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A DEFINITION OF THE EXTERIOR DERIVATIVE IN 
TERMS OF LIE DERIVATIVES 

RICHARD S. PALAIS' 

The notion of the Lie derivative of a tensor field with respect to 
a vector field, though much neglected, goes back to almost the begin- 
nings of tensor analysis. For a classical treatment see [1, pp. 72-73]. 
A modern treatment with the simplifying assumption that the vector 
field does not vanish is given in [2, pp. 74-77 ], but little or nothing in 
the way of a coordinate free treatment has appeared in print so we 
give an abbreviated exposition below. 

Lie derivatives. Let X71C be a C?? manifold, R the real number sys- 
tem with the usual C?? structure. Let 0 be an open subset of R X-7YC. 
Let c be a CIO map of 0 into W. For each p G'C let PP) 
= [tER: (t, p) CO] and let o-(P): I(PP) --+ be defined by o-(P)(t) = (t, p). 
For each tER let St= [p EEj7: (t, p) CEJ9] and let ckt: St -*7 be defined 
by ckt(P) =4k(t, p). 

DEFINITION. c is a one-parameter quasi-group of transformations of 
X7 if: (1) For each pG79, I(P) is an interval containing zero and 
c(O, p) =p; (2) If (r, p), (t, f(r, p)), and (t+r, p) are in 0, then 
c(t+r, p) =q(t, k(r, p)). We say ' is maximal if it is not properly 
included in a one-parameter quasi-group of transformations of W. 

Let c be a one-parameter quasi-group of transformations of W. 
For each p EC and each real-valued function f of class CIO on X7 we 
define: Lp(f) = (d/dt)t=qf(0(t, p)). It is easily verified that Lp is a 
tangent vector at p and that L: p-,Lp is a CIO vector field on X7 called 
the infinitesimal transformation of c. L is said to generate c. The 
global theory of the integration of first order ordinary differential 
equations on a manifold is essentially contained in the following. 

THEOREM I. Every CIO vector field L on a CIO manifold X7 generates a 
unique maximal one-parameter quasi-group of transformations of X, 
+(L). A one-parameter quasi-group of transformations of X, X, has 
infinitesimal generator L if and only if it is included in +(jL). 

In the following X71 denotes a fixed CIO manifold. If p EE9 we denote 
by W7p the tangent space at p. By a tensor A of contravariant rank r 
and covariant rank s at p we shall mean an element of the space 
(0 r9gp) ? (? Xs074f) identified in the usual fashion as multilinear func- 
tionals on 99,* X * * * X W7* X 7 X ... X W74 (where there are r W*'s 
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and s 5l4's). If q5 is a nonsingular CIO map of X79 into itself defined at p, 
we denote by &q not only its differential but also all the associated 
Kronecker products, mapping the various tensor spaces at p iso- 
morphically onto the corresponding tensor spaces at 'k(p). We let 
the argument determine the particular map in question. Thus: 

50(A) = (3?p ?X ... * * ?p X a0 X ...* X l0p )A 

(where there are r &fp's and s Sq5-"s). 
In what follows let L be a fixed CIO vector field on X79 and q5 the 

maximal one-parameter quasi-group it generates. If p 1, then for 
t sufficiently small (e.g. contained in 1(P)) q5-t is defined in a neighbor- 
hood of 4t(P) and maps the latter point on p. We now can make the 
following definition: 

DEFINITION. Let A be a tensor field on 9XC and p EN7. If 
(d/dt) t=o&4_t(A x,(p)) exists we denote it by L [A ] p and call it the Lie 
derivative of A with respect to L at p. If L [A ]p exists at all pE(Cn we 
denote by L [A ] the mapping p-*L [A ]p. 

The derivative above is the ordinary weak derivative. Thus to show 
that L [A ]p exists we must show that whenever I is an element of the 
space conjugate to the space of tensors at p of the same variance as 
Ap, then (d/dt)t=ol(&r_t(A 4,(p))) exists. Since l->(d/dt)t=ol(&r_t(A4'(p))) 
will then obviously be a linear map, we can by reflexivity identify it 
with a unique tensor L [A ]p at p of the same variance as A p. We now 
show that if A is a Coo tensor field, then L [A ]p always exists and that 
L [A ] is a Coo tensor field. 

LEMMA a. If f is a Coo function on 5YC, then L [f],p exists for each p CEN 
and equals Lpf. 

