
Math 32a Fall 2003 R. Palais

Lecture 6
Differential Calculus on Inner-product Spaces

In this section, we will use without proof standard facts that you should have seen in your
multi-variable calculus classes.

6.1 Review of Basic Topology.
V will denote a finite dimensional inner-product space, and e1, . . . , en some orthonormal
basis for V . We will use this basis to identify Rn with V , via the map (x1, . . . , xn) 7→
x1e1 + · · ·+ xnen, and we recall that this preserves inner-products and norms, and hence
distances between points. In particular, this means that a sequence vk = vk

1e1 + . . .+ vk
nen

of vectors in V converges to a vector v = v1e1 + . . . + vnen if an only if each of the n
component sequences vk

i of real numbers converges to the corresponding real number vi,
and also, that the sequence vk is Cauchy if and only if each component sequence of real
numbers is Cauchy. This allows us to reduce questions about convergence of sequences in
V to more standard questions about convergence in R. For example, since R is complete
( i.e., every Cauchy sequence of real numbers is convergent) it follows that V is also
complete.

Recall that a subset S of Rn is called compact if any sequence of points in S has a sub-
sequence that converges to a point of S, and the Bolzano-Weierstrass Theorem says that
S is compact if and only if it is closed and bounded. (Bounded means that {‖s‖ | s ∈ S} is
a bounded set of real numbers, and closed means that any limit of a sequence of points of
S is itself in S.) Because of the distance preserving identification of V with Rn it follows
that for subsets of V too, compact is the same as closed and bounded.

. 6.1—Exercise 1. Recall that a set O ⊆ V is called open if whenever p ∈ O there is
an ε > 0 such that ‖x− p‖ < ε implies that x ∈ O. Show that O is open in V if and only
if its complement is closed.

If S ⊆ V and f : S → W is a map of S into some other inner-product space, then f is
called continuous if whenever a sequence sk in S converges to a point s of S, it follows
that f(sk) converges to f(s). (More succinctly, limk→∞ f(sk) = f(limk→∞ sk), so one
sometimes says a map is continuous if it “commutes with taking limits”.)

. 6.1—Exercise 2. Show that if f : S → W is continuous, then if A is an open (resp.
closed) subset of W , then f−1(A) is open (resp. closed) in S. Deduce from this that S(V ),
the unit sphere of V , is a closed and hence compact subset of V .

. 6.1—Exercise 3. Show that any continuous real-valued function on a compact subset
S of V must be bounded above and in fact there is a point s of S where f assumes its
maximum value. (Hint # 1: If it were not bounded above, there would be a sequence sn

such that f(sn) > n. Hint #2: Choose a sequence sn so that f(sn) converges to the least
upper bound of the values of f .)
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6.2 Differentiable maps Between Inner-Product Spaces.
In this section, V and W are inner-product spaces.

The key concept in differential calculus is approximating a non-linear map f : V → W
near some point p, by a linear map, T , called its differential at p. To be more precise, if v
is close to zero, we should have f(p + v) = f(p) + Tv + Rp(v) where the error term Rp(v)
should be “small” in a sense we shall make precise below.

We start with the one-dimensional case. A map σ : (a, b) → V of an interval (a, b) into V
is called a curve in V , and it is said to be differentiable at the point t0 ∈ (a, b) if the limit
σ′(t0) := limh→0

σ(t+h)−σ(t0)
h exists. Note that this limit σ′(t0) is a vector in V , called the

derivative (or the tangent vector or velocity vector) of σ at t0. In this case, the differential
of σ at t0 is the linear map Dσt0 : R → V defined by Dσt0(t) = tσ′(t0), so that the error
term is Rp(t) = σ(t0 + t)− σ(t0)− tσ′(t0). Thus, not only is Rp(t) small when t is small,
but even when we divide it by t the result, σ(t0+t)−σ(t0)

t − σ′(t0), is still small and in fact
it approaches zero as t → 0. That is, we have σ(t0 + t) = σ(t0) + Dσt0(t) + |t|ρ(t) where
|ρ(t)| → 0 as t → 0. We use this to define the notion of differentiability more generally by
analogy.

