## Lecture 4

## Linear Maps And The Euclidean Group.

I assume that you have seen the basic facts concerning linear transformations and matrices in earlier courses. However we will review these facts here to establish a common notation. In all the following we assume that the vector spaces in question have finite dimension.

### 4.1 Linear Maps and Matrices

Let $V$ and $W$ be two vector spaces. A function $T$ mapping $V$ into $W$ is called a linear map if $T\left(\alpha v_{1}+\beta v_{2}\right)=\alpha T\left(v_{1}\right)+\beta T\left(v_{2}\right)$ for all scalars $\alpha, \beta$ and all $v_{1}, v_{2} \in V$. We make the space $L(V, W)$ of all linear maps of $V$ into $W$ into a vector space by defining the addition and scalar multiplication laws to be "pointwise". i.e., if $S, T \in L(V, W)$, then for any $v \in V$ we define $(\alpha T+\beta S)(v):=\alpha T(v)+\beta S(v)$
4.1.1 Remark. If $v_{1}, \ldots, v_{n}$ is any basis for $V$ and $\omega_{1}, \ldots, \omega_{n}$ are arbitrary elements of $W$, then there is a unique $T \in L(V, W)$ such that $T\left(v_{i}\right)=\omega_{i}$. For if $v \in V$, then $v$ has a unique expansion of the form $v=\sum_{i=1}^{n} \alpha_{i} v_{i}$, and then we can define $T$ by $T(v):=$ $\sum_{i=1}^{n} \alpha_{i} \omega_{i}$, and it is easily seen that this $T$ is linear, and that it is the unique linear transformation with the required properties.
In particular, if $w_{1}, \ldots, w_{m}$ is a basis for $W$, then for $1 \leq i \leq n$ and $1 \leq j \leq m$ we define $E_{i j}$ to be the unique element of $L(V, W)$ that maps $v_{i}$ to $w_{j}$ and maps all the other $v_{k}$ to the zero element of $W$.
4.1.2 Definition. Suppose $T: V \rightarrow W$ is a linear map, and that as above we have a basis $v_{1}, \ldots, v_{n}$ for $V$ and a basis $w_{1}, \ldots, w_{m}$ for $W$. For $1 \leq j \leq n$, the element $T v_{j}$ of $W$ has a unique expansion as a linear combination of the $w_{i}, T\left(v_{j}\right)=\sum_{j=1}^{m} T_{i j} w_{i}$. These $m n$ scalars $T_{i j}$ are called the matrix elements of $T$ relative to the two bases $v_{i}$ and $w_{j}$.
4.1.3 Remark. It does not make sense to speak of the matrix of a linear map until bases are specified for the domain and range. However, if $T$ is a linear map from $\mathbf{R}^{n}$ to $\mathbf{R}^{m}$, then by its matrix we always understand its matrix relative to the standard bases for $\mathbf{R}^{n}$ and $\mathbf{R}^{m}$.
4.1.4 Remark. If $V$ is a vector space then we abreviate $L(V, V)$ to $L(V)$, and we often refer to a linear map $T: V \rightarrow V$ as a linear operator on $V$. To define the matrix of a linear operator on $V$ we only need one basis for $V$.
$\triangleright$ 4.1-Exercise 1. Suppose that $v \in V$ has the expansion $v=\sum_{j=1}^{n} \alpha_{j} v_{j}$, and that $T v \in W$ has the expansion $T v=\sum_{i=1}^{m} \beta_{i} w_{i}$. Show that we can compute the components $\beta_{i}$ of $T v$ from the components $\alpha_{j}$ of $v$ and the matrix for $T$ relative to the two bases, using the formula $\beta_{i}=\sum_{j=1}^{n} T_{i j} \alpha_{j}$.

Caution! Distinguish carefully between the two formulas: $T\left(v_{j}\right)=\sum_{j=1}^{m} T_{i j} w_{i}$ and $\beta_{i}=$ $\sum_{j=1}^{n} T_{i j} \alpha_{j}$. The first is essentially the definition of the matrix $T_{i j}$ while the second is the formula for computing the components of $T v$ relative to the given basis for $W$ from the components of $v$ relative to the given basis for $V$.
$\triangleright$ 4.1—Exercise 2. Show that $T=\sum_{i=1}^{n} \sum_{j=1}^{m} T_{i j} E_{i j}$, and deduce that $E_{i j}$ is a basis for $L(V, W)$, so in particular, $L(V, W)$ has dimension $n m$, the product of the dimensions of $V$ and $W$.

