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Part I

The General Theory of
Initial Value Problems
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What we are going to study in this course can be
looked at as a generalization of the following interest-
ing and important question:

Suppose that we know the wind velocity at every
point of space and at each moment of time.

Suppose also that at a particular moment t0 we see a
tiny puff of smoke pass by, with its center located at
a point x0.

Can we then predict the position x(t) of the smoke at
times t close to t0?
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We will see that in the present case it leads us to what
is called an initial value problem (IVP) for a time-
dependent ordinary differential equation (ODE).
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Space and Time

In our model, we will represent “time” by R.

It is natural to represent “space” by R3, but noth-
ing essential changes if we generalize to the case that
space is Rk, for some positive integer k, or even by
an arbitrary finite dimensional real vector space V .

Moreover—as we shall soon see—this extra general-
ity proves very useful, so in what follows we iden-
tify space with a finite dimensional orthogonal vector
space V , that you may think of R3 if that helps your
intuition.

Later, we will also consider cases where V is an in-
finite dimensional vector space and we will see that
this will lead us to consider initial value problems for
partial differential equations (PDE).)
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Now the wind velocity at a point x of V at time t is
a vector in V that we will denote by f(x, t).

A function f : V ×R → V is called a time-dependent
vector field on V , so saying that we know the wind
velocity at all points of space and all instants of time
just amounts to saying that we are given such a func-
tion f .

(We will always assume that f is at least continuous,
but to prove theorems we will actually assume more
than that.)
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The Path x(t) of the “Puff of Smoke”

We select a smoke particle that at time t0 (which we
will call the initial time) is located at the center of
the puff of smoke, and we identify the position x(t)
of this particle at time t with the position of the puff
at time t.

We will assume that the position x(t) is defined for
all times t sufficiently close to t0, so we can think of
t 7→ x(t) as a function defined in some open interval
I ⊆ R containing t0 and having values in V .

Note that by definition, x(t0) = x0, and we will call
x0 the initial position.
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Going With the Flow—the ODE

The characteristic property of a smoke particle is that
it “goes with the flow”, i.e., its velocity at any time t
is the same as the wind velocity at its position, x(t),
at time t.

Now the velocity of the smoke particle (at time t) is
just the tangent vector to its path x(t) at this time—
namely x′(t).

This means that the path x(t) satisfies the relation
x′(t) = f(x(t), t) !

Such a relation is called a time-dependent ordinary
differential equation.
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Initial Value Problems

Definition. Let V be a finite dimensional real vector
space and let f : V × R → V be a time-dependent
vector field on V . Given an initial time t0 ∈ R and
an initial position x0 in V , we associate a so-called
Initial Value Problem (IVP)
dx
dt = f(x, t) (The ODE)

x(t0) = x0 (The Initial Condition)

and we define a solution to this IVP to be any dif-
ferentiable path x : I → V defined in some inter-
val I containing t0 and satisfying x(t0) = x0 and
x′(t) = f(x(t), t) for all t ∈ I.
Our original problem can be paraphrased in terms of
this model as: Can we always solve such an IVP?
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Questions Concerning the IVP

Here are a few of the interesting questions associated
to the IVP that we will consider.

• Given an interval I containing t0, when can we be
sure there exists a solution of the IVP defined in I?

• If a solution does exist in I, is it necessarily unique?

•What can we say about the dependence of a solution
on the initial time and initial position.

• Assuming that a solution does exist, can we find
efficient algorithms for actually computing it numer-
ically with any desired accuracy?

• What are good methods for visualizing solutions in
low dimensions.

Show examples using 3DXM:1D2ndOrder Forced Oscillator and UserDefined, higher dimensional examples.
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We associate to a time-dependent vector field f on
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follows: if x : J → V is continuous, F (x) : J → V is
defined by:

F (x)(t) := x0 +
∫ t
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f(x(s), s) ds.

Proposition. A mapping x : J → V solves the IVP
dx
dt = f(x, t), x(t0) = x0 if and only if x is a fixed point

of F , i.e., if and only if x(t) = x0 +
∫ t

t0
f(x(s), s) ds.

Proof. Trivial.
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Successive Approximations

Suppose that X is a metric space and F is a con-
tinuous map of X to itself. The “Method of Succes-
sive Approximations” is a technique for locating fixed
points of F . It works as follows. Define Fn : X → X
by composing F with itself n times. If x is any ele-
ment of X we call the sequence {Fn(x)} the sequence
of successive approximations defined by x.

Proposition. If a sequence of successive approxima-
tions {Fn(x)} converges to a limit p, then p is a fixed
point of F .

Proof. Since F is continuous, F (p) = F (limFn(x)) =
limFn+1(x) = p.
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Solving IVPs by Successive Approximations

As above, let f : V × R → V be a time-dependent
vector field, J a closed, bounded interval, and define
F : C(J, V ) → C(J, V ) by:

F (x)(t) := x0 +
∫ t

t0
f(x(s), s) ds.

Let’s try to use Sucessive Approximations to solve
IVPs for a couple of special classes of vector fields, f .
Perhaps the simplest kind of time-dependent vector
fields is one that is constant in space, i.e., of the form
f(x, t) = φ(t), In this case the mapping F is clearly
the constant map with value Φ ∈ C(J, V ) defined by
Φ(t) = x0 +

∫ t

t0
φ(s) ds, i.e., the antiderivative of φ.