PROOF. 3-_t(f(p)) =f(q5(t, p)) so (d/dt)t=o(&frt(fo,(p))) = (d/dt)t20 
f (O (t I p))-==Lpf. q. e. d. 

LEMMA b. If f is a Coo function on 5YC, then L [df]p exists for each 
p EWC and equals d (Lf) p. 

PROOF. Let M be a tangent vector at P. We must show that h(t) 
=3&_t(df,c(p))M = &kt(M)f= M(f oa t) is differentiable at t = 0 and 
has derivative d(Lf)p(M) there. Now since 4) is a Coo mapping, f o c 
is of class Coo in a neighborhood of (0, p) ER X'C. Since (d/dy),=o 
and M are tangent vectors at this point in different factor spaces, 
they commute and we have 

h'(0) = (d/dt) t=oM(f o kt) = M((d/dt) t=of ? 0 t) 

= M(Lf) = d(Lf)p(M). q.e.d. 
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LEMMA C. If M is a C,? vector field on X' and p C 'C, then L [Mip 
exists and equals [L, M]p. 

PROOF. The most general linear functional on the tangent space at p 
is of the form dfp where f is function of class C,? at p. Thus we must 
show that if f is a CX function on 971 and h(t) =df(&0_t(M,6,(p))) 
= 3k_t(M,(p))f= Mo,(p))(f o w_t), then h is differentiable at zero and 
h'(0) =df([L, M],p)-[L, M]pf-Lp(Mf)-M,p(Lf). Writing F(x, y) 
=MMO(p)(f o c-V,) we have h'(0) = FP(0, 0) +F2(0, 0). Now F1(0, 0) 
= (d/dx)x=o(Mo(-)f) - (d/dx)=o((Mf)(4(x, p))) =Lp,(Mf) and by rea- 
soning similar to that in Lemma b, F2(0, 0) = (d/dy)Yo(MP(f o O-Y)) 
=- (d/dy)4=o(Mp(f o ay)) = -Mp(Lf). q.e.d. 

LEMMA d. Let A and B be two tensor fields on 971 such that L [A ]p and 
L [B ], exist. Then L [A XB ], exists and equalsL [A ],p ?Bp +Ap ?L [B ], 
and if A and B have the same variance, then L [A +B ]p, exists and equals 
L [A ]p+L [B ]. 

PROOF. The second statement is obvious. As for the first we have 
&tfr(A ?B)O,(p) = &k_t(A)+0(p) ? 34_t(B)+0(p). Thus if 11 is a linear func- 
tional on the space of tensors at p of the same variance as Ap, and 12 

a linear functional on the space of tensors at p of the same variance 
as Bp, then 

(dldt) t=oZlO 1$ 2(80-t(A 8) B) 0,(p)) 
= (d/dt) t==o[11(80-(A +(P)))12(60_t(BO (p)))] 

= l1(L[A]p)l2(Bp) + l1(Ap)12(L[B]p) 
= 11 (? 12(L[A]p (? Bp + Ap ? L[B]p). 

Since the linear functionals on the space of tensors at p of the same 
variance as (A ?B)p which are of the form 11012 span, this proves 
the lemma. q.e.d. 

Clearly if two tensor fields agree in the neighborhood of a point p 
and the Lie derivative of one exists at p, then the Lie derivative of 
the other exists there also and is equal to that of the first. Since in a 
neighborhood of any point an arbitrary C,? tensor field is equal to the 
sum of tensor products of C,? functions, the differentials of C,? func- 
tions, and Cc* vector fields, we get the following consequence of 
Lemmas a through d. 

THEOREM II. If A is a C? tensor field on 9?, then L [A ]p, exists for 
every p ENC and L [A ] is a C?? tensor field of the same variance as A. 

THEOREM III. If L1 and L2 are two C? vector fields on 79 and A is a 
C?? tensor field on X, then (L1+L2) [A ] =L1 [A ] +L2 [A ]. 
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PROOF. By Lemmas a, b, and c the theorem holds if A is a CIO 
function, the differential of a Cw function, or a C?? vector field. By 
Lemma d, if it holds for two tensor fields it holds for their outer 
product, and if they are of the same variance, for their sum. The rea- 
soning for Theorem II shows that it holds in general. q.e.d. 