### 4.2 Isomorphisms and Automorphisms

If $V$ and $W$ are vector spaces, then a linear map $T: V \rightarrow W$ is called an isomorphism of $V$ with $W$ if it is bijective (i.e., one-to-one and onto), and we say that $V$ and $W$ are isomorphic if there exists an isomorphism of $V$ with $W$. An isomorphism of $V$ with itself is called an automorphism of $V$, and we denote the set of all automorphisms of $V$ by $\boldsymbol{G} \boldsymbol{L}(V)$. $(\boldsymbol{G} \boldsymbol{L}(V)$ is usually referred to as the general linear group of $V$-check that it is a group.)
$\triangleright 4.2$-Exercise 1. If $T: V \rightarrow W$ is a linear map and $v_{1}, \ldots v_{n}$ is a basis for $V$ then show that $T$ is an isomorphism if and only if $T v_{1}, \ldots, T v_{n}$ is a basis for $W$. Deduce that two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.

There are two important linear subspaces associated to a linear map $T: V \rightarrow W$. The first, called the kernel of $T$ and denoted by $\operatorname{ker}(T)$, is the subspace of $V$ consisting of all $v \in V$ such that $T(v)=0$, and the second, called the image of $T$, and denoted by $\operatorname{im}(T)$, is the subspace of $W$ consisting of all $w \in W$ of the form $T v$ for some $v \in V$.

Notice that if $v_{1}$ and $v_{2}$ are in $V$, then $T\left(v_{1}\right)=T\left(v_{2}\right)$ if and only if $T\left(v_{1}-v_{2}\right)=0$, i.e., if and only if $v_{1}$ and $v_{2}$ differ by an element of $\operatorname{ker}(T)$. Thus $T$ is one-to-one if and only if $\operatorname{ker}(T)$ contains only the zero vector.

Proposition. A necessary and sufficient condition for $T: V \rightarrow W$ to be an isomorphism of $V$ with $\operatorname{im}(T)$ is for $\operatorname{ker}(T)$ to be the zero subspace of $V$.

Theorem. If $V$ and $W$ are finite dimensional vector spaces and $T: V \rightarrow W$ is a linear map, then $\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{im}(T))=\operatorname{dim}(V)$.

PROOF. Choose a basis $v_{1}, \ldots, v_{k}$ for $\operatorname{ker}(T)$ and extend it to a basis $v_{1}, \ldots, v_{n}$ for all of $V$. It will suffice to show that $T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)$ is a basis for $\operatorname{im}(T)$. We leave this as an (easy) exercise.

Corollary. If $V$ and $W$ have the same dimension then a linear map $T: V \rightarrow W$ is an isomorphism of $V$ with $W$ if it is either one-to-one or onto.

Recall that if $V$ is an inner product space and $v_{1}, v_{2} \in V$, then we define the distance between $v_{1}$ and $v_{2}$ as $\rho\left(v_{1}, v_{2}\right):=\left\|v_{1}-v_{2}\right\|$. This makes any inner-product space into a metric space. A mapping $f: V \rightarrow W$ between inner-product spaces is called an isometry if it is distance preserving, i.e., if for all $v_{1}, v_{2} \in V,\left\|f\left(v_{1}\right)-f\left(v_{2}\right)\right\|=\left\|v_{1}-v_{2}\right\|$.
4.2.1 Definition. If $V$ is an inner product space then we define the Euclidean group of $V$, denoted by $\boldsymbol{\operatorname { E u c }}(V)$, to be the set of all isometries $f: V \rightarrow V$. We define the orthogonal group of $V$, denoted by $\boldsymbol{O}(V)$ to be the set of $f \in \boldsymbol{E u c}(V)$ such that $f(0)=0$.
4.2.2 Remark. We will justify calling $\boldsymbol{E u c}(V)$ a group shortly. It is clear that $\boldsymbol{E u c}(V)$ is closed under composition, and that elements of $\boldsymbol{E u c}(V)$ are one-to-one, but at this point it is not clear that an element $f$ of $\boldsymbol{E u c}(V)$ maps onto all of $V$, so $f$ might not have an inverse in $\boldsymbol{E u c}(V)$. A similar remark holds for $\boldsymbol{O}(V)$.

Proposition. If $f \in \boldsymbol{O}(V)$ then $f$ preserves inner-products, i.e., if $v_{1}, v_{2} \in V$ then $\left\langle f v_{1}, f v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$.

