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Lecture 13
The Fundamental Forms of a Surface

In the following we denote by F : O → R3 a parametric surface in R3, F(u, v) =
(x(u, v), y(u, v), z(u, v)). We denote partial derivatives with respect to the parameters
u and v by subscripts: Fu := ∂F

∂u and Fv := ∂F
∂u , and similarly for higher order derivative.

We recall that if p = (u0, v0) ∈ O then Fu(p) and Fv(p) is a basis for TFp, the tangent
space to F at p, the unit normal to F at p is

−→
ν (p) := Fu(p)×Fv(p)

‖Fu(p)×Fv(p)‖ and that we call the

map
−→
ν : O → S2 the Gauss map of the surface F .

13.1 Bilinear and Quadratic Forms
There are two important pieces of data associated to any surface, called its First and
Second Fundamental Forms.

The First Fundamental Form encodes the “intrinsic data” about the surface—i.e., the
information that you could discover by wandering around on the surface and making
measurements within the surface.

The Second Fundamental Form on the other hand encodes the information about how the
surface is embedded into the surrounding three dimensional space—explicitly it tells how
the normal vector to the surface varies as one moves in different directions on the surface,
so you could say it tells how the surface is curved in the embedding space.

These two “fundamental forms” are invariant under congruence, and moreover, they are a
complete set of invariants for surfaces under congruence, meaning that if two surfaces have
the same first and second fundamental forms then they are congruent. This latter fact is
part of the Fundamental Theorem of Surfaces. But, it turns out that, unlike the curvature
and torsion of a curve, not every apparently possible choice of First Fundamental Form
and Second Fundamental Form for a surface can be realized by an actual surface. For this
to be the case, the two forms must satisfy certain differential identities called the Gauss-
Codazzi Equations and this fact is also part of the Fundamental Theorem of Surfaces.

Before considering the definitions of the fundamental forms on a surface, we make a short
detour back into linear algebra to consider the general notions of bilinear and quadratic
forms on a vector space.

13.1.1 Definition. Let V be a real vector space. A real-valued function B : V ×V → R is
called a bilinear form on V if it is linear in each variable separately when the other variable
is held fixed. The bilinear form B is called symmetric ( respectively skew-symmetric) if
B(v1, v2) = B(v2, v1) (respectively B(v1, v2) = −B(v2, v1)) for all v1, v2 ∈ V .

. 13.1—Exercise 1. Show that every bilinear form on a vector space can be decomposed
uniquely into the sum of a symmetric and a skew-symmetric bilinear form.
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13.1.2 Definition. A real-valued function Q on a vector space V is called a quadratic
form if it can be written in the form Q(v) = B(v, v) for some symmetric bilinear form B
on V . (We say that Q is determined by B. )

. 13.1—Exercise 2. (Polarization Again.) Show that if Q is a quadratic form on V
then the bilinear form B on V such that Q(v) = B(v, v) is uniquely determined by the
identity B(v1, v2) = 1

2 (Q(v1 + v2)−Q(v1)−Q(v2)).

Notation. Because of this bijective correspondence between quadratic forms and bilinear
forms, it will be convenient to use the same symbol to denote them both. That is, if Q
is a quadratic form then we shall also write Q for the bilinear form that determines it, so
that Q(v) = Q(v, v).

13.1.3 Remark. Suppose that V is an inner-product space. Then the inner product is
a bilinear form on V and the quadratic form it determines is of course Q(v) = ‖v‖2. More
generally, if A : V → V is any linear operator on V , then BA(v1, v2) = 〈Av1, v2〉 is a
bilinear form on V and BA is symmetric (respectively, skew-symmetric) if and only if A is
self-adjoint (respectively, skew-adjoint).

. 13.1—Exercise 3. Show that any bilinear form on a finite dimensional inner-product
space is of the form BA for a unique choice of self-adjoint operator A on V , and hence
any quadratic form on an inner-product space is of the form QA(v) = 〈Av, v〉 for a unique
choice of self-adjoint operator A on V .

13.1.4 Remark. If B is a bilinear form on a vector space V and if v1, . . . , vn is a basis for
V then the bij = B(vi, vj) are called the matrix of coefficients of the form B in this basis.
Clearly, if u =

∑
i uivi and w =

∑
i wivi, than B(u, w) =

∑
ij bijuiwj . The bilinear form

B is symmetric if and only if the matrix bij is symmetric, and in that case the quadratic
form Q determined by B is Q(u) =

∑
ij bijuiuj .