This is clearly a fixed point of F and also the solution
of the IVP, and we see that Successive approximations
works in this case.
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Linear ODE

Let us denote by L(V ) the vector space of linear
maps of V to itself. Any T ∈ L(V ), defines a time-
independent vector field: f(x, t) = Tx.

Recall how the exponential of T is defined using a
power series, namely

∑∞
k=0

1
k!T

k. The series is clearly
absolutely convergent and so defines an element exp(T )
in L(V ).

By absolute convergence, we can differentiate the series
for exp(tT ) termwise, and we see that d

dt exp(tT ) =
T exp(tT ).

It follows that the solution of the IVP for the vector
field f with initial data t0, x0 is exp((t− t0)T )x0.
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Linear ODE by Successive Approximation

Let’s try to solve the linear ODE dx
dt = Tx with the

initial condition x(t0) = x0 by successive approxima-
tion, choosing as the initial approximation the costant
curve x1(t) = x0 for all t in J .
The next approximation is:
x2(t) := x0 +

∫ t

t0
T (x1(s)) ds = (I + (t− t0)T )(x0),

and an easy induction shows that the n+1-st succes-
sive approximation is:
xn+1(t) := x0+

∫ t

t0
T (xn(s)) ds = (

∑n
k=0

(t−t0)
k

k! T k)(x0).
Since this converges to exp((t − t0)T )(x0), the solu-
tion of the IVP, we see that the method of successive
approximations solves the IVP for the case of linear
ODE also.
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Locally Lipschitz Vector Fields

There is a simple answer to the existence question for
an IVP. It turns out that just as long as the time-
dependent vector field f is continuous, a solution will
always exist on some interval containing t0.

However to get a satisfactory theory for the IVP, a
somewhat more stringent condition than just conti-
nuity is required.

Definition. A time-dependent vector field on V ,
f : V × R → V is called locally Lipschitz if for
each (x0, t0) ∈ V ×R there exists a K > 0 such that
‖f(x1, t)− f(x2, t)‖ < K ‖x1 − x2‖ for all x1 and x2

sufficiently close to x0 and all t sufficiently close to t0.



Existence and Uniqueness Theorem
for Locally Lipschitz Vector Fields

Theorem. Let V be a finite dimensional orthogo-
nal vector space and let f : V × R → V be a time-
dependent locally Lipschitz vector field in V . Given
any T ∈ R and P ∈ V there exist positive real num-
bers δ and ε such that if |T−t0| < δ and ‖P − x0‖ < δ
then the IVP:
dx
dt = f(x, t)
x(t0) = x0

has a unique solution xx0,t0(t) on the interval
I = (t0 − ε, t0 + ε). Moreover, this solution is con-
tiuously diferrerentiable in t and is Lipschitz in the
initial data x0 and t0.

We will sketch the proof below after a few remarks.
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Let V and W be orthogonal vector spaces, U a convex
open set in V , f : U → W a C1 map, and Dfp, the
differential of f at p ∈ U .

If p, q ∈ U and σ(t) = p + t(q − p) is the line joining
them, the so-called “finite difference formula” says:
f(q)−f(p) =

∫ 1

0
Dfσ(t)(q−p) dt, and it follows that:

‖f(q)− f(p)‖ ≤ (
∫ 1

0

∥∥Dfσ(t)

∥∥ dt) ‖(q − p)‖,

Consequently, the supremum of ‖Dfp‖ for p in U is a
Lipschitz constant for f . (In fact, the smallest one.)

In particular it follows that a C1 time-dependent vec-
tor field is locally Lipschitz and so satisfies the Local
Existence and Uniqueness Theorem.
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A Counter-Example

Exercise. Show that continuity of V is not sufficient
to guarantee uniqueness for an IVP.

Hint: the classic example (with n = 1) is the initial
value problem dx

dt =
√
x, and x(0) = 0.

Show that for each T > 0, we get a distinct solution
x

T
(t) of this IVP by defining x

T
(t) = 0 for t < T and

x
T
(t) = 1

4 (t− T )2 for t ≥ T .
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Contracting Maps

A mapping F of a metric space X to itself is called
a contracting map (or a contraction) if it satisfies a
Lipschitz condition with constant K < 1.

Fundamental Contraction Inequality.
If F : X → X is a contraction, and if K < 1 is a
Lipschitz constant for F , then for all x1 and x2 in X,

ρ(x1, x2) ≤
1

1−K

(
ρ(x1, F (x1)) + ρ(x2, F (x2))

)
.

Proof. Exercise.

Corollary. A contraction mapping can have at most
one fixed point.

Proof. Assuming that x1 and x2 are fixed points we
deduce immediately that ρ(x1.x2) must be zero.
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itself. If F satisfies a Lipschitz condition with con-
stant K, by an easy induction Fn satisfies a Lipschitz
condition with constant Kn, so by the Fundamental
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The Banach Contraction Principle

Let F : X → X and Fn its n-fold composition with
itself. If F satisfies a Lipschitz condition with con-
stant K, by an easy induction Fn satisfies a Lipschitz
condition with constant Kn, so by the Fundamental
Contraction Mapping Inequality, if K < 1 then

ρ(Fn(x), Fm(x)) ≤ Kn +Km

1−K

(
ρ(x, F (x))

)
.

In particular the successive approximation sequence
{Fn(x)} is a Cauchy sequence. Hence:

Banach Contraction Principle. If X is a com-
plete metric space and if F : X → X is a contraction
mapping, then F has a unique fixed point p in X and
for any x ∈ X the successive approximation sequence
{Fn(x)} converges to p.