PROOF. Clearly $f$ preserves norms, since $\|f(v)\|=\|f(v)-f(0)\|=\|v-0\|=\|v\|$, and we also know that, $\left\|f\left(v_{1}\right)-f\left(v_{2}\right)\right\|^{2}=\left\|v_{1}-v_{2}\right\|^{2}$. Then $\left\langle f v_{1}, f v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$ now follows easily from the polarization identity in the form: $\langle v, w\rangle=\frac{1}{2}\left(\|v\|^{2}+\|w\|^{2}-\|v-w\|^{2}\right)$.

Theorem. $\boldsymbol{O}(V) \subseteq \boldsymbol{G} \boldsymbol{L}(V)$, i.e., elements of $\boldsymbol{O}(V)$ are invertible linear transformations.
PROOF. Let $e_{1}, \ldots, e_{n}$ be an orthonormal basis for $V$ and let $\epsilon_{i}=f\left(e_{i}\right)$. By the preceding proposition $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle=\left\langle e_{i}, e_{j}\right\rangle=\delta_{j}^{i}$, so that the $\epsilon_{i}$ also form an orthonormal basis for $V$. Now suppose that $v_{1}, v_{2} \in V$ and let $\alpha_{i}, \beta_{i}$ and, $\gamma_{i}$ be respectively the components of $v_{1}, v_{2}$, and $v_{1}+v_{2}$ relative to the orthonormal basis $e_{i}$, and similarly let $\alpha_{i}^{\prime}, \beta_{i}^{\prime}$ and, $\gamma_{i}^{\prime}$ be the components of $f\left(v_{1}\right), f\left(v_{2}\right)$, and $f\left(v_{1}+v_{2}\right)$ relative to the orthonormal basis $\epsilon_{i}$. To prove that $f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)$ it will suffice to show that $\gamma_{i}^{\prime}=\alpha_{i}^{\prime}+\beta_{i}^{\prime}$. Now we know that $\gamma_{i}=\alpha_{i}+\beta_{i}$, so it will suffice to show that $\alpha_{i}^{\prime}=\alpha_{i}, \beta_{i}^{\prime}=\beta_{i}$, and $\gamma_{i}^{\prime}=\gamma_{i}$. But since $\alpha_{i}=\left\langle v_{1}, e_{i}\right\rangle$ while $\alpha_{i}^{\prime}=\left\langle f\left(v_{1}\right), \epsilon_{i}\right\rangle=\left\langle f\left(v_{1}\right), f\left(e_{i}\right)\right\rangle, \alpha_{i}^{\prime}=\alpha_{i}$ follows from the fact that $f$ preserves inner-products, and the other equalities follow likewise.. A similar argument shows that $f(\alpha v)=\alpha f(v)$. Finally, since $f$ is linear and one-to-one, it follows that $f$ is invertible.
4.2.3 Remark. It is now clear that we can equivalently define $\boldsymbol{O}(V)$ to be the set of linear maps $T: V \rightarrow V$ that preserves inner-products.

Every $a \in V$ gives rise to a map $\tau_{a}: V \rightarrow V$ called translation by $a$, defined by, $\tau_{a}(v)=$ $v+a$. The set $\mathcal{T}(V)$ of all $\tau_{a}, a \in V$ is clearly a group since $\tau_{a+b}=\tau_{a} \circ \tau_{b}$ and $\tau_{0}$ is the identity. Moreover since $\left(v_{1}+a\right)-\left(v_{2}+a\right)=v_{1}-v_{2}$, it follows that $\tau_{a}$ is an isometry, i.e. $\mathcal{T}(V) \subseteq \boldsymbol{E u c}(V)$

Theorem. Every element $f$ of $\boldsymbol{E u c}(V)$ can be written uniquely as an orthogonal transformation $O$ followed by a translation $\tau_{a}$.
PROOF. Define $a:=f(0)$. Then clearly the composition $\tau_{-a} \circ f$ leaves the origin fixed, so it is an element $O$ of $\boldsymbol{O}(V)$, and it follows that $f=\tau_{a} \circ O$. (We leave uniqueness as an exercise.)

Corollary. Every element $f$ of $\boldsymbol{E u c}(V)$ is a one-to-one map of $V$ onto itself and its inverse is also in $V$, so $\boldsymbol{E u c}(V)$ is indeed a group of transformations of $V$.
PROOF. In fact we see that $f^{-1}=O^{-1} \circ \tau_{-a}$.