13.1.5 Remark. Suppose that T : V → V is a self-adjoint operator on an inner-product
space V , and that v1, . . . , vn is a basis for V . What is the relation between the matrix
bij = 〈Tvi, vj〉 of the symmetric bilinear form BT defined by T , and the matrix A of T in
the basis v1, . . . , vn? Your first guess may be that these two matrices are equal, however
life is not quite that simple.

13.1.6 Proposition. Let T : V → V be a self-adjoint operator on an inner-producr
space V . If b = (bij) is the matrix of coefficients of the bilinear form BT determined
by T and A is the matrix of T , both with respect to the same basis v1, . . . , vn for V ,
then A = g−1b, where g is the matrix of inner-products gij = 〈vi, vj〉, i.e., the matrix of
coefficients of the bilinear form given by the inner-product.

PROOF. By the definition of A, Tvi =
∑n

i=1 Akivk, hence bij = 〈
∑n

i=1 Akivk, vj〉 =
Akigkj , i.e., b = Atg, where At is the transpose of A, Hence At = bg−1, and since b and g
are symmetric, A = (bg−1)t = g−1b.
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13.2 Quadratic Forms on a Surface

13.2.1 Definition. If F : O → R3 is a parametric surface in R3, then a quadratic form
on F , Q, we mean a function p 7→ Qp that assigns to each p in O a quadratic form Qp on
the tangent space TFp of F at p.

13.2.2 Remark. Making use of the bases Fu(p),Fv(p) in the TFp, a quadratic form Q
on F is described by the symmetric 2 × 2 matrix of real-valued functions Qij : O → R
defined by Qij(p) := Q(Fxi(p),Fxj (p)), (where x1 = u and x2 = v). These three functions
Q11, Q12, and Q22 on O determine the quadratic form Q on F uniquely: if w ∈ TFp,
then w = ξFu(p) + ηFv, and Qp(w) = Q11(p) ξ2 + 2Q12(p) ξ η + Q22(p) η2. We call the
Qij the coefficients of the quadratic form Q, and we say that Q is of class Ck if its three
coefficients are Ck. Note that we can choose any three functions Qij and use the above
formula for Qp(w) to define a unique quadratic form Q on F with these Qij as coefficients.
This means that we can identify quadratic forms on a surface with ordered triples
of real-valued functions on its domain.

Notation. Because of the preceding remark, it is convenient to have a simple way of
referring to the quadratic form Q on a surface having the three coefficients A,B,C. There
is a classical and standard notation for this, namely:

Q = A(u, v) du2 + 2B(u, v) du dv + C(u, v) dv2.

. 13.2—Exercise 1. To see the reason for this notation—and better understand its
meaning—consider a curve in O given parametrically by t 7→ (u(t), v(t)), and the corre-
sponding image curve α(t) := F(u(t), v(t)) on F . Show that

Q(α′(t)) = A(u(t), v(t))
(

du

dt

)2

+ B(u(t), v(t))
(

du

dt

) (
dv

dt

)
+ C(u(t), v(t))

(
dv

dt

)2

.

The point is that curves on F are nearly always given in the form t 7→ F(u(t), v(t)), so a
knowledge of the coefficients A,B,C as functions ot u, v is just what is needed in order to
compute the values of the form on tangent vectors to such a curve from the parametric
functions u(t) and v(t). As a first application we shall now develop a formula for the length
of the curve α.

Definition of the First Fundamental Form of a Surface F
Since TFp is a linear subspace of R3 it becomes an inner-product space by using the
restriction of the inner product on R3. Then the First Fundamental Form on F , denoted
by IF , is defined by IFp (w) := ‖w‖2, and its coefficients are denoted by EF , FF , GF . When
there is no chance of ambiguity we will omit the superscript from IF and its coefficients.
Thus:

IF = EF (u, v) du2 + 2FF (u, v) du dv + GF (u, v) dv2,

where the functions EF , FF , and GF are defined by:

EF := Fu · Fu = x2
u + y2

u + z2
u,

FF := Fu · Fv = xuxv + yuyv + zuzv,

GF := Fv · Fv = x2
v + y2

v + z2
v .
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The Length of a Curve on a Surface

Let t 7→ (u(t), v(t)) be a parametric curve in O with domain [a, b]. By the above exercise,
the length, L, of the curve α : t 7→ F(u(t), v(t)) is:

L =
∫ b

a

√
I(α′(t)) dt

=
∫ b

a

√
E(u(t), v(t))

(
du

dt

)2

+ F (u(t), v(t))
(

du

dt

) (
dv

dt

)
+ G(u(t), v(t))

(
dv

dt

)2

dt .