A Stopping Rule

When do we stop iterating and accept the current ap-
proximation? Suppose an “error” of ε is acceptable,
and we start our iteration at x ∈ X. The Fundamen-
tal Inequality, with x1 = fN (x) and x2 = p gives:
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A Stopping Rule

When do we stop iterating and accept the current ap-
proximation? Suppose an “error” of ε is acceptable,
and we start our iteration at x ∈ X. The Fundamen-
tal Inequality, with x1 = fN (x) and x2 = p gives:

ρ(fN (x), p) ≤ 1
1−K ρ(f

N (x), fN (f(x)))

≤ KN

1−K ρ(x, f(x)).

To insure ρ(fN (x), p) ≤ ε, we must choose N so large
that KN

1−K ρ(x, f(x)) < ε. We can compute ρ(x, f(x))
after the first iteration and then find N by solving the
above inequality for N :

Stopping Rule. If N > log(ε)+log(1−K)−log(ρ(x,f(x)))
log(K)

then ρ(fN (x), p) < ε.



Speed of Convergence

Suppose we take ε = 10−m in our stopping rule in-
equality. What we see is that the growth of N with
m is a constant plus m/| log(K)|, or in other words,
to get one more decimal digit of precision we have
to do (roughly) 1/| log(K)| more iteration steps. So
if we need N iterative steps to get m decimal digits
of precision, then we need another N to double the
precision to 2m digits.



Existence and Uniqueness Proof

We use the “sup” norm ‖σ‖ = supt∈J ‖σ(t)‖ to make
C(J, V ) into a normed space. It is well-known that
it is complete. (This is just the theorem that a uni-
formly Cauchy sequence is uniformly convergent.)
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Existence and Uniqueness Proof

We use the “sup” norm ‖σ‖ = supt∈J ‖σ(t)‖ to make
C(J, V ) into a normed space. It is well-known that
it is complete. (This is just the theorem that a uni-
formly Cauchy sequence is uniformly convergent.)

Given ε > 0, let M be Lipschitz constant for f on the
set of (x, t) ∈ V ×R with ‖x− p‖ ≤ 2ε and |t−t0| ≤ ε,
and let B be the maximum of f(x, t) on this set.

Choose δ > 0 so that K := Mδ < 1 and Bδ < ε,
and define X to be the set of σ in C(J, V ) such that
‖σ(t)− p‖ ≤ 2ε for all |t| ≤ δ. It is easy to see that X
is closed in C(J, V ) and so a complete metric space.



Existence and Uniqueness Proof (Cont.)

The theorem will follow from the Banach Contrac-
tion Principle if we can show that for ‖v0‖ < ε,
F : C(J, V ) → C(J, V ) maps X into itself and has
K as a Lipschitz bound.

If σ ∈ X then
‖F (σ)(t)− p‖ ≤ ‖v0 − p‖+

∫ t

0
‖f(σ(s), s)‖ ds

≤ ε+ δB ≤ 2ε,
so F maps X to itself.



Existence and Uniqueness Proof (Cont.)

And if σ, τ ∈ X then

‖f(σ(t), t)− f(τ(t), t)‖ ≤M ‖σ(t)− τ(t)‖, so

‖F (σ)(t)− F (τ)(t)‖ ≤
∫ t

0

‖f(σ(s), s)−f(τ(s), s)‖ ds

≤
∫ t

0

M ‖σ(s)− τ(s)‖ ds

≤
∫ t

0

Mρ(σ, τ) ds

≤ δMρ(σ, τ) ≤ Kρ(σ, τ),

and it follows that ρ(F (σ), F (τ) ≤ Kρ(σ, τ).



Maximal Solutions of the IVP

The Existence and Uniqueness Theorem is a central
result in the theory of ODE with a great many impor-
tant consequences. We next consider one easy corol-
lary. A solution σ : J → V of the IVP is called the
maximal solution for given initial data t0 and x0 if
any other solution x : I → V with the same initial
data, is a restriction of σ to a subinterval I of J .



Maximal Solutions of the IVP

The Existence and Uniqueness Theorem is a central
result in the theory of ODE with a great many impor-
tant consequences. We next consider one easy corol-
lary. A solution σ : J → V of the IVP is called the
maximal solution for given initial data t0 and x0 if
any other solution x : I → V with the same initial
data, is a restriction of σ to a subinterval I of J .

Proposition. If f : V ×R → V is a locally Lipschitz
time-dependent vector field, then for any initial data
t0 and x0, the maximal solution of the IVP exists.



Maximal Solutions of the IVP

The Existence and Uniqueness Theorem is a central
result in the theory of ODE with a great many impor-
tant consequences. We next consider one easy corol-
lary. A solution σ : J → V of the IVP is called the
maximal solution for given initial data t0 and x0 if
any other solution x : I → V with the same initial
data, is a restriction of σ to a subinterval I of J .

Proposition. If f : V ×R → V is a locally Lipschitz
time-dependent vector field, then for any initial data
t0 and x0, the maximal solution of the IVP exists.

Proof. Exercise. Hint:If x1 : I1 → V and x2 : I2 → V
are solutions of the IVP with the same initial data,
show that the set of t ∈ R with x1(t) = x2(t) is a
non-empty open and closed subset of I1 ∩ I2.



Maximal Solutions (Cont.)

