes with the x-axis. Thus
we can define the curvature k(s) of α at s as θ′(s)—the rate of change of this angle with
respect to arclength. Notice that α′′(s) = θ′(s)(− sin((θ(s)), cos((θ(s))) = k(s)Rπ

2

−→
t (s) =

k(s)−→n (s), so we make the following definition:

11.2.4 Definition. If α is a curve in R2 that is parametrized by arclength, then its
curvature at α(s) is defined to be the scalar k(s) such that α′′(s) = k(s)−→n (s).

Note that in the plane, R2, the curvature k(s) can be either positive or negative. Its
absolute value is of course given by |k(s)| = ‖α′′(s)‖.

11.2.5 Definition. If α is a curve in Rn, n > 2 that is parametrized by arclength, then
its curvature at α(s) is defined to be k(s) := ‖α′′(s)‖.

. 11.2—Exercise 4. Show that if α(t) = (x(t), y(t)) is a plane parametrized curve that
is not necessarily parametrized by arclength, then its curvature at α(t) is given by the
following formula. Hint: θ = tan−1(y′/x′).

x′(t)y′′(t)− y′(t)x′′(t)(
x′(t)2 + y′(t)2

) 3
2

.

11.2.6 Remark. Recall that when n > 2 at points where k(s) := ‖α′′(s)‖ > 0 the normal
−→n (s) was defined by by −→n (s) := α′′(s)

‖α′′(s)‖ , so the equality α′′(s) = k(s)−→n (s) holds in this
case too. But note the subtle difference; for a plane curve the curvature can be positive or
negative, while in higher dimensions it is (by definition) always positive.

. 11.2—Exercise 5. Show that a straight line has curvature zero, and that a circle of
radius r has constant curvature 1/r.

. 11.2—Exercise 6. Show that straight lines are the only curves with zero curvature,
but show that curves with positive constant curvature are not necessarily circles. (Hint:
Show that a helix has constant curvature.) However, in R2, show that a curve of constant
positive curvature k must be a circle of radius 1/k.

Osculating Circles and Evolutes

At any point α(s) of a plane curve α there are clearly circles of any radius that are tangent
to α at this point. In fact, just move out a distance r from α(s) along the normal −→n (s)
and construct the circle with radius r centered at that point. However there is one special
tangent circle that is “more tangent” than the others, in the sense that it has “second order
contact” with α. This is the so-called osculating circle at α(s) and is the circle having
the same curvature as α at this point, namely k(s). Recalling that a circle of radius r
has curvature 1/r, we see that the radius of the osculating circle is 1/k(s), and its center,
called the center of curvature of α at α(s) is clearly the point c(s) := α(s)− (1/k(s))−→n (s).
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As the point α(s) varies over the curve α, the corresponding centers of curvature trace out
a curve called the evolute of the original curve α.

11.3 The Fundamental Theorem of Plane Curves

Recall that Euc(Rn) denotes the Euclidean group of Rn, i.e., all the distance preserving
maps of Rn to itself. We have seen that every element of Euc(Rn) can be written as the
composition of a translation and an orthogonal transformation.

11.3.1 Definition. Two parametric curves α1 and α2 in Rn are called congruent if there
is an element g ∈ Euc(n) such that α2 = g ◦ α1.

11.3.2 Proposition. The curvature function of a parametrized curve is invariant under
congruence. That is, if two parametrized curves in Rn are congruent, then their curvature
functions are identical.

. 11.3—Exercise 1. Prove this Proposition.

It is a remarkable fact that for plane curves the converse is true, so remarkable that it
goes by the name The Fundamental Theorem of Plane Curves. The Fundamental Theo-
rem actually says more—any continuous function k(s) is the curvature function for some
parametrized plane curve, and this curve is uniquely determined up to congruence. In fact,
we will get an explicit formula below for the curve in terms of k.

11.3.3 Proposition. Let k : [0, L] → R be continuous and let α(s) = (x(t), y(t)) be a
parametrized plane curve that is parametrized by arclength. A neccessary and sufficient
condition for α to have k as its curvature function is that θ, x, y be a solution on [0, L] of
the following system of first order ODE:

dθ

ds
= k(s),

dx

ds
= cos(θ),

dy

ds
= sin(θ).

