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Lecture 4
Linear Maps And The Euclidean Group.

I assume that you have seen the basic facts concerning linear transformations and ma-
trices in earlier courses. However we will review these facts here to establish a common
notation. In all the following we assume that the vector spaces in question have finite
dimension.

4.1 Linear Maps and Matrices

Let V and W be two vector spaces. A function 7" mapping V into W is called a linear
map if T(avy + Bvg) = oT (v1) + BT (ve) for all scalars «, 8 and all v, vo € V. We make the
space L(V, W) of all linear maps of V' into W into a vector space by defining the addition
and scalar multiplication laws to be “pointwise”. i.e., if S,T € L(V,W), then for any
v € V we define (T + (5)(v) := aT'(v) + 5S(v)

4.1.1 Remark. If vq,...,v, is any basis for V and ws,...,w, are arbitrary elements of
W, then there is a unique 7" € L(V, W) such that T'(v;) = w;. For if v € V, then v has
a unique expansion of the form v = > " | a;v;, and then we can define T' by T'(v) :=
Z?’:l a;w;, and it is easily seen that this 7' is linear, and that it is the unique linear
transformation with the required properties.

In particular, if wq,...,w,, is a basis for W, then for 1 <i <n and 1 < j < m we define
E;; to be the unique element of L(V, W) that maps v; to w; and maps all the other vy to
the zero element of W.

4.1.2 Definition. Suppose T': V — W is a linear map, and that as above we have a
basis v1,...,v, for V and a basis wy,...,w,, for W. For 1 < j < n, the element Tv; of
W has a unique expansion as a linear combination of the w;, T'(v;) = Y 7", Tijw;. These
mn scalars T;; are called the matriz elements of T relative to the two bases v; and w;.

4.1.3 Remark. It does not make sense to speak of the matrix of a linear map until bases
are specified for the domain and range. However, if T is a linear map from R" to R™,
then by its matrix we always understand its matrix relative to the standard bases for R"
and R™.

4.1.4 Remark. If V is a vector space then we abreviate L(V, V') to L(V'), and we often
refer to a linear map 7' : V' — V as a linear operator on V. To define the matrix of a linear
operator on V we only need one basis for V.

> 4.1—Exercise 1. Suppose that v € V' has the expansion v = 2?21 a;v;, and that

Tv € W has the expansion Tv = 221 Biw;. Show that we can compute the components
B; of T'v from the components «; of v and the matrix for 7" relative to the two bases, using
the formula 3; = Z?:1 T;jc.

11



Math 32a Fall 2003 R. Palais

Caution! Distinguish carefully between the two formulas: T'(v;) = Z;n:1 T;;w; and B; =
2?21 Tijo5. The first is essentially the definition of the matrix 7;; while the second is the
formula for computing the components of Tw relative to the given basis for W from the
components of v relative to the given basis for V.

> 4.1—Exercise 2. Show that 7 =>"" | ZTZl T;;E;;, and deduce that E;; is a basis
for L(V, W), so in particular, L(V, W) has dimension nm, the product of the dimensions
of V and W.

4.2 Isomorphisms and Automorphisms

If V and W are vector spaces, then a linear map T : V — W is called an isomorphism
of V with W if it is bijective (i.e., one-to-one and onto), and we say that V and W are
isomorphic if there exists an isomorphism of V' with W. An isomorphism of V' with itself is
called an automorphism of V, and we denote the set of all automorphisms of V' by GL(V').
(GL(V) is usually referred to as the general linear group of V—check that it is a group.)

> 4.2—Exercise 1. If T': V — W is a linear map and vq,....v, is a basis for V' then
show that 7' is an isomorphism if and only if Twy,...,Tv, is a basis for W. Deduce
that two finite-dimensional vector spaces are isomorphic if and only if they have the same
dimension.

There are two important linear subspaces associated to a linear map 17" : V — W. The
first, called the kernel of T' and denoted by ker(T'), is the subspace of V' consisting of all
v € V such that T'(v) = 0, and the second, called the image of T, and denoted by im(T),
is the subspace of W consisting of all w € W of the form Tv for some v € V.

Notice that if v; and v are in V', then T'(v1) = T'(v2) if and only if T'(vy — v2) =0, i.e.,
if and only if v; and ve differ by an element of ker(7"). Thus T is one-to-one if and only if
ker(T") contains only the zero vector.