Exercise. Show that if σ : (a, b) → V is a maximal
solution of an IVP, then either b = ∞ or ‖σ(t)‖ → ∞
as t → b. Similarly, either a = −∞ or ‖σ(t)‖ → ∞
as t → a. Hint: If b < ∞ and ‖σ(t)‖ 6→ ∞ as t → b,
there is a sequence {tn} converging to b with{σ(tn)}
converging to p ∈ V . Use the Existence and Unique-
ness Theorem with t0 = b and x0 = p to show that
the solution σ could be extended to (a, b + ε) with
ε > 0, contradicting maximality of σ.



Maximal Solutions (Cont.)

Exercise. Show that if σ : (a, b) → V is a maximal
solution of an IVP, then either b = ∞ or ‖σ(t)‖ → ∞
as t → b. Similarly, either a = −∞ or ‖σ(t)‖ → ∞
as t → a. Hint: If b < ∞ and ‖σ(t)‖ 6→ ∞ as t → b,
there is a sequence {tn} converging to b with{σ(tn)}
converging to p ∈ V . Use the Existence and Unique-
ness Theorem with t0 = b and x0 = p to show that
the solution σ could be extended to (a, b + ε) with
ε > 0, contradicting maximality of σ.

Exercise. Suppose the vector field f is bounded, or
more generally satisfies

∫∞
1

dr
B(r) = ∞ where B(r) =

sup‖x‖<r ‖f(x, t)‖. Show that each maximal solution
is defined on all of R. Hint: How long does it take a
solution to get outside a ball of radius R?



Global Existence vs. Finite Time Blowup

If for a particular initial condition the maximal solu-
tion is defined on the entire real line then we say we
have global existence for that initial condition, other-
wise we say that there is finite-time blowup.



Global Existence vs. Finite Time Blowup

If for a particular initial condition the maximal solu-
tion is defined on the entire real line then we say we
have global existence for that initial condition, other-
wise we say that there is finite-time blowup.

Exercise. On R, consider the time-independent ODE
dx
dt = x2 with the initial condition x(0) = x0. Show
that in this case the maximal solution is x(t) = x0

1−x0t

with the interval of definition is (−∞, 1
x0

) if x0 > 0
and ( 1

x 0
,∞) if x0 < 0—in other words we have finite-

time blowup at time T = 1
x0

.



Autonomous vs. Non-Autonomous ODE

A time-independent vector field f on V is also called
autonomous. An obvious and characteristic prop-
erty of autonomous ODEs dx

dt = f(x) is that if x(t)
is a solution defined on (a, b) then x(t + c) is a so-
lution defined on (a − c, b − c). In particular, if the
maximal solution for the initial condition x(0) = p
is σp : (a, b) → V then the maximal solution for the
initial condition x(t0) = p is just σp(t − t0), defined
on (a+ t0, b+ t0).



Autonomous vs. Non-Autonomous ODE

A time-independent vector field f on V is also called
autonomous. An obvious and characteristic prop-
erty of autonomous ODEs dx

dt = f(x) is that if x(t)
is a solution defined on (a, b) then x(t + c) is a so-
lution defined on (a − c, b − c). In particular, if the
maximal solution for the initial condition x(0) = p
is σp : (a, b) → V then the maximal solution for the
initial condition x(t0) = p is just σp(t − t0), defined
on (a+ t0, b+ t0).

Exercise. We call f complete if σp has domain
R for all p ∈ V . In this case we define the map
φt : V → V for each t ∈ R by φt(p) = σp(t). Show
that t 7→ φt is a homomorphism of R into the group
of diffeomorphisms of V (i.e., φt1+t2 = φt1 ◦ φt2).



Reduction Theorems

We remarked earlier that even if one is interested only
in solving the IVP for time-dependent vector fields
in R3, there are still good reasons to consider the
problem in more general vector spaces.
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Reduction Theorems

We remarked earlier that even if one is interested only
in solving the IVP for time-dependent vector fields
in R3, there are still good reasons to consider the
problem in more general vector spaces.

We illustrate this by showing how to:

1) reduce an IVP for a non-autonomous vector field
in V to an IVP for a time-independent vector field in
V ×R, and

2) reduce an IVP for higher order ODE in V to an
IVP for a vector field in a product of copies of V .

The proofs will be left as exercises.
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As we have seen, autonomous ODE have a number
of simplifying features, and this makes the following
reduction quite useful.



Time-Dependent → Time-Independent

As we have seen, autonomous ODE have a number
of simplifying features, and this makes the following
reduction quite useful.

Exercise. Let f : V ×R → V be a time-dependent
vector field in V , and define an associated time inde-
pendent vector field f̃ in V×R by f̃(x, z) = (f(x, z), 1).
Show that y(t) = (x(t), z(t)) is a solution of the dif-
ferential equation dy

dt = f̃(y) if and only if z(t) = t+ c

and x(t) is a solution of dx
dt = f(x, t + c). Deduce

that if y(t) = (x(t), z(t)) solves the IVP dy
dt = f̃(y),

y(t0) = (x0, t0), then x(t) is a solution of the IVP
dx
dt = f(x, t), x(t0) = x0.



Second Order → First Order

A curve x(t) in V is a solution of the second ODE
d2x
dt2 = f(x, dx

dt , t) in V if x′′(t) = f(x(t), x′(t), t). (Here
of course f is a map V × V ×R → V .)
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Second Order → First Order

A curve x(t) in V is a solution of the second ODE
d2x
dt2 = f(x, dx

dt , t) in V if x′′(t) = f(x(t), x′(t), t). (Here
of course f is a map V × V ×R → V .)