If V,I is a nonsingular C? map of 9C into 7' defined near p, then it is 
clear that the isomorphisms b& of the tensor spaces at p with those at 
/1(p) commute with all contraction operators. Thus follows: 

THEOREM IV. The Lie derivative commutes with contractions. 

THEOREM V. Let A be a Cm tensor field of contravariant rank r and 
covariant rank s. Let 01, - - *, 0r be r covariant vector fields and 
M1, . . . , M. be s contravariant vector fields. Then 

+ L [A((0)1, * * *, L[ 8i, * * *, 8r, 21 , * I L Mis) 
i=l1 

+ A A(O1, * , 8r. M, .. * L[Mi], ... I, MA). 
i=l 

PROOF. We note that A (1*, . ,r, M1, ... * M8) is the com- 
plete contraction of A 0 81 X ... ? 8, 0r M1? . . . 0 Ms and use 
Lemma d and Theorem IV. q.e.d. 

COROLLARY. If 8 is a Cm k-form on MK (i.e. an alternating covariant 
tensor field of rank k) and M1, - * * , Mk are k Coo vector fields on MK then: 

L[8(M1,... , Mk)] = L[E)](Ml,... , 21Mk) 

k 

+ E (-1)i+'E)([L, MAll, 1, M , AI, ,AMk). 
i~=l 

PROOF. An immediate consequence of the theorem, Lemma c, and 
the alternating character of 8. 

We write successive Lie derivatives of a tensor field A as L2 [A], 
L3[A], etc. We write A=L?[A]. The following generalization of 
Taylor's theorem with remainder seems to be new. 

THEOREM VI. If A is a C?? tensor field on MY(, L a CGo vector field on 
94, q the maximal quasi group it generates, and if (t, p) is in the domain 
of X, then 

b0_t(A4=(p)) 3 (ti/i!)LD[A]p + RX 
iwO 

where R.= fo'(t -t)ff/n! iN_t (LI'+'[A ]jot(p)) dS, the integral being a Pettis 
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(i.e. weak) vector-valued integral. 

PROOF. 

(d1dTr) (50l-A<t0,(p)) =(d1di) t=o(50_(,+t)A 0+t (P)) 

- (d/d4) =o( +T6+-tAk7 (2')) 

= a4)-r [(d/di) =o(A,_tA +t (P) ] 

= 3c,,(L [A ] O, (p))- 

Integrating from r = 0 to r = t and setting w = 41, x = 42, y = sn, Z = tn+l, 

we get &f_t(A,t(p)) =Ap+f08_w(L [A ] dw. Replacing A by L [A ] 
and substituting back, we get in n steps 

n 

30_t(A0,(p) = j (ti/i!)Li[A]p 

rt rw z 
+ J dwf dx ... dyf dzx3I z(L[A],(p)), 

and the well known formula 

ft rti tn rt 

dt1 dt2 * . dtn+lf(n+l) = f (t -)nln.f)d 

completes the proof. q.e.d. 

COROLLARY. L[A]=O is a necessary and sufficient condition that 
&1t(A2p) =AO,(p) for all (t, p) in the domain of 4. 

The exterior derivative. We are now in a position to give a co- 
ordinate free definition of the exterior derivative in terms of Lie 
derivatives. 

DEFINITION. Let M1, * Mk+i be k + 1 Co vector fields on a Cm 
manifold 7<. We define an operator dml,.. ,Mk+l mapping Coo k-forms 
E) on 7' into Coo functions on 1C by 

1 k+1 

dMI,...,M 18 = 2 E (A)+i{tM[(M, , . * ,Mk+)] 

+ Mi[e8](lt, . . ., MI, I.. , Mk+l)}. 

We note that from the definition it is obvious that M1, * * *, Mk+j 

--,dmj, ,Mk?1 is an alternating multilinear mapping, also that if 0 
is an open subset of %, 0-=O' in (9 and Mi=M ' in (0, i=1, 2, 
k+1, then dM,.,m,MiE8= dM',. ., + E in 0. 