Alternative Notations for the First Fundamental Form.
The First Fundamental Form of a surface is so important that there are several other
standard notational conventions for referring to it. One whose origin should be obvious is
to denote to it by ds2, and call ds =

√
ds2 the “line element” of the surface.

13.3 The Shape Operator and Second Fundamental Form
We next consider the differential Dνp of the Gauss map ν : O → S2 at a point p of O.
Strictly speaking it is a linear map of R2 → R3, but as we shall now see it has a natural
interpretation as a map of TpF to itself. As such it plays a central role in the study of the
extrinsic properties of F and is called the shape operator of F at p. Moreover, we shall
also establish the important fact that the shape operator is a self-adjoint operator on TpF
and so defines a quadratic form on F , the Second Fundamental Form of the surface.

In fact, since DFp is by definition an isomorphism of R2 onto TpF , given w ∈ TpF , we can
define Dνp(w) := ( d

dt )t=0ν(α(t)), where α is any curve of the form α(t) := F(γ(t)) with
γ(t) a curve in O with γ(0) = p such that DFp(γ′(0)) = w. Then since ν(α(t)) ∈ S2 for
all t, it follows that Dνp(w) ∈ Tν(p)S

2 = ν⊥p = TFp, completing the proof that Dνp maps
TFp to itself.

13.3.1 Definition. The linear map −Dνp : TpF → TpF is called the shape operator of
the surface F at p.

13.3.2 Remark. The reason for the minus sign will appear later. (It gives the curvatures
of the standard surfaces their correct sign.)

13.3.3 Theorem. The shape operator is self-adjoint.

. 13.3—Exercise 1. Prove this. Hint—you must show that for all w1, w2 ∈ TpF ,
〈Dνpw1, w2〉 = 〈w1, Dνpw2〉. However it suffices to to prove this for w1 and w2 taken from
some basis for TpF . (Why?) In particular you only need to show this when the wi are
taken from {Fu,Fv}. For this, take the partial derivatives of the identities 〈Fu, ν〉 = 0 and
〈Fv, ν〉 = 0 with respect to u and v (remembering that νu = Dν(Fu)), so that for example
〈Dν(Fu)),Fv〉 = 〈νu,Fv〉 = (〈ν,Fv〉)u − 〈ν,Fvu〉 = −〈ν,Fvu〉, etc.
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Definition of the Second Fundamental Form of a Surface F

We define the Second Fundamental Form of a surface F to be the quadratic form defined
by the shape operator. It is denoted by IIF , so for w ∈ TpF ,

IIFp (w) = −〈Dνp(w), w〉 .

We will denote the components of the Second Fundamental Form by LF ,MF , NF , so that

IIF = LF (u, v) du2 + 2MF (u, v) du dv + NF (u, v) dv2,

where the functions LF , MF , and NF are defined by:

LF := −Dν(Fu) · Fu = ν · Fuu,

MF := −Dν(Fu) · Fv = ν · Fuv,

NF := −Dν(Fv) · Fv = ν · Fvv.

As with the First Fundamental Form, we will usually omit the superscript F from IIF and
its components when it is otherwise clear from the context.

Matrix Notation for First and Second Fundamental Form Components
It is convenient when making computations involving the two fundamental forms to have
a more uniform matrix style notation for their components relative to the standard ba-
sis Fu,Fv for TpF . In such situations we will put t1 = u and t2 = v and write I =∑

i,j gij dti dtj and II =
∑

i,j `ij dti dtj . Thus g11 = E, g12 = g21 = F, g22 = G, and
`11 = L, `12 = `21 = M, `22 = N . The formulas giving the gij and `ij in terms of partial
derivatives of F are more uniform with this notation (and hence easier to compute with):
gij = Fti

· Ftj
, and `ij = −νti

· Ftj
= ν · Ftitj

.