Define an associated time-dependent vector field f̃ on
V ×V by f̃(x, v, t) = (v, f(x, v, t))—so the associated
first order ODE in V × V is dx

dt = v, dv
dt = f(x, v, t).

Exercise. Define the IVP for for the above sec-
ond order ODE, and analyze the relation of this IVP
and the IVP for the time-dependent vector field f̃ on
V × V . Use this to formulate and prove an Existence
and Uniqueness Theorem for second order ODE. Now,
generalize this to m-th order ODE in V



Gronwall’s Inequality.

The following estimate plays a very important role in
ODE theory.

Gronwall’s Inequality. Let u : [0, T ) → [0,∞) be
a continuous, non-negative, real-valued function and
assume that u(t) ≤ U(t) := C +K

∫ t

0
u(s) ds for cer-

tain constants C ≥ 0 and K > 0. Then u(t) ≤ CeKt.



Gronwall’s Inequality.

The following estimate plays a very important role in
ODE theory.

Gronwall’s Inequality. Let u : [0, T ) → [0,∞) be
a continuous, non-negative, real-valued function and
assume that u(t) ≤ U(t) := C +K

∫ t

0
u(s) ds for cer-

tain constants C ≥ 0 and K > 0. Then u(t) ≤ CeKt.

Exercise. Prove Gronwall’s Inequality. Hint: Since
u ≤ U , it is enough to show that U(t) ≤ CeKt, or
equivalently that e−KtU(t) ≤ C, and since U(0) = C,
it will suffice to show that e−KtU(t) is non-increasing,
i.e., that (e−KtU(t))′ ≤ 0. But, since (e−KtU(t))′ =
e−Kt(U ′(t) −KU) and U ′ = Ku, this just says that
Ke−Kt(u− U) ≤ 0.



Continuity w.r.t Initial Conditions.

Theorem. If f is a C1 vector field on V and σp(t)
the maximal solution curve of dx

dt = f(x) with initial
condition p, then as q tends to p, σq(t) approaches
σp(t), uniformly for t in a bounded interval I.



Continuity w.r.t Initial Conditions.

Theorem. If f is a C1 vector field on V and σp(t)
the maximal solution curve of dx

dt = f(x) with initial
condition p, then as q tends to p, σq(t) approaches
σp(t), uniformly for t in a bounded interval I.

Proof. Since σp(t) = p+
∫ t

0
f(σp(s), s) ds,

‖σp(t)− σq(t)‖ ≤
‖p− q‖+

∫ t

0
‖f(σp(s), s)− f(σq(s), s)‖ ds.

But on any bounded set (so on some neighborhood of
σp(I)× I), f satisfies a Lipschitz condition:
‖f(x, t)− f(y, t)‖ ≤ K ‖x− y‖, so ‖σp(t)− σq(t)‖ ≤
‖p− q‖+K

∫ t

t0
‖σp(s)− σq(s)‖ ds, and by Gronwall’s

Inequality, ‖σp(t)− σq(t)‖ ≤ ‖p− q‖ eKt.



The IVP for Inhomogeneous Linear ODE

For a linear ODE dx
dt = Ax with initial condition

x(t0) = x0 we saw that the solution is exp((t−t0)A)x0.
If g : R → V is a smooth function, then we can add it
to the right hand side of the ODE, getting a so-called
inhomogeneous linear ODE, and it turns out that the
IVP for such equations can be solved in a fairly ex-
plicit form by a formula that for historical reasons is
called “The Variation of Parameters Formula”.



The IVP for Inhomogeneous Linear ODE

For a linear ODE dx
dt = Ax with initial condition

x(t0) = x0 we saw that the solution is exp((t−t0)A)x0.
If g : R → V is a smooth function, then we can add it
to the right hand side of the ODE, getting a so-called
inhomogeneous linear ODE, and it turns out that the
IVP for such equations can be solved in a fairly ex-
plicit form by a formula that for historical reasons is
called “The Variation of Parameters Formula”.

Exercise. Show (by direct verification) that the so-
lution of the IVP for the inhomogeneous linear differ-
ential equation dx

dt = Ax+ g(t) with initial condition
x(0) = x0 is given by:

x(t) = exp(tA)x0 +
∫ t

0

exp((t− s)A)g(s) ds.



Existence of a Periodic Orbit

Exercise. Assume that the linear operator A is what
is called “asymptotically stable”—namely that all of
its eigenvalues have negative real part—and also that
the forcing term g(t) is periodic with period T > 0.
Show that there is a point p ∈ V for which the solu-
tion x(t) with initial value x(0) = p is periodic with
period T .



Existence of a Periodic Orbit

Exercise. Assume that the linear operator A is what
is called “asymptotically stable”—namely that all of
its eigenvalues have negative real part—and also that
the forcing term g(t) is periodic with period T > 0.
Show that there is a point p ∈ V for which the solu-
tion x(t) with initial value x(0) = p is periodic with
period T .

Hint: Since x is given by the above variation of pa-
rameters formula, the condition that it be periodic of
period T is that p = eTAp+

∫ T

0
e(T−s)Ag(s) ds, or that

p = (I − eTA)−1
∫ T

0
e(T−s)Ag(s) ds. Why is the oper-

ator (I − etA) invertible?