From the corollary of Theorem V we get the following two lemmas 
by a trivial calculation. 
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LEMMA 1. 

k+1 

dMl,...,Mk+lE) = (-)i+'Mi[e)(Ml, * . Mk+l), 
i=l1 

+ 1E (- )iE)( [MiA, A]f, A1, ..., , *..., 2 *if *, lfk+1). 
1ii<j:k+1 

LEMMA 2. 

k+1 

dMl , ... Mk+lE) = i (-1) +'Mi [e)](M1, I, Mi, , 
i=l 

+ Z (-1)i+i+1G)([Mi, Ml], M1, . , Mi, * *, M1, * *, Mk+l). 
1<i<j?k+1 

The right-hand side of Lemma 1 is a known formula for (dE)) 
(KM1, * , Mk+,). The usual procedure is to define the exterior de- 
rivative by using coordinates, prove it is a differential form, and then 
prove Lemma 1. A direct proof that the right-hand side of Lemma 1 is 
a differential form is difficult. The advantage of the present ap- 
proach is that, as we shall see below, we can prove easily and without 
using coordinates that the right-hand side of Lemma 2 (which uses 
the concept of Lie derivative explicitly) defines a differential form. 

THEOREM VII. Let E) be a CIO k-form on a CIO manifold 1KY. There 
exists a unique differential k + 1-form 4D on 97' such that for any k + 1 
Coo vector fields M1, . . ., Mk+l on 97' we have 

b(P(All 
... * , k+l) = dM1,. **,Mk+lE. 

PROOF. Let pE]KY and let M(p), *.* *, M(P)1 be k+l tangent vec- 
tors at p. Then as is well known and obvious we can find k +1 Co 
vector fields on 9', M1, * * *, Mk+l, such that (Mi)p =M(P). Then if 
4 does in fact exist we must have 

31, , 1) = (dM1,***,k+1E) (P).. 

To prove that the function 4 defined on the cartesian product of the 
tangent space at p with itself k + 1 times by the above formula is 
well defined, we must show that it is independent of the vector field 
Mi chosen to extend the Mp). Because of the alternating multilinear 
character of the right-hand side it is sufficient to show that if 
Mi, . . *, Mk+i are k+1 CI vector fields such that M1 vanishes at p, 
then (dMl,... ,mk+le)(p) =0. Now remembering that if H is a k-form on 
97K and L1, ... , Lk are k vector fields on 97', then H(L1, * * *, Lk) van- 
ishes at any point where one of the Li vanish, we have from Lemma 2 
under the assumption (Ml)p = 0 that 



908 R. S. PALAIS 

(dMl,. . .,Mk+l))(p) = M1[E] p(M2, Mk+l) 
k+l 

+ E (-1)iE)([M1, Mj], Ml2, . ., Mj, M *, Mk+l) 
i=2 

which by the corollary of Theorem V 

= M1 [e(M22, . , Mk+l)]p 

and this by Lemma a of Theorem II 

= (m1) E((M2, . , Mk+l) 

which vanishes since by hypothesis (M1), =0. Thus D,, is a well de- 
fined function. It is alternating and multilinear since M1, * , Mk+l 

dml,* ,Mk+l is, and so is a differential k+1 form at p. Finally 
b: pp-4. is of class Co since if M1, * , Mk+l are k +1 CO vector 
fields on 97', then 1?(M1, * , Mk+1)=dMl,..,Mk+?lE and the latter is 
a CI function on 29. This completes the proof of the theorem. q.e.d. 

DEFINITION. The differential k+1 form 41 defined above is called 
the exterior derivative of E) and is denoted by d). 

We have still to show that what we have defined is the usual ex- 
terior derivative. Since E)-d) as defined above is clearly linear it will 
suffice to show that if f is a CI function on X7, xl, * , xn a coordinate 
system, and E =f dxlA * * * Adxk in the domain of x1, *. ., x.k, then 
dA=dfAdxlA . . . Adxk in the domain of x1, . . *, xn. Now using 
the fact that dxi(l/oxj) = 8ij and [d/dxi, d/dxj] = 0 it is easy to see 
from Lemma 1 that de(d/dxil, . .. , o/oxi,j) = 0 unless with the 
omission of an i, (i1, . ., ik+) is a permutation of (1, 2, * * * , k) 
and the omitted i is greater than k, and that forj>k, j e>(a/axA , * . 

d/dxk, 8/8Xj) = (-1)1i df/8j. Hence 

de)= E de((a/xil,... , /Xik+1)dxi A ... AdXik+l 
il< . *<ik+l 

- E de(a/xl, ... , 9/9aXk, a/1xj)dxlA ... AdxkAdxj 
j>k 

- E df/fxidx;AdxlA... AdXk=dfAdxlA... Adxk. q.e.d. 
j=l 
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