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Richard S. Palais

Harvard Unlversity
Preface

The goal of this memoir is to formulate in a modern global way the
theory, due in i1ts local form to Sophus Lie, which connects Lie algebras
of vector fields on a differentiable manifold with loecal groups and
groups of transformations acting on the manifold.

Chapter I 1s preliminary to the main trend of the memoir and is
concerned with the question of giving a natural 'quotient! differentiable
structure to the set of leaves of an involutive differential system. 1
have decided to develop this separately, rather than in context with its
application to transformation groups, since I feel that it may be of some
independent interest.

In chapter II we develop the theory of infinitesimal and local
transformation groups in its greatest generality. Aside from proving
the basic tool theorems that will be needed in the following mor special-
ized chapters, we give a uniqueness theorem for a local transformation
group with a given domain and given infinitesimal generator and also a
global form of Lie's Second Fundamental Theorem (Hauptsatz der Gruppen-
theorie).

In chapter III we characterize in a number of ways the class of
Infinitesimal transformation groups which generate global transformation
groups. In chapter IV we use the results of chapter III to develop a Lie

theory comnecting the Lie algebra of differentiable vector fields on a
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manifold with the group of differentiable homeomorphisms of the manifold

and use this to study the automorphisms of a structure given by a mani-

fold and a set of tensor fields on the manifold.
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LIE THECRY OF TRANSFORMATION GROUPS

Chapter 1
QUOTIENT MANIFOLDS DEFINED BY FOLIATIONS

A completely integrable differential system @ on a differentiable
manifold M defines a partitioning (foliation) of M into maximal con-~
nected integral manifolds (leaves) of @ . 1In this chapter we investigate
under what conditions the quotient space admits a natural manifold
structure, and the elementary properties of the quotient manifolds

that result.

1. Differentiable Manifolds.

We will use the word 'differentiable! as a substitute for 1¢7 1t
or 'analytic' in contexts where both of the latter would be appropriate,
in order to avoid having to glve separate proofs for the €™ case and
the analytic case of various theorems.

In order to get a smooth theory of quotient manifolds it is expedient
to drop the Hausdorff separation axiom in the definition of a manifold.
When this is done 1t 1is possible to modify the definition of a manifold
in terms of overlapping coordinate systems in such a way that the topology
of the manifold is a derived concept. Since there are severael novel
points in thils approach we will explain 1t briefly and at the same time
develop the notation we wlll need.

The reader familiar with the work of Ehresmann will recognize the
debt the author owes to this pioneer in manifold theory, both in concepts
and in terminology. It is a debt which we gratefully acknowlsdge.

We denote real Euclidian n-space by R and by u1 cee U, We denote

the natural coordinates on R™ . If M is a set, an n-dimensional chart

in M 1s a one-to-one map ¢ of a subset of M onto an open subset of

R® . A real-valued function f with domain S &M 1is said to be
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differentiable with respect to o at a point pesS 1if pe(domain o)

and there is a differentiable function g defined in a nelghborhood N
-1

of o¢(p) such that I‘O(p'er=ng>(S), i.86. Too and g agree

where both are defined. Two n-dimensional charts in M,e and ¢ , with

domains U and V respectively, are said to be differentiably related

if each maps UNV onto an open set and the mappings oo W'l and
VYo ¢“1 are differentiable. If this is the case and f 1is a real-
valued function in M and peUNV then the differentiablility of £
at p with regpect to ¢ and with respect to V¥ are equivalent.“

An n-dimensional differentiable atlas for M is a set of mutually

differentiaply related n~dimensional charts in M whose domains cover
M . An n-dimensional differentiable atlas for M is called complete
if it 1s not a proper subset of an n-dimensional differentiasble atlas

for M . An n-dimensionsl differentisble manifold is a palr (M,V¥)

where M 1s a set (called the point set of the manifold) and V¥ is

a complete n-dimensional differentlable atlas for M (called the atlas

of the manifold). If & 4is any n-dimensional differentiable atlas for

a set M , then the set ¥ of ¢ such that &V {w% 1s an n-dimensional
differentisble atlas for M 1s the unique complete n-dimensional differ-
éntisble atlas including & . It is called the complete differentiable

atlas associated with & and (M,Y¥) is called the differentiable

manifold defined by & .

If (M,%) 1is an analytic manifold then & is a C%® atlas for M .
If ¥ i1is the complete C%* atlas assoclated with & then (M,¥) is
called the ¢ manifold associated with (M,%) .

If : (M,¥) 1is an n-dimensional differentiable manifold then the
domains of the charts in ¥ form a base for a topology J , called the

manifold topology of (M,¥) , and (M, J ) 1s called the underlying
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topological space of (M,9) . C) 1s the weakest topology for M

rendering each Ve¥ continuous, and with respect to J  each Ye¥ is
a homeomorphism. It follows that J is a Tl topology for M ; it need
not be a T, topology but if it is we call (M,¥) =a Hausdorff

differentiable manifold. Similarly all adjectives conventionally applled

to (M, J) will be applied to (M,?) , e.g. (M,¥) will be called a
compact or a connected differentiable manifold if J 1s a compact or
connected topology for M . A real-valued function in M with domain

S 1s called differentiable at peM if for some e¥ (and then auto-

matically for all ¢'e?Y with pe(domain ¥')) f 1is differentiable at
p with respect to ¥ . We call f differentlable on S*S M 1if it

is differentiable at each point of S' , and differentiable in M if

it is differentiable on S . In the latter case f 1s continuous.