Part II

Numerical Solutions of
Initial Value Problems
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Very few initial value problems admit explicit closed
form solutions, so in general we must construct so-
lutions numerically with the aid of a computer. But
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Numerical Algorithms for Solving IVPs

Very few initial value problems admit explicit closed
form solutions, so in general we must construct so-
lutions numerically with the aid of a computer. But
what algorithm should we use?

The natural first guess is successive approximations.
But while that is a powerful theoretical tool for study-
ing general properties of solutions (in particular, ex-
istence and uniqueness), it is not an efficient method
for constructing numerical solutions.

In fact there is no one simple answer to this question,
for there is no one algorithm that is “best” in all sit-
uations. Below we will look at just two methods from
the numerical analyst’s extensive toolbox for solving
initial value problems, Euler and Runge-Kutta.



The General Approach

In what follows we will suppose that f is a C1 time-
dependent vector field on Rn, and given t0 in R and
x0 in Rn we will denote by x(t) or σ(f, x0, t0, t) the
maximal solution of the IVP dx

dt = f(x, t) with initial
condition x(t0) = x0.



The General Approach

In what follows we will suppose that f is a C1 time-
dependent vector field on Rn, and given t0 in R and
x0 in Rn we will denote by x(t) or σ(f, x0, t0, t) the
maximal solution of the IVP dx

dt = f(x, t) with initial
condition x(t0) = x0.

The goal in the numerical integration of ODE is to de-
vise efficient methods for approximating the solution
x(t) on an interval I = [t0, T ].



The General Approach

In what follows we will suppose that f is a C1 time-
dependent vector field on Rn, and given t0 in R and
x0 in Rn we will denote by x(t) or σ(f, x0, t0, t) the
maximal solution of the IVP dx

dt = f(x, t) with initial
condition x(t0) = x0.

The goal in the numerical integration of ODE is to de-
vise efficient methods for approximating the solution
x(t) on an interval I = [t0, T ].

The basic strategy is to interpolate N equally spaced
gridpoints t1, . . . tN in the interval I (defined by tk :=
t0 + k∆t with ∆t = T−t0

N ), and use some algorithm
to define values x1, . . . , xN in Rn, in such a way that
when N is large each xk is close to the corresponding
x(tk).



The General Approach (Cont.)

The quantity max1≤k≤N ‖xk − x(tk)‖ is called the
global error of the algorithm, and if it converges to
zero as N tends to infinity (for every choice of f , t0,
x0, and T ), then we say that we have a convergent
algorithm.



The General Approach (Cont.)

The quantity max1≤k≤N ‖xk − x(tk)‖ is called the
global error of the algorithm, and if it converges to
zero as N tends to infinity (for every choice of f , t0,
x0, and T ), then we say that we have a convergent
algorithm.

Even if a algorithm is convergent, that does not nec-
essarily mean that it will provide an adequate method
for solving initial value problems in all situations;
other considerations such as stability and rate of con-
vergence are important. However, if an algorithm is
not at least convergent, that is sufficient reason to
reject it as a tool for solving IVPs numerically.



Stepping Methods

A common way to construct the algorithm that pro-
duces the values x1, . . . , xN uses a recursion based on
a so-called stepping procedure, namely a function,
Σ(f, x0, t0,∆t), having as inputs:

1) a time-dependent vector field f on Rn,
2) an initial condition x0 in Rn,
3) an initial time t0 in R, and
4) a “time-step” ∆t in R,
and with output a point of Rn that approximates
σ(f, x0, t0, t0 + ∆t) well when ∆t is small.



Stepping Methods

A common way to construct the algorithm that pro-
duces the values x1, . . . , xN uses a recursion based on
a so-called stepping procedure, namely a function,
Σ(f, x0, t0,∆t), having as inputs:

1) a time-dependent vector field f on Rn,
2) an initial condition x0 in Rn,
3) an initial time t0 in R, and
4) a “time-step” ∆t in R,
and with output a point of Rn that approximates
σ(f, x0, t0, t0 + ∆t) well when ∆t is small.

More precisely, the so-called local truncation error,
defined by ‖σ(f, x0, t0, t0 + ∆t)− Σ(f, x0, t0,∆t)‖,
should approach zero at least quadratically in the
time-step ∆t.
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xk of the x(tk) are defined recursively by xk+1 :=
Σ(f, xk, tk,∆t). Numerical integration methods that
follow this general pattern are referred to as finite
difference methods.



Stepping Methods (Cont.)

Given such a stepping procedure, the approximations
xk of the x(tk) are defined recursively by xk+1 :=
Σ(f, xk, tk,∆t). Numerical integration methods that
follow this general pattern are referred to as finite
difference methods.

There are two main sources contributing to the global
error, ‖xk − x(tk)‖. At each step there will be an
additional local truncation error, and after the first
step, there will be an error because the recursion
uses Σ(f, xk, tk,∆t) rather than Σ(f, x(tk), tk,∆t). In
practice there is a third source of error, namely round-
off error from using floating-point arithmetic, We will
ignore this, pretending that our computers do precise
real arithmetic, but there are situations where it is
important to take round-off error into consideration.
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Taylor’s Theorem:
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Euler’s Method is defined by the particularly simple
and natural stepping procedure: :
Euler Step: ΣE(f, x0, t0,∆t) := x0 + ∆t f(x0, t0).
It is not hard to see why this is a good choice. If
as above we denote σ(f, x0, t0, t) by x(t), then by
Taylor’s Theorem:

x(t0 + ∆t) =x(t0) + ∆t x′(t0) +O(∆t2)

=x0 + ∆t f(x0, t0) +O(∆t2)

=ΣE(f, x0, t0,∆t) +O(∆t2),

so that ‖σ(f, x0, t0, t0 + ∆t)− Σ(f, x0, t0,∆t)‖, the lo-
cal truncation error for Euler’s Method, does go to
zero quadratically in ∆t.