. 11.3—Exercise 2. Prove this Proposition.

The first ODE of the above system integrates immediately to give θ(σ) = θ0 +
∫ σ

0
k(τ) dτ .

If we now substitute this into each of the remaining equations and integrate again we
obtain the following important corollary.

11.3.4 Corollary. If k : [0, L] → R is a continuous function, then the set of plane
curves α(s) = (x(s), y(s)) that are parametrized by arclength and have k as their curvature
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function are just those of the form:

x(s) := x0 +
∫ s

0

cos
(
θ0 +

∫ σ

0

k(τ) dτ
)
,

y(s) := y0 +
∫ s

0

sin
(
θ0 +

∫ σ

0

k(τ) dτ
)
.

. 11.3—Exercise 3. Use this corollary to rederive the fact that straight lines and circles
are the only plane curves with constant curvature.

11.3.5 Remark. Note the geometric meaning of the constants of integration x0, y0 and
θ0. The initial point α(0) of the curve α is (x0, y0),while θ0 is the angle that the initial
tangent direction α′(0) makes with the x-axis. If in particular we take all three constants
to be zero and call the resulting curve α0, then we get the general solution from α0 by first
rotating by θ0 and then translating by (x0, y0). This proves:

11.3.6 Fundamental Theorem of Plane Curves. Two plane curves are congruent
if and only if they have the same curvature function. Moreover any continuous function
k : [0, L] → R can be realized as the curvature function of a plane curve.

Why the Fancy Name?

“Fundamental Theorem” sounds rather imposing— what’s the big deal? Well, if you
think about it, we have made remarkable progress in our understanding of curve theory
in the past few pages—progress that actually required many years of hard work—and
that progress is summed up in the Fundamental Theorem. There are two major insights
involved in this progress. The first is that, from the viewpoint of geometry, we should
consider curves that differ by parameterization as “the same”, and that we can avoid the
ambiguity of description this involves by choosing parameterization by arclength. (The
lack of any analogous “canonical parameterization” for a surface will make our study
of surface thory considerably more complicated.) The second insight is that, from the
geometric viewpoiint again, congruent curves should also be regarded as “the same”, and
if we accept this then the simplest geometric description of a plane curve—one that avoids
all redundency—is just its curvature function.

11.4 Sixth Matlab Project.

The Matlab project below is concerned in part with the visualization and animation of
curves. Before getting into the details of the project, I would like to make a few general
remarks on the subject of mathematical visualization that you should keep in mind while
working on this project—or for that matter when you have any programming task that
involves visualization and animation of mathematical objects.

1) How should you choose an error tolerance?

First, an important principle concerning the handling of errors in any computer graphics
context. Books on numerical analysis tell you how to estimate errors and how to keep

51



Math 32a Fall 2003 R. Palais

them below a certain tolerance, but they cannot tell you what that tolerance should be—
that must depend on how the numbers are going to be used. Beginners often assume they
should aim for the highest accuracy their programming system can provide—for example
fourteen decimal places for Matlab. But that will often be far more than is required for
the task at hand, and as you have already seen, certain algorithms may require a very long
time to attain that accuracy. The degree of one’s patience hardly seems to be the best
way to go about choosing an error tolerance.

In fact, there is often is a more rational way to choose appropriate error bounds. For
example, in financial calculations it makes no sense to compute values with an error less
than half the smallest denomination of the monetary unit involved. And when making
physical calculations, it is useless to calculate to an accuracy much greater than can be
measured with the most precise measuring instruments available. Similarly, in carpentry
there is little point to calculating the length of a board to a tolerance less than the width
of the blade that will make the cut.

This same principle governs in mathematical visualization. My approach is to choose a
tolerance that is “about half a pixel”, since any higher accuracy won’t be visible anyway.
It is usually fairly easy to estimate the size of a pixel. There are roughly 100 pixels per
inch, so for example if you are are graphing in a six inch square window, and the axes go
from minus one to one, then six hundred pixels equals two length units, so half a pixel
accuracy means a tolerance of 1

600 or roughly 0.002.

1) How should you represent a curve?

