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Lecture 3
Geometry of Inner Product Spaces

3.1 Angles
Let x and y be two non-zero vectors in an inner product space. Then by the Schwartz

inequality, the ratio 〈x, y〉 / ‖x‖ ‖y‖ lies in the interval [−1, 1], so there is a unique angle
θ between 0 and π such that cos(θ) = 〈x, y〉 / ‖x‖ ‖y‖. In other words, we define θ to
make the identity 〈x, y〉 = ‖x‖ ‖y‖ cos(θ) hold. What is the geometric meaning of θ? Let’s
first consider a special case. Namely take for x the unit vector in the x direction, (1, 0),
and let y be an arbitrary vector in R2. If r = ‖y‖ and φ is the angle between x and
y (the so-called polar angle of y), then clearly y = (r cos(φ), r sin(φ)), so it follows that
〈x, y〉 = (1)(r cos(φ)) + (0)(r sin(φ)) = r cos(φ) and hence 〈x, y〉 / ‖x‖ ‖y‖ = cos(φ), so in
this case the angle θ is exactly the angle φ between x and y.

. 3.1—Exercise 1. Carry out the computation for the general case of two non-zero
vectors in the plane with lengths r1 and r2 and polar angles φ1 and φ2, so that x =
(r1 cos(φ1), r1 sin(φ1)) and y = (r2 cos(φ2), r2 sin(φ2)). Show that in this case too the ratio
〈x, y〉 / ‖x‖ ‖y‖ is the cosine of the angle (φ1−φ2) between x and y. (Hint: use the Cosine
Addition Formula: cos(A±B) = cos(A) cos(B)∓ sin(A) sin(B).)

Henceforth we will refer to θ as the angle between x and y. In particular, if 〈x, y〉 = 0,
so that θ = π/2, then we say that x and y are orthogonal .

3.2 Orthonormal Bases for an Inner Product Space
We begin by recalling the basic facts concerning linear dependence, dimension, and bases

in a vector space V . (If you prefer to be concrete, you may think of V as being Rn.) We
say that vectors v1, . . . , vn in V are linearly dependent if there are scalars α1, . . . , αn, not
all zero. such that the linear combination α1v1 + · · ·+ αnvn is the zero vector. It is easy
to see that this is equivalent to one of the vi being a linear combination of the others.
If v1, . . . , vn are not linearly dependent, than we say that they are linearly independent.
The vectors v1, . . . , vn are said to span V if every element of V can be written as a linear
combination of the vi, and if V is spanned by some finite set of vectors then we say that
V finite dimensional, and we define the dimension of V , dim(V ), to be the least number
of vectors needed to span V . A finite set of vectors v1, . . . , vn in V is called a basis for
V if it is both linearly independent and spans V . It is easy to see that this is equivalent
to demanding that every element of V is a unique linear combination of the vi. The
following is a the basic theorem tying thse concepts together.

Theorem. If V is an n-dimensional vector space, then every basis for V has exactly n
elements. Moreover, if v1, . . . , vn is any set of n elements of V , then they form a basis
for V if and only if they are linearly independent or if and only if they span V . In other
words, n elements of V are linearly independent if and only if they span V .
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In what follows, we assume that V is an inner-product space. If v ∈ V is a non-zero
vector, we define a unit vector e with the same direction as V by e := v/ ‖v‖. This is
called normalizing v, and if v already has unit length then we say that v is normalized .
We say that k vectors e1, . . . , ek in V are orthonormal if each ei is normalized and if
the ei are mutually orthogonal. Note that these conditions can be written succinctly as
〈ei, ej〉 = δi

j , where δi
j is the so-called Kronecker delta symbol and is defined to be zero if

i and j are different and 1 if they are equal.

. 3.2—Exercise 1. Show that if e1, . . . , ek are orthonormal and v is a linear combi-
nation of the ei, say v = α1v1 + · · · + αkvk, then the αi are uniquely determined by
the formulas αi = 〈v, ei〉. Deduce from this that orthonormal vectors are automatically
linearly independent.

Orthonormal bases are also referred to as frames and as we shall see they play an
extremely important role in all things having to do with explicit computation in inner-
product spaces. Note that if e1, . . . , en is an orthonormal basis for V then every element of
V is a linear combination of the ei, so that by the exercise each v ∈ V has the expansion
v =

∑n
i=1 〈v, ei〉 ei.

3.2—Example 1. The “standard basis” for Rn, is δ1, . . . , δn, where δi = (δ1
1 , . . . , δi

n). It
is clearly orthonormal.

3.3 Orthogonal Projection
Let V be an inner product space and W a linear subspace of V . We recall that the

orthogonal complement of W , denoted by W⊥, is the set of those v in V that are orthogonal
to every w in W .

. 3.3—Exercise 1. Show that W⊥ is a linear subspace of V and that W ∩W⊥ = 0.

If v ∈ V , we will say that a vector w in W is its orthogonal projection on W if u = v−w
is in W⊥.

. 3.3—Exercise 2. Show that there can be st most one such w. (Hint: if w′ is another,
so u′ = v − u ∈ W⊥ then u− u′ = w′ − w is in both W and W⊥.)

3.3.1 Remark. Suppose ω ∈ W . Then since v−ω = (v−w)+ (w−ω) and v−w ∈ W⊥

while (w − ω) ∈ W , it follows from the Pythagorean identity that ‖v − ω‖2 = ‖v − w‖2 +
‖w − ω‖2. Thus, ‖v − ω‖ is strictly greater than ‖v − w‖ unless ω = w. In other words,
the orthogonal projection of v on w is the unique point of W that has minimum
distance from v.