Euler’s Method (Cont.)

When we partition [0, T ] into N equal parts, ∆t =
T−t0

N , each step in the recursion for computing xk will
contribute a local truncation error that is O(∆t2) =
O( 1

N2 ), and since there are N steps in the recursion,
this suggests that the global error will be O( 1

N ), and
hence will go to zero as N tends to infinity. Thus we
expect Euler’s Method to be a convergent algorithm.
We will give a rigorous argument below.
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When we partition [0, T ] into N equal parts, ∆t =
T−t0

N , each step in the recursion for computing xk will
contribute a local truncation error that is O(∆t2) =
O( 1

N2 ), and since there are N steps in the recursion,
this suggests that the global error will be O( 1

N ), and
hence will go to zero as N tends to infinity. Thus we
expect Euler’s Method to be a convergent algorithm.
We will give a rigorous argument below.

Exercise. Show that Euler’s Method applied to the
initial value problem dx

dt = x with x(0) = 1 gives
limN→∞(1 + t

N )N = et.



Error Estimate for Euler Method

Assume the vector field f satisfies the local Lipschitz
bound ‖f(p, t)− f(q, t)‖ ≤ L ‖p− q‖. We use an ar-
gument of Hermann Karcher to estimate the error in
Euler’s method.
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Assume the vector field f satisfies the local Lipschitz
bound ‖f(p, t)− f(q, t)‖ ≤ L ‖p− q‖. We use an ar-
gument of Hermann Karcher to estimate the error in
Euler’s method.

Recall that Euler’s Method approximates x(t) at points
tn := tn−1 +∆T = t0 +n∆T , where ∆T = T−t0

N , and
the approximations e(tn) are defined inductively by
e(t0) := x0, and e(tn+1) := e(tn) + ∆T f(e(tn), tn).

We interpolate the discrete approximations e(tn) with
a piecewise-linear curve e(t) defined on [tn, tn+1] by
e(t) := e(tn) + (t − tn) f(e(tn), tn). Think of this as
considering the time difference ∆t := t− tn as a vari-
able, allowing us to estimate the difference or “error”,
Err(t) := ‖x(t)− e(t)‖ by a Gronwall-like argument.



Error Estimate for Euler Method (Cont.)

We first estimate the error for a single time-step, i.e.,
on the interval t0 ≤ t ≤ t0 + ∆T . From the def-
inition of e, ė(t) = f(x0, t0), t0 ≤ t ≤ t0 + ∆T ,
so ë = 0. It follows that ẋ(t) − ė(t) = f(x(t), t) −
f(x0, t0) = f(x(t), t)−f(e(t), t)+f(e(t), t)−f(x0, t0),
so
‖ẋ(t)− ė(t)‖ ≤ L ‖x(t)− e(t)‖+‖f(e(t), t)− f(x0, t0)‖.
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We first estimate the error for a single time-step, i.e.,
on the interval t0 ≤ t ≤ t0 + ∆T . From the def-
inition of e, ė(t) = f(x0, t0), t0 ≤ t ≤ t0 + ∆T ,
so ë = 0. It follows that ẋ(t) − ė(t) = f(x(t), t) −
f(x0, t0) = f(x(t), t)−f(e(t), t)+f(e(t), t)−f(x0, t0),
so
‖ẋ(t)− ė(t)‖ ≤ L ‖x(t)− e(t)‖+‖f(e(t), t)− f(x0, t0)‖.
The second term on the right is not yet in a form to
apply a Gronwall argument. However, if we define
K := maxt0≤t≤t0+∆t

∥∥ d
dt (f(e(t), t)− f(x0, t0)

∥∥
then we obtain the differential inequality

‖ẋ(t)− ė(t)‖ ≤ L ‖Err(t)‖+K(t− t0).
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Since
Err(t) =

∥∥∥∫ t

t0
(ẋ(t)− ė(t)) dt

∥∥∥ ≤
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t0
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Since
Err(t) =

∥∥∥∫ t

t0
(ẋ(t)− ė(t)) dt

∥∥∥ ≤
∫ t

t0
‖ẋ(t)− ė(t)‖ dt,

we see that ‖Err(t)‖ ≤ ψ(t), where ψ is the differen-
tiable function:

ψ(t) := ‖Err(t0)‖+L
∫ t

t0

‖Err(t)‖ dt+K
∫ t

t0

(t−t0) dt.

Since ψ̇ = L ‖Err(t)‖ + K(t − t0) and ‖Err(t)‖ ≤ ψ,
we have the differential inequality ψ̇ ≤ Lψ+K(t−t0)
that we now use for a Gronwall argument.
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ψ +

K
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L
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)
· e−L·(t−t0).

d

dt

((
ψ +

K

L2
+
K

L
(t− t0)

)
· e−L·(t−t0)

)
=(

ψ̇ +
K

L
− L

(
ψ +
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L
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))
· e−L·(t−t0).
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Compute the derivative of the function(
ψ +

K

L2
+
K

L
(t− t0)

)
· e−L·(t−t0).

d

dt

((
ψ +

K

L2
+
K

L
(t− t0)

)
· e−L·(t−t0)

)
=(

ψ̇ +
K

L
− L

(
ψ +

K

L2
+
K

L
(t− t0)

))
· e−L·(t−t0).