6.2.1 Definition. . Let O be open in V , F : O → W a map, and p ∈ O. We say that
F is differentiable at p if there exists a linear map T : V → W such that for v near 0 in
V , F (p + v) = F (p) + T (v) + ‖v‖ ρ(v) where ρ(v) := F (p+v)−F (p)−T (v)

‖v‖ → 0 as ‖v‖ → 0.
We call T the differential of F at p and denote it by DFp. If F : O → W is differentiable
at each point of O and if DF : O → L(V,W ) is continuous we say that F is continuously
differentiable (or C1) in O.

6.2.2 Definition. Assuming F : O → W is as above and is differentiable at p ∈ O, then
for v ∈ V , we call DFp(v) the directional derivative of F at p in the direction v.

. 6.2—Exercise 1. Show that DFp is well-defined, i.e., if S : V → W is a second linear
map satisfying the same property as T , then necessarily S = T . (Hint: By subtraction
one finds that for all v close to zero ‖(S−T )(v)‖

‖v‖ → 0 as ‖v‖ → 0. If one now replaces v by

tv and uses the linearity of S and T , one finds that for fixed v, ‖(S−T )(v)‖
‖v‖ → 0 as t → 0.)

Chain Rule. Let U, V,W be inner-product spaces, Ω an open set of U and O and open
set of V . Suppose that G : Ω → V is differentiable at ω ∈ Ω and that F : O → W
is differentiable at p = G(ω) ∈ O. Then F ◦ G is differentiable at ω and D(F ◦ G)ω =
DFp ◦DGω.

. 6.2—Exercise 2. Prove the Chain Rule.

. 6.2—Exercise 3. Show that if p, v ∈ V then the map σ : R → V , σ(t) = p + tv is
differentiable at all t0 ∈ R and that σ′(t0) = v for all t0 ∈ R. More generally, if w0 ∈ W
and T ∈ L(V,W ) show that F : V → W defined by F (v) := w0 + Tv is differentiable at
all v0 in V and that DFv0 = T . (So a linear map is its own differential at every point.)

Using the Chain Rule, we have a nice geometric interpretation of the directional derivative.
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. 6.2—Exercise 4. Let F : O → W be differentiable at p, let v ∈ V . Let σ : R → V be
any curve in V that is differentiable at t0 with σ(t0) = p and σ′(t0) = v. Then the curve
in W , F ◦ σ : R → W is also differentiable at t0 and its tangent vector at t0 is DFp(v),
the directional derivative of F at p in the direction v.

6.3 But Where Are All the Partial Derivatives?
Let’s try to tie this up with what you learned in multi-variable calculus. As above, let

us assume that O is open in V and that F : O → W is differentiable at p ∈ O. Let
e1, . . . , en be an orthonormal basis for V and ε1, . . . , εm be an orthonormal basis for W ,
and let p = p1e1 + · · ·+ pnen.

If x = x1e1+· · ·+xnen is in O, then its image F (x) ∈ W will have an expansion in the basis
εi, F (x) = F1(x)ε1+· · ·+Fm(x)εm. If as usual we identify x with its n-tuple of components
(x1, . . . , xn), then we have m functions of n variables, F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)
that describe the mapping F relative to the two bases ei and εj .

. 6.3—Exercise 1. Show that the partial derivatives of the Fi at (p1, . . . , pn) all exist,
and in fact, show that the ∂Fi(p1,...,pn)

∂xj
are the components of the directional derivative of

F at p in the direction ej relative to the basis εi.

. 6.3—Exercise 2. The n × m matrix ∂Fi(p1,...,pn)
∂xj

is called the Jacobian matrix of F

at p (relative to the two bases ej and εi). Show that it is the matrix of DFp relative to
these two bases, so that if v = v1e1 + · · ·+ vnen then the i-th component of the directional
derivative of F at p in the direction v is

∑n
j=1 Fijvj .

6.3.1 Remark. It is clear from these exercises that differentials and Jacobian matrices
are logically equivalent. So which should one use? For general theoretical discussions it
is usually more natural and intuitive (and easier) to reason directly about differentials of
maps. However, when it comes to a question concerning a particular map F that requires
computing some of its properties, then one often must work with its partial derivatives to
carry out the necessary computations.

The following is a standard advanced calculus result that provides a simple test for when
a map F : O → W such as above is C1.