Proposition. A necessary and sufficient condition for T : V. — W to be an isomorphism
of V- with im(T") is for ker(T") to be the zero subspace of V.

Theorem. IfV and W are finite dimensional vector spaces and T : V — W is a linear
map, then dim(ker(7)) + dim(im(7")) = dim(V).

PROOEF. Choose a basis vy,..., v for ker(T) and extend it to a basis vy,...,v, for all
of V. It will suffice to show that T'(vi41),...,T(vy,) is a basis for im(7"). We leave this as
an (easy) exercise.

Corollary. If V and W have the same dimension then a linear map T : V — W is an
isomorphism of V' with W if it is either one-to-one or onto.

Recall that if V' is an inner product space and vy,vs € V, then we define the distance
between vy and vy as p(vy,ve) := |[vy — vz||. This makes any inner-product space into a
metric space. A mapping f : V — W between inner-product spaces is called an isometry
if it is distance preserving, i.e., if for all v1,vy € V, || f(v1) — f(v2)] = |Jv1 — v2]|-
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4.2.1 Definition. If V is an inner product space then we define the Fuclidean group of
V', denoted by Euc(V), to be the set of all isometries f : V' — V. We define the orthogonal
group of V', denoted by O(V) to be the set of f € Fuc(V) such that f(0) = 0.

4.2.2 Remark. We will justify calling Euc(V') a group shortly. It is clear that Euc(V)
is closed under composition, and that elements of Euc(V') are one-to-one, but at this point

it is not clear that an element f of Fuc(V) maps onto all of V| so f might not have an
inverse in Fuc(V). A similar remark holds for O(V').

Proposition. If f € O(V) then f preserves inner-products, i.e., if vi,vo € V then
(fur, fo2) = (v1,02).

PROOF. Clearly f preserves norms, since || f(v)|| = || f(v) — f(0)|| = |lv — 0]] = ||v||, and
we also know that, || f(v1) — f(v2)||* = ||v1 — v2||>. Then (fvy, fva) = (v1,v2) now follows
easily from the polarization identity in the form: (v, w) = %(HUH2 + w|]® = [Jv — w|?).

Theorem. O(V) C GL(V), i.e., elements of O(V') are invertible linear transformations.

PROOF. Letey,...,e, be an orthonormal basis for V and let ¢; = f(e;). By the preceding
proposition (e;,€;) = (e, e;) = (5;-, so that the ¢; also form an orthonormal basis for V.
Now suppose that vi,ve € V and let ay;, 3; and , 7; be respectively the components of
v1,v2, and vy + vo relative to the orthonormal basis e;, and similarly let o, 8/ and , «; be
the components of f(v1), f(v2), and f(vi + v2) relative to the orthonormal basis €;. To
prove that f(vy + v2) = f(v1) + f(ve) it will suffice to show that v/ = o} + 8.. Now we
know that v; = a; + 3, so it will suffice to show that o = «a;, 8 = 0;, and v, = ;. But
since a;; = (v1, €;) while o, = (f(v1),€;) = (f(v1), f(e;)), a = a; follows from the fact that
f preserves inner-products, and the other equalities follow likewise.. A similar argument
shows that f(av) = af(v). Finally, since f is linear and one-to-one, it follows that f is
invertible. u

4.2.3 Remark. It is now clear that we can equivalently define O(V') to be the set of
linear maps 1" : V' — V that preserves inner-products.

Every a € V gives rise to a map 7, : V' — V called translation by a, defined by, 7,(v) =
v+ a. The set 7(V) of all 7,,a € V is clearly a group since 7,1, = 7, 0 7, and 79 is the
identity. Moreover since (vy + a) — (v2 + a) = v1 — v9, it follows that 7, is an isometry, i.e.
T(V)C Euc(V)

Theorem. Every element f of Euc(V) can be written uniquely as an orthogonal trans-
formation O followed by a translation 7.

PROOF. Define a := f(0). Then clearly the composition 7_, o f leaves the origin fixed,
so it is an element O of O(V'), and it follows that f = 7, 0 O. (We leave uniqueness as an
exercise.)

Corollary. Every element f of Euc(V') is a one-to-one map of V' onto itself and its inverse
is also in V', so Euc(V') is indeed a group of transformations of V.

PROOF. In fact we see that f~! = O~1o71_,.
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