Mathematically a curve in Rn is given by a map of an interval [a, b] into Rn. We can only
represent the curve on a computer screen when n = 2 or n = 3. Let’s consider the case of
plane curves (n = 2) first. If α(t) = (x(t), y(t)) then for any N we can divide the interval
[a, b] into N equal subintervals of length h = b−a

N , namely [tk, tk+1], where tk = a + kh
and k = 0, . . . , N(−1. We associate to α and N an approximating “N -gon” αN (i.e., a
polygon with N sides) with vertices vk := (x(tk), y(tk)). It is some αN with N suitably
large) that actually gets drawn on the computer screen when we want to display α. This
reduces the actual drawing problem to that of drawing a straight line segment, and the
latter is of course built into every computer system at a very low level.

In Matlab the code for plotting the curve α, or rather the polygon α30 would be:

N = 30
h = (b-a)/N;
t = a:h:b ;
plot(x(t),y(t)), axis equal;

To plot a curve α(t) = (x(t), y(t), z(t)) in R3 is really no more difficult. In Matlab the
only change is that the last line gets replaced by:
plot3(x(t),y(t),z(t)), axis equal;

only now one has to be more careful about interpreting just what it is that one sees on the
screen in this case. The answer is that one again is seeing a certain polygon in the plane,
but now it is the projection of the polygon in R3 with vertices at vk := (x(tk), y(tk), z(tk)).
(The projection can be chosen to be either an orthographic projection in some direction
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or else a perspective projection from some point.)

1) How do you create animations?

Viisualization can be a powerful tool for gaining insight into the nature of complex math-
ematical objects, and frequently those insights can be further enhanced by careful use of
animation. Remember that time is essentially another dimension, so animations allow us
to pack a lot more information onto a computer screen in a format that the human brain
can easily assimilate. The number of ways that animation can be used are far to numer-
ous to catalog here, but in addition to obvious ones, such as rotating a three dimensional
object, one should also mention ”morphing”. Mathematical objects frequently depend on
several parameters (e.g., think of the family of ellipses: x = a cos(θ), y = b sin(θ)). Mor-
phing refers to moving along a curve in the space of parameters and creating frames of an
animation as you go.

All animation techniques use the same basic technique—namely showing a succession of
“frames” on the screen in rapid succession. If the number of frames per second is fast
enough, and the change between frames is small enough, then the phenomenon of “persis-
tence of vision” creates the illusion that one is seeing a continuous process evolve. Com-
puter games have become very popular in recent years, and they depend so heavily on
high quality animation that the video hardware in personal computers has improved very
rapidly. Still, there are many different methods (and tricks) involved in creating good
animations, and rather than try to cover them here we will have some special lectures
on various animation techniques, with particular emphasis on how to implement these
techniques in Matlab.

Matlab Project # 6.

Your assignment for the sixth project is to implement the Fundamental Theorem of Plane
Curves using Matlab. That is, given a curvature function k : [0, L] → R, construct and
plot a plane curve x : [0, L] → R2 that has k as its curvature function. To make the
solution unique, take the initial point of x to be the origin and its initial tangent direction
to be the direction of the positive x-axis. You should also put in an option to plot the
evolute of the curve as well as the curve itself. Finally see if you can build an animation
that plots the osculating circle at a point that moves along the curve x. For uniformity,
name your M-File PlaneCurveFT, and let it start out:
function x = PlaneCurveFT(k,L,option)

If option is not given (i.e., nargin = 2) or if option = 0, then just plot the curve x. If
option = 1, then plot x and, after a pause, plot its evolute in red. Finally, if option =
2, then plot x and its evolute, and then animate the osculating circle (in blue) along the
curve, also drawing the radius from the center of curvature.

[To find the curve x, you first integrate k to get −→t = x′, and then integrate −→t . The
curvature, k, will be given as a Matlab function, so you can use the version of Simpson’s
Rule previously discussed for the first integration. But −→t will not be in the form of a
Matlab function that you can substitute into that version of Simpson’s Rule, so you will
need to develop a slightly modified version of Simpson’s. where the input is a matrix that
gives the values of the integrand at the nodes rather than the integrand as a function.]
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