Theorem. A necessary and sufficient condition for a map F : O → W as above to be C1

is that all its partial derivatives ∂Fi(x1,...,xn)
∂xj

are continuous functions on O.

. 6.3—Exercise 3. Consider the map F : R2 → R defined by F (x, y) = 2xy2

x2+y2 for
(x, y) 6= (0, 0) and F (0, 0) = 0. Show that the partial derivatives of F exist everywhere
and are continuous except at the origin. Show also that F is actually linear on each straight
line through the origin, but nevertheless F is not differentiable at the origin. (Hint: In
polar coordinates, F = r sin(2θ) cos(θ).)
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6.4 The Gradient of a Real-Valued Function
Let’s specialize to the case W = R, i.e., we consider a differentiable real-valued function
f : V → R (perhaps only defined on an open subset O of V ). In this case it is customary
to denote the differential of f at a point p by dfp rather than Dfp. Notice that dfp is in
the dual space V ∗ = L(V,R) of V . We recall the “meaning” of dfp, namely dfp(v) is the
directional derivative of f in the direction v, i.e., the rate of change of f along any path
through p in the direction v. So if σ(t) is a smooth curve in V with σ(0) = p and with
tangent vector σ′(0) = v at p, then dfp(v) = ( d

dt )t=0f(σ(t)).

Next recall the self-duality principle for inner-product spaces: any ` of V ∗ can be expressed
in the form `(v) = 〈v, ω〉 for a unique ω ∈ V . So in particular, for each p ∈ O, there is a
unique vector ∇fp in V such that

dfp(v) = 〈v,∇fp〉 ,
and the vector ∇fp defined by this identity is called the gradient of f at p.

A set of the form f−1(a) = {v ∈ V | f(v) = a} (where a ∈ R) is called a level set of f and
more precisely the a-level of f .

. 6.4—Exercise 1. Show that if the image of a differentiable curve σ : (a, b) → V is in
a level set of f then ∇fσ(t) is orthogonal to σ′(t). (Hint: The derivative of f(σ(t)) is zero.)

A point p where df (or ∇f) vanishes is called a critical point of f . So for example any
local maximum or local minimum of f is a critical point.

. 6.4—Exercise 2. If p is not a critical point of f then show that ∇fp

‖∇fp‖ is the unit
vector in the direction in which f is increasing most rapidly. (Hint: Use the Schwartz
inequality.)

. 6.4—Exercise 3. Suppose that σ : (a, b) → V and γ : (a, b) → V are differentiable
curves. Show that d

dt 〈σ(t), γ(t)〉 = 〈σ′(t), γ(t)〉+〈σ(t), γ′(t)〉, and in particular d
dt ‖σ(t)‖2 =

2 〈σ(t), σ′(t)〉. Deduce that if σ : (a, b) → V has its image in the unit sphere S(V ) then
σ(t) and σ′(t) are orthogonal.

. 6.4—Exercise 4. For p ∈ S(V ), define TpS(V ), the tangent space to S(V ) at p, to be
all v ∈ V of the form σ′(t0) where σ(t) is a differentiable curve in S(V ) having σ(t0) = p.
By the previous exercise, p is orthogonal to everything in TpS(V ). Show that conversely
any v orthogonal to p is in TpS(V ), so the tangent space to S(V ) at p is exactly the
orthogonal complement of p. (Hint: Define σ(t) := cos(‖v‖ t)p+sin(‖v‖ t) v

‖v‖ . Check that
σ(0) = p, σ′(t) = v, and that σ(t) ∈ S(V ) for all t.

. 6.4—Exercise 5. Let T be a self-adjoint operator on V and define f : V → R by
f(v) := 1

2 〈Tv, v〉. Show that f is differentiable and that ∇fv = Tv.

Proof of Spectral Lemma. We must find a p in S(V ) that is an eigenvector of the
self-adjoint operator T : V → V . By Exercise 4 we must show that ∇fp is a multiple of p.
But by Exercise 4, the scalar multiples of p are just those vectors orthogonal to TpS(V ),
so it will suffice to find p witht ∇fp orthogonal to TpS(V ). If we choose p a point of S(V )
where f assumes its maximum value on S(V ), that is automatic.
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