We call a map P : V → W orthogonal projection of V onto W if v − Pv is in W⊥ for
all v ∈ V . By the previous exercise this mapping is uniquely determined if it exists (and
we will see below that it always does exist).

. 3.3—Exercise 3. Show that if P : V → W is orthogonal projection onto W , then P
is a linear map. Show also that if v ∈ W , then Pv = v and hence P 2 = P .
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. 3.3—Exercise 4. Show that if e1, . . . , en is an orthonormal basis for W and if for
each v ∈ V we define Pv :=

∑n
i=1 〈v, ei〉 ei, then P is orthogonal projection onto W . In

particular, orthogonal projection onto W exists for any subspace W of V that has some
orthonormal basis. (Since the next section shows that any W has an orthonormal basis,
orthogonal projction on a subspace is always defined.)

3.4 The Gram-Schmidt Algorithm
There is a beautiful algorithm, called the Gram-Schmidt Procedure, for starting with

an arbitrary sequence w1, w2, . . . , wk of linearly independent vectors in an inner product
space V and manufacturing an orthonormal sequence e1, . . . , ek out of them, Moreover it
has the nice property that for all j ≤ k, the sequence e1, . . . , ej spans the same subspace
Wj of V as is spanned by w1, . . . , wj .

In case k = 1 this is easy. To say that w1 is linearly independent just means that it is
non-zero, and we take e1 to be its normalization: e1 := w1/ ‖w1‖. Surprisingly, this trivial
special case is the crucial first step in an inductive procedure.

In fact, suppose that we have constructed orthonormal vectors e1, . . . , em (where m < k)
and that they span the same subspace Wm that is spanned by w1, . . . , wm. How can we
make the next step and construct em+1 so that e1, . . . , em+1 is orthonormal and spans the
same subspace as w1, . . . , wm+1?

First note that since the e1, . . . , em are linearly independent and span Wm, they are
an orthonormal basis for Wm, and hence we can find the orthogonal projection ωm+1 of
wm+1 onto Wm using the formula ωm+1 =

∑m
i=1 〈wm+1, ei〉 ei. Recall that this means that

εm+1 = wm+1 − ωm+1 is orthogonal to Wm, and in particular to e1, . . . , em. Now εm+1

cannot be zero! Why? Because if it were then we would have wm+1 = ωm+1 ∈ Wm,
so wm+1 would be a linear combination of w1, . . . , wm, contradicting the assumption that
w1, . . . , wk were linearly independent. But then we can define em+1 to be the normaliza-
tion of εm+1, i.e., em+1 := εm+1/ ‖εm+1‖, and it follows that em+1 is also orthogonal to
e1, . . . , em, so that e1, . . . , em+1 is orthonormal. Finally, it is immediate from its definition
that em+1 is a linear combination of e1, . . . , em and wm+1 and hence of w1, . . . , wm+1,
completing the induction. Let’s write the first few steps in the Gram-Schmidt Process
explicitly.

1 e1 := w1/ ‖w1‖. % Normalize w1 to get e1.

2a ω2 := 〈w2, e1〉 e1. % Get projection ω2 of w2 on W1,

2b ε2 := w2 − ω2. % subtract ω2 from w2 to get W⊥
1 component ε2 of w2,

2c e2 := ε2/ ‖ε2‖. % and normalize it to get e2.

3a ω3 := 〈w3, e1〉 e1 + 〈w3, e2〉 e2. % Get projection ω3 of w3 on W2,

3b ε3 := w3 − ω3. % subtract ω3 from w3 to get W⊥
2 component ε3 of w3,

3c e3 := ε3/ ‖ε3‖. % and normalize it to get e3.

. . .
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If W is a k-dimensional subspace of an n-dimensional inner-product space V then we can
start with a basis for for W and extend it to a basis for V . If we now apply Gram-Schmidt
to this basis, we end up with an orthonormal basis for V with the first k elements in W
and with the remaining n− k in W⊥. This tells us several things:

• W⊥ has dimension n− k.

• V is the direct sum of W and W⊥. This just means that every element of V can be
written uniquely as the sum w + u where w ∈ W and u ∈ W⊥.

• (W⊥)⊥ = W .

• If P is the orthogonal projection of V on W and I denotes the identity map of V then
I − P is orthogonal projection of V on W⊥.

.Project 1. Implement Gram-Schmidt as a Matlab Function

In more detail, create a Matlab m-file GramSchmidt.m in which you define a Matlab
function GramSchmidt(M) taking as input a rectangular matrix M of real numbers of
arbitrary size m × n, and assuming that the m rows of M are linearly independent, it
should transform M into another m × n matrix in which the rows are orthonormal, and
moreover such that the subspace spanned by the first k rows of the output matrix is the
same as the space spanned by the first k rows of the input matrix. Clearly, in writting
your algorithm, you will need to know the number of rows, m and the number of columns
n of M. You can find these out using the Matlab size function. In fact, size(M) returns
(m,n) while size(M,1) returns m and size(M,2) returns n. Your algorithm will have to do
some sort of loop, iterating over each row in order. Be sure to test your function on a
number of different matrices of various sizes. What happens to your function if you give
it as input a matrix with linearly dependent rows. (Ideally it should report this fact and
not just return garbage!)
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