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Lecture 4
Linear Maps And The Euclidean Group.

I assume that you have seen the basic facts concerning linear transformations and ma-
trices in earlier courses. However we will review these facts here to establish a common
notation. In all the following we assume that the vector spaces in question have finite
dimension.

4.1 Linear Maps and Matrices
Let V and W be two vector spaces. A function T mapping V into W is called a linear

map if T (αv1+βv2) = αT (v1)+βT (v2) for all scalars α, β and all v1, v2 ∈ V . We make the
space L(V,W ) of all linear maps of V into W into a vector space by defining the addition
and scalar multiplication laws to be “pointwise”. i.e., if S, T ∈ L(V,W ), then for any
v ∈ V we define (αT + βS)(v) := αT (v) + βS(v)

4.1.1 Remark. If v1, . . . , vn is any basis for V and ω1, . . . , ωn are arbitrary elements of
W , then there is a unique T ∈ L(V,W ) such that T (vi) = ωi. For if v ∈ V , then v has
a unique expansion of the form v =

∑n
i=1 αivi, and then we can define T by T (v) :=∑n

i=1 αiωi, and it is easily seen that this T is linear, and that it is the unique linear
transformation with the required properties.

In particular, if w1, . . . , wm is a basis for W , then for 1 ≤ i ≤ n and 1 ≤ j ≤ m we define
Eij to be the unique element of L(V,W ) that maps vi to wj and maps all the other vk to
the zero element of W .

4.1.2 Definition. Suppose T : V → W is a linear map, and that as above we have a
basis v1, . . . , vn for V and a basis w1, . . . , wm for W . For 1 ≤ j ≤ n, the element Tvj of
W has a unique expansion as a linear combination of the wi, T (vj) =

∑m
j=1 Tijwi. These

mn scalars Tij are called the matrix elements of T relative to the two bases vi and wj .

4.1.3 Remark. It does not make sense to speak of the matrix of a linear map until bases
are specified for the domain and range. However, if T is a linear map from Rn to Rm,
then by its matrix we always understand its matrix relative to the standard bases for Rn

and Rm.

4.1.4 Remark. If V is a vector space then we abreviate L(V, V ) to L(V ), and we often
refer to a linear map T : V → V as a linear operator on V . To define the matrix of a linear
operator on V we only need one basis for V .

. 4.1—Exercise 1. Suppose that v ∈ V has the expansion v =
∑n

j=1 αjvj , and that
Tv ∈ W has the expansion Tv =

∑m
i=1 βiwi. Show that we can compute the components

βi of Tv from the components αj of v and the matrix for T relative to the two bases, using
the formula βi =

∑n
j=1 Tijαj .
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Caution! Distinguish carefully between the two formulas: T (vj) =
∑m

j=1 Tijwi and βi =∑n
j=1 Tijαj . The first is essentially the definition of the matrix Tij while the second is the

formula for computing the components of Tv relative to the given basis for W from the
components of v relative to the given basis for V .

. 4.1—Exercise 2. Show that T =
∑n

i=1

∑m
j=1 TijEij , and deduce that Eij is a basis

for L(V,W ), so in particular, L(V,W ) has dimension nm, the product of the dimensions
of V and W .

4.2 Isomorphisms and Automorphisms
If V and W are vector spaces, then a linear map T : V → W is called an isomorphism

of V with W if it is bijective (i.e., one-to-one and onto), and we say that V and W are
isomorphic if there exists an isomorphism of V with W . An isomorphism of V with itself is
called an automorphism of V , and we denote the set of all automorphisms of V by GL(V ).
(GL(V ) is usually referred to as the general linear group of V —check that it is a group.)

. 4.2—Exercise 1. If T : V → W is a linear map and v1, . . . .vn is a basis for V then
show that T is an isomorphism if and only if Tv1, . . . , T vn is a basis for W . Deduce
that two finite-dimensional vector spaces are isomorphic if and only if they have the same
dimension.

There are two important linear subspaces associated to a linear map T : V → W . The
first, called the kernel of T and denoted by ker(T ), is the subspace of V consisting of all
v ∈ V such that T (v) = 0, and the second, called the image of T , and denoted by im(T ),
is the subspace of W consisting of all w ∈ W of the form Tv for some v ∈ V .

Notice that if v1 and v2 are in V , then T (v1) = T (v2) if and only if T (v1 − v2) = 0, i.e.,
if and only if v1 and v2 differ by an element of ker(T ). Thus T is one-to-one if and only if
ker(T ) contains only the zero vector.

Proposition. A necessary and sufficient condition for T : V → W to be an isomorphism
of V with im(T ) is for ker(T ) to be the zero subspace of V .