A coordinate system for the n-dimensional differentiasble manifold

(M,¥) 1is an ordered n+l-tuple (xl ces X, C) such that O 13 the
domain of a chart ¢e¥ and the x4y are real-valued functions in M

such that xiF(Y =uey . If f 1is a real-valued function in M then
foy~l is called the expression for f 1n terms of the coordinate
system (xl cee X , O ). We shall say that (%y ooe x, , 0) 1is a cubical
coordirate system of breadth 2a centered at peM if VY(p) = (0 ... O)
and ¥(O ) = [ (%) +e ty) eB® : 1t41<a . In this case if

ltmeql <@ 1 =1 ... n-m then we call Iy = {qe(7: xo.(q) = tm+i} the

m-dimensional slice of (xXy «s. X,, ) defined by + = (bppq oo t) o

The mapping o : p-*(xl(p) oo xm(p)) is an m-dimensional chart in 3
and §¢§ is an m-dimensional differentiable atlas for 2, . We shall
often refer to I as an m~dimensional differentiable manifold, meaning
the manifold defined by {o} .

Let (M,¥) be a differentiable manifold and peM . For the moment
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denote by Cl(p) the class of real-valued functions with domain open in
M and differentiable at p . Then the notion of tangent vector at p
can be defined exactly as in [1 Chapter III] . Formula (1) of
[1 page 77] 4s proved for the C” case in [2] . Except for this all
properties of the tangent space etc. can be proved exactly as in {1} .
The following additional elementary concepts are treated in (1] and
the reader will be assumed to be famliliar with them: (differentiable)
vector field, bracket of two differentiable vector fields, differential
of a differentiable function f (denoted by df ), differentiablé
mapping F of one manifold into another and the differentlal of such
a mapping (denoted by b&F ). F is called non-singular at p 1if B&F
maps the tangent space at p one-to-one.

Let (M,¥) and (N,®) be differentiable manifolds with N cu
and let 1 be the inclusion map of N in M . We say tlmt (N,®) is

a differentiasble submanifold of (M,¥) 1f 1 1is differentiable and

everywhere non-singular. If moreover i 4is a homeomorphism into with
respect to the respective manifold topologles then (N,®) is sald to

be regularly imbedded in (M,¥); and if further N is a closed subspace

of ¥ with respect to the manifold topology of (M,¥) then (N,®) 1is

called a closed submanifold of (M,¥) . We identify the tangent space of

the submanifold (N,®) at a point peN with its image under 581 (a
subspace of the tangent space to (M,¥) at p) via the linear isomorphism
given by &1 .

If (M,¥) 1is a differentiable manifold, O a subset of M open with
respect to the manifold topology and 1f To = {We? : domein V¥ & C}}
then ( Cf,YG) 13 a regularly imbedded differentiable submanifold of

{M,¥) called the open submanifold defined by o .

Let {(M,¥) and (N,®) be manifolds. Following Ambrose we call a
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one-to-one map F of M onte N a diffeomorphism of (M,¥) onto (N,®)

if P and F"l are differentiable or, equivalently, if o—¢°F 1is a
one-to-one correspondence of & with ¥ . A mapping F defined near

peM and into N will be called a local diffeomorphism of (M,¥) into
(N,®) at p 1if it maps an open submanifold of (M,¥) containing p
diffeomorphically onto an open submanifold of (N,$) . By the implicit
function theorem a necessary and sufficient condition for this is that F
be differentiable at p and 6F map the tangent space to (M,¥) at p
isomorphically onto the tangent space to (N,®) at F(p) . If F : M‘—'ﬁ
is a local diffeomorphism of (M,¥) into (N,®) at each point of M we

call F a local diffeomorphism of (M,¥%) into (N,®) .

Whenever no confusion will result (i.e. when a single complete atlas
¥ 1is being considered) we will use the symbol M alone to denote a

manifold (M,¥), its underlying point set and underlying topological space.

2. Foliations.
Let M be an n-dimensional differentiable manifold. We use the

term m-dimensional differential system on M for what Chevalley

[1 page 86] calls an m-dimensional distribution on M, l.e. a mapping
©@ which assigns to each peM an m-dimensional subspace @p of the
tangent space to M at p . A vector field L in M will be said to
belong to @ 1if for each p in the domain of L , Lp€®p . The differ-

ential system @ will be called differentiable if for each peM there

is a neighborhood & of P and m differentiable vector fields

Ly +++ Ly defined in O such that (Ly), ... (Lp)g 1s a base for @
at each qe¢ O. © 1is called involutive if it is differentiable and if
whenever X and Y are two differentiasble vector fields in M with the
same domain, both belonging to © , their bracket [X,¥Y] also belongs to

® . A submanifold N of M will ge called an integral magnifold of the
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differential system @ on M 1if for each point peN the tangent space

to N at p 1is included in @p .