We will refer to the 2× 2 matrix gij as g and its inverse matrix by g−1, and we will denote
the matrix elements of the inverse matrix by gij . By Cramer’s Rule:

g−1 =
1

det(g)

(
g22 −g12

−g12 g11

)
,

i.e., g11 = g22/ det(g), g22 = g11/ det(g), and g12 = g21 = −g12/ det(g).

13.3.4 Remark. By Proposition 13.1.6, the matrix of the Shape operator in the basis
Ft1 ,Ft2 is g−1`.

. 13.3—Exercise 2. Show that ‖Fu ×Fv‖2 = det(g) = EG − F 2, so that the unit

normal to F is ν = Fu×Fv√
EG−F 2 . Hint—recall the formula (u×v) ·(x×y) = det

(
u · x v · x
u · y v · y

)
from our quick review of the vector product.
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Geometric Interpretation of the Second Fundamental Form

Definition. Let α(s) = F(u(s), v(s)) be a regular curve on F and let n(s) denote its
unit normal, so α′′(s) = k(s) n(s), where k(s) is the curvature of α. We define the normal
curvature to α, denoted by kn(s), to be the component of α′′(s) in the direction normal to
F , i.e., the dot product of α′′(s) = k(s) n(s) with ν(α(s)), so that kn(s) = k(s) cos(θ(s)),
where θ(s) is the angle between the normal n(s) to α and the normal ν(α(s)) to F .

13.3.5 Meusnier’s Theorem. If α(s) is a regular curve on a surface F , then its normal
curvature is given by the formula kn(s) = IIF (α′(s)). In particular, if two regular curves
on F pass through the same point p and have the same tangent at p, then they have the
same normal curvature at p.

PROOF. Since α is a curve on F , α′(s) is tangent to F at α(s), so α′(s) · ν(α(s)) is
identically zero. Differentiating gives α′′(s) · ν(α(s)) + α′(s) · Dν(α′(s)) = 0, so kn(s) :=
α′′(s) · ν(α(s)) = −α′(s) ·Dν(α′(s)) = II(α′(s)).

13.3.6 Remark. Recall that the curvature of a curve measures its second order proper-
ties, so the remarkable thing about Meusnier’s Theorem is that it says, for a curve α that
lies on a surface F , kn, the normal component of the curvature of α depends only on its
first order properties (α′) and the second order properties of F (Dν). The obvious conclu-
sion is that kn measures the curvature of α that is a consequence of its being constrained
to lie in the surface.

13.3.7 Remark. If w is a unit tangent vector to F at p, then w and ν(p) determine a
plane Π through p that cuts F in a curve α(s) lying on F with α(0) = p and α′(0) = w,
This curve α is called the normal section of F in the direction by w. Since α lies in the
plane Π, α′′(0) is tangent to Π, and since it is of course orthogonal to w = α′(0), it follows
that α′′(0) must be parallel to ν(p)—i.e., the angle θ that α′′(0) makes with ν(p) is zero,
and hence by the definition of the normal curvature, kn = k cos(θ) = k, i.e., for a normal
section, the normal curvature is just the curvature, so we could equivalently define the
Second Fundamental Form of F by saying that for a unit vector w ∈ TpF , II(w) is the
curvature of the normal section at p in the direction w. (This is how I always think of II.)

. 13.3—Exercise 3. Show that the First and Second Fundamental Forms of a Surface
are invariant under congruence. That is, if g is an element of the Euclidean group Euc(R3),
then g ◦ F has the same First and Second Fundamental Forms as F .

The Principal Directions and Principal Curvatures

Since the Shape operator, −Dνp, is a self-adjoint operator on TpF , by the Spectral Theorem
there an orthonormal basis e1, e2 for TpF consisting of eigenvectors of the Shape operator.
The corresponding eigenvalues λ1, λ2 are called the principal curvatures at p, and e1 and
e2 are called principal directions at p. Recall that in general, if T : V → V is a self-adjoint
operator, then a point on the unit sphere of V where the corresponding quadratic form
〈Tv, v〉 assumes a minimum or maximum value is an eigenvector of T . Since TpF is two-
dimensional, we can define λ1 and λ2 as respectively the minimum and maximum values
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of IIp(w) on the unit sphere (a circle!) in TpF , and e1 and e2 as unit vectors where these
minimum and maximum values are assumed. We define the Gaussian Curvature K and
the Mean Curvature H at p to be respectively the determinant and trace of the Shape
operator −Dνp, so K = λ1λ2 and H = λ1 + λ2.