By the differential inequality for ψ, this function has
a non-positive derivative, so all of its values are less
than its “initial” value at t0, namely Err(t0)+ K

L2 , and
solving for ψ we obtain the desired error estimate:

Err(t) ≤ ψ(t) ≤
(
Err(t0) +

K

2
(t− t0)2

)
eL·(t−t0)

for t0 ≤ t ≤ t0 + ∆T .



Error Estimate for Euler Method (Cont.)

To iterate this estimate we define the starting point
for the second time step as x1 := e(t0 + ∆T ), so that
we have the initial error bound

|x(t0 + ∆t)− x1| ≤

Err(t1) :=
(
Err(t0) +

K
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)
eL·∆T ,
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To iterate this estimate we define the starting point
for the second time step as x1 := e(t0 + ∆T ), so that
we have the initial error bound

|x(t0 + ∆t)− x1| ≤

Err(t1) :=
(
Err(t0) +

K

2
(t− t0)2

)
eL·∆T ,

and after the second time step we have

Err(t) ≤ ψ(t) ≤
(
Err(t1) +

K

2
(t− t1)2

)
eL·(t−t1)

for t1 ≤ t ≤ t1 + ∆T.



Error Estimate for Euler Method (Cont.)

To reach the fixed time T one needs N time steps of
size ∆t := (T − t0)/N and the N -fold iteration of the
error estimate gives (replace N ·∆T by (T−t0), recall
Err(t0) = 0 and use the sum of the geometric series):

Err(t) ≤ Err(t0) · eL(T−t0) +
K

2
∆T 2 ·

N∑
k=1

ekL·∆T

≤ K

2
∆T 2 · (eL(T−t0+∆T ) − 1)/(eL∆t − 1)

≤ K

2L
∆T · (eL(T−t0+∆T ) − 1).

This proves in particular that when ∆T → 0 the it-
erated Euler curves converge uniformly to the exact
solution, or in other words that Euler’s Method is a
convergent algorithm.



Runge-Kutta

Despite what we have just proved, perhaps the only
positive thing that can be said about the Euler method
for solving an IVP is that it is intuitive and easy to
program. Beyond that there is little to recommend it
as a practical method for solving real-world problems.
It requires very small time steps to get reasonable ac-
curacy, making it very slow, and in fact it is rarely
used except for pedagogical purposes.
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A general purpose finite difference method for solving
IVPs that is the most useful (and the only other one
that we will consider) is Runge-Kutta, or more pre-
cisely the fourth order Runge-Kutta Method, as there
is a whole family of Runge-Kutta methods. It is in
fact one of the most implemented an useful pieces of
numerical software for any purpose.



Runge-Kutta Step

The stepping procedure for fourth order Runge-Kutta
is a lot less transparent than that for Euler. It is given
by the following formula:

Runge-Kutta Step

ΣRK4
(f, x0, t0,∆t) := x0 + 1

6 (k1 + 2k2 + 2k3 + k4),



Runge-Kutta Step

The stepping procedure for fourth order Runge-Kutta
is a lot less transparent than that for Euler. It is given
by the following formula:

Runge-Kutta Step

ΣRK4
(f, x0, t0,∆t) := x0 + 1

6 (k1 + 2k2 + 2k3 + k4),
where:
k1 = ∆t f(x0, t0)
k2 = ∆t f(x0 + 1

2k1, t0 + ∆t
2 )

k3 = ∆t f(x0 + 1
2k2, t0 + ∆t

2 )
k4 = ∆t f(x0 + k3, t0 + ∆t)



Runge-Kutta Pseudo Code

function RungeKutta4(f,x0,t0,h,N):vector;
f: function(v:vector;s:real):vector;
x0:vector ;t0,h:real; N:integer;
var j:integer; t:real; x,k1,k2,k3,k4:vector;
begin

t := t0; x := x0;
for j := 1 to N do

begin
k1 := h f(x,t);
k2 := h f(x+ k1/2,t+h/2);
k3 := h f(x+ k2/2,t+h/2);
k4 := h f(x+ k3,t+h);
x := x + (k1+2(k2+k3)+k4)/6;
t := t + h;

end;
RungeKutta4 := x;

end;



Runge-Kutta (Cont.)

It is of course a fair question to ask where such a
strange formula comes from. If you are familiar with
Simpson’s Rule for evaluating the definite integral of
a function φ(t), then the above should not look un-
reasonable, and indeed if f(x, t) = φ(t) then recall
that the solution of the IVP reduces to the integral of
φ and in this case the Runge-Kutta formula reduces
precisely to Simpson’s Rule. And like Simpson’s Rule,
Runge-Kutta is fourth order, meaning that the local
truncation error goes to zero as the fifth power of the
step-size, and the global error as the fourth power. So
if for a fixed step-size we have attained an accuracy
of 0.1, then with one-tenth the step-size (and so ten
times the number of steps and ten times the time) we
can expect an accuracy of 0.00001, whereas with the
Euler method, ten times the time would only increase
accuracy from 0.1 to 0.01.