Theorem. If V and W are finite dimensional vector spaces and T : V → W is a linear
map, then dim(ker(T )) + dim(im(T )) = dim(V ).

PROOF. Choose a basis v1, . . . , vk for ker(T ) and extend it to a basis v1, . . . , vn for all
of V . It will suffice to show that T (vk+1), . . . , T (vn) is a basis for im(T ). We leave this as
an (easy) exercise.

Corollary. If V and W have the same dimension then a linear map T : V → W is an
isomorphism of V with W if it is either one-to-one or onto.

Recall that if V is an inner product space and v1, v2 ∈ V , then we define the distance
between v1 and v2 as ρ(v1, v2) := ‖v1 − v2‖. This makes any inner-product space into a
metric space. A mapping f : V → W between inner-product spaces is called an isometry
if it is distance preserving, i.e., if for all v1, v2 ∈ V , ‖f(v1)− f(v2)‖ = ‖v1 − v2‖.
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4.2.1 Definition. If V is an inner product space then we define the Euclidean group of
V , denoted by Euc(V ), to be the set of all isometries f : V → V . We define the orthogonal
group of V , denoted by O(V ) to be the set of f ∈ Euc(V ) such that f(0) = 0.

4.2.2 Remark. We will justify calling Euc(V ) a group shortly. It is clear that Euc(V )
is closed under composition, and that elements of Euc(V ) are one-to-one, but at this point
it is not clear that an element f of Euc(V ) maps onto all of V , so f might not have an
inverse in Euc(V ). A similar remark holds for O(V ).

Proposition. If f ∈ O(V ) then f preserves inner-products, i.e., if v1, v2 ∈ V then
〈fv1, fv2〉 = 〈v1, v2〉.

PROOF. Clearly f preserves norms, since ‖f(v)‖ = ‖f(v)− f(0)‖ = ‖v − 0‖ = ‖v‖, and
we also know that, ‖f(v1)− f(v2)‖2 = ‖v1 − v2‖2. Then 〈fv1, fv2〉 = 〈v1, v2〉 now follows
easily from the polarization identity in the form: 〈v, w〉 = 1

2 (‖v‖2 + ‖w‖2 − ‖v − w‖2).

Theorem. O(V ) ⊆ GL(V ), i.e., elements of O(V ) are invertible linear transformations.

PROOF. Let e1, . . . , en be an orthonormal basis for V and let εi = f(ei). By the preceding
proposition 〈εi, εj〉 = 〈ei, ej〉 = δi

j , so that the εi also form an orthonormal basis for V .
Now suppose that v1, v2 ∈ V and let αi, βi and , γi be respectively the components of
v1, v2, and v1 + v2 relative to the orthonormal basis ei, and similarly let α′

i, β
′
i and , γ′i be

the components of f(v1), f(v2), and f(v1 + v2) relative to the orthonormal basis εi. To
prove that f(v1 + v2) = f(v1) + f(v2) it will suffice to show that γ′i = α′

i + β′
i. Now we

know that γi = αi + βi, so it will suffice to show that α′
i = αi, β′

i = βi, and γ′i = γi. But
since αi = 〈v1, ei〉 while α′

i = 〈f(v1), εi〉 = 〈f(v1), f(ei)〉, α′
i = αi follows from the fact that

f preserves inner-products, and the other equalities follow likewise.. A similar argument
shows that f(αv) = αf(v). Finally, since f is linear and one-to-one, it follows that f is
invertible.

4.2.3 Remark. It is now clear that we can equivalently define O(V ) to be the set of
linear maps T : V → V that preserves inner-products.

Every a ∈ V gives rise to a map τa : V → V called translation by a, defined by, τa(v) =
v + a. The set T (V ) of all τa, a ∈ V is clearly a group since τa+b = τa ◦ τb and τ0 is the
identity. Moreover since (v1 + a)− (v2 + a) = v1 − v2, it follows that τa is an isometry, i.e.
T (V ) ⊆ Euc(V )

Theorem. Every element f of Euc(V ) can be written uniquely as an orthogonal trans-
formation O followed by a translation τa.

PROOF. Define a := f(0). Then clearly the composition τ−a ◦ f leaves the origin fixed,
so it is an element O of O(V ), and it follows that f = τa ◦O. (We leave uniqueness as an
exercise.)

Corollary. Every element f of Euc(V ) is a one-to-one map of V onto itself and its inverse
is also in V , so Euc(V ) is indeed a group of transformations of V .

PROOF. In fact we see that f−1 = O−1 ◦ τ−a.
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