13.3.8 Remark. It is important to have a good formulas for K, H, and the principal
curvatures in terms of the coefficients of the first and second fundamental forms (which
themselves can easily be computed from the parametric equations for the surface). Recall-
ing from 13.3.4 that the matrix of the Shape operator in the usual basis Fu,Fv is g−1`, it
follows that:

K =
det(`)
det(g)

=
`11`22 − `212
g11g22 − g2

12

.

. 13.3—Exercise 4. Show that the Mean Curvature is given in terms of the coefficients
of the first and second fundamental forms by the formula:

H =
g22`11 − 2g12`12 + g11`22

g11g22 − g2
12

.

(Hint: The trace of an operator is the sum of the diagonal elements of its matrix with
respect to any basis.)

13.3.9 Remark. Now that we have formulas for H and K in terms of the gij and `ij ,
it is easy to get formulas for the principal curvatures λ1, λ2 in terms of H and K (and so
in terms of gij and `ij). Recall that the so-called characteristic polynomial of the Shape
operator is χ(λ) := det(−Dν−λI) = (λ−λ1)(λ−λ2) = λ2−Hλ+K, so that its roots, which
are the principal curvatures λ1, λ2 are given by λ1 = H−

√
H2−4K
2 and λ2 = H+

√
H2−4K
2 .

13.3.10 Remark. There is a special case one should keep in mind, and that is when
λ1 = λ2, i.e., when IIp is constant on the unit sphere of TpF . Such a point p is called an
umbillic point of F . While at a non-umbillic point the principal directions e1 and e2 are
uniquely determined up to sign, at an umbilic point every direction is a principal direction
and we can take for e1, e2 any orthonormal basis for the tangent space at p.

Parallel Surfaces

We define a one-parameter family of surfaces F(t) : O → R3 associated to the surface F
by F(t)(u, v) = F(u, v)− ν(u, v). Clearly F(0) = F and ‖F(t)(u, v)−F(u, v)‖ = t. Also,
DF(t)p = DFp + tDνp, and since Dνp maps TpF to itself, it follows that TpF(t) = TpF
(at least for t sufficiently small). So, for obvious reasons, we call F(t) the parallel surface
to F at distance t.

. 13.3—Exercise 5. Since TpF(t) = TpF , it follows that the First Fundamental Forms
IF(t) of the parallel surfaces can be regarded as a one-parameter family of quadratic forms
on F . Show that IIF =

(
d
dt

)
t=0

IF(t).
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13.3—Example 1. A plane is a surface F : R2 → R3 given by a map of the form
p 7→ x0 + T (p) where T : R2 → R3 is a linear map of rank two. If we call Π the image
of P (a two-dimensional linear subspace of R3), then clearly the image of F is x0 + Π,
the tangent space to F at every point is Π, and the normal vector νp is the same at every
point (one of the two unit vectors orthogonal to Π). Here are three ways to see that the
Second Fundamental Form of such a surface is zero:

a) The normal sections are all straight lines, so their curvatures vanish.

b) Since ν is constant, the parallel surfaces F(t) are obtained from F by translating it by
tν, a Euclidean motion, so all of the First Fundamental Forms IF(t) are the same, and
by the preceding exercise IIF = 0.

c) Since the Gauss Map ν : R2 → S2 is a constant, the Shape operator −Dν is zero.

13.3—Example 2. The sphere of radius r. We have already seen how to parametrize
this using longitude and co-latitude as the parameters. Also, any hemisphere can be
parametrized in the usual way as a graph. However we will not need any parmetrization
to compute the Second Fundamental Form. We use two approaches.

a) The normal sections are all great circles, so in particular they are circles of radius r, and
so have curvature 1

r . Thus the Shape operator is 1
r times the identity.

b) If F(t) is the parallel surface at distance t, then clearly F(t) = r+t
r F = (1 + t

r )F , so
IF(t) = (1 + t

r )IF , and this time the exercise gives IIF = 1
r IF .

It follows that the Gauss Curvature of the sphere is K = 1
r2 , and its mean curvature is

H = 2
r .
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