If ® is an m-dimensional differential system on M , a coordinste

system (xl e Xy, C?) will be called flat with respect to @ 1f for
each qe0 (Xl)q cee (Xm)q is a base for @q , where X; = 2/0 Xy .
If (X «e0 X , 0) 1is a cubical coordinate system for M then a
necessary and sufficlent condition that it be flat with respect to @

is that each of 1ts m-dimensional slices be an integral manifold of @ .

THEOREM I. If © 1is an m-dimensional differential system

on M then a necessary and sufficient condition that @ be

involutive is that for each peM there is a cublcal coordinate

system centered at p and flat with respect to @ .

PROOF. Since the property of being involutive 1s local 1t suffices
to prove the theorem in the case that M 1s Hausdorff. The proof is
given in [1 page 89] for the analytic case and as the proof depends
only on the implicit function theorem and the existence and uniqueness
theorems for differential equations (which have exact C % analogues),

the same proof works in the C% case.

COROLLARY. Let © be an m-dimensional involutive

differential system in the n-dlmensional differentiable

menifold M . If peM then the set 2£ domains g£ cublcal

coordinate systems centered at p and flat with respect to

@ form a basis of neighborhoods of p with respect to the

manifold topology for M .

PROOF. Let (xl ver Xp, C) ve a cubical coordinaste system centered

at p of breadth 2a. Then for any b < a if C}b = {qe CV:[xi(q)\ < bj
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then (x1 cee Xy (7;) is a cubiecal coordinate system centered at p
and flat with respect to ® , and the (frb are a bagis of neighborhoods
for p .

THEOREM II. Let ® be an m-dimensional involutive

differential system on an n-dimensional differentiable

manifold M . Let (x1 e xn,U) and (yl - n,V) be

cubical coordinate systems in M flat with respect to @

and let peUMNV . Then there is a diffeomorphism

£t (g eee ) V(LS (b 4 eee ty) eel T (8

n' m+l
g-M

oo tn))

onto

m+1 mel
of & neighborhood of (y ,,(p) «.. y,(p)) 4in
a neighborhood of (x_ . ,(p) ... x (p)) in R*™™  such that

Xpegla) = £ 50y j(@) «vv 7. (q)) for all qe G = component
of p in UMYV . Moreover if 2 1s the m-dimensional slice

of (xl...xn,U) defined by (x__,(p) ... x (p)) and 32' 1is

m+1
the m-dimensional slice of (yl oo yn,V) defined by

(41 (P) «- v (p)) then

¢ : 2—R" q- (xl(q) «v. x (q)) and

. m
¥t 2R g (yy(a) ... ¥pla))
are differentiably related m-dimensional charts in M .

PROOF. Let g; be the expression for Xy in terms of the
coordinate system (yl «ve ¥sV) - Then

(dx . 4) /duylyyla) oo ypla)d(ayy)y for qeUNV .

X
m+i

h
Jz'zl (9 g1n+.’L

q.=
Since (xq ... xn,U) and (yl - yn,V) are both flat with respect to
e , ((dxm+l)q e (dxn)q) and ((dym+1)q .o (dyn)q) are both bases
for the annihilator of @q for qeU/MNV and hence

—

( QBSm*i/’D'uj)(yl(q) eer Julq)) =0 for j&m. If O is the image

of (> wunder the map q-—»(yl(q) et yn(q)) 1t follows that the I
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are independent of their first m arguments, that is if O is the image

of O under the map I : (&) «ee §)—(t . «.. t ) then there

s
are differentiable functions ¢ ees fn on C such that By =

m+1l

= &
fm*i°l'l . Then xm+1(q) fm+i(ym 1(q) vee yn(q)) for qe hence

) = nzm ((afm*i/{auj)(ymﬂ(p) vas yn(p))(dym+j) and since the

{ax =
p J=1 b

m+l

(dxm+i )p

det (’afm+i/’auj)(ym+l(p) cee yo(p)) ¥ 0 . By the implicit function

are linearly independent it follows that

theorem the mapping f : (Bp,q eee Bp) = (£ (8 40 coe £) oo £ ’
(tm+l e tn)) is a local diffeomorphism at (ym*l(p) ees Tulp)) o

In 2'nC  we have
Xl =L Tala) eee vpta)) = £ (0 (B) ey () = x4 (p)
so 2'A 0 € 2. Now ¥ is an open mapping and i'nC  is open
in 2' hence ¥(2) 2 ¥(2'n O ) 1s a neighborhood of ¥(p) . It follows
that ¥(2) 1is an open subset of R® . Defining
éi(tl cee b)) = gy(ty «.. tm,ym+l(p) .o yn(p)) on ¥(ztn C) we have
for qez'n0 uyoola) = x,(a) = g(yy(a) «vv yu(a)) = g3(¥(a)) or
uj e o o\!f"l = éi « Since the g3y are clearly differentiable this shows
that o@oy~l 1is a differentiable map. Similarly o(2') 4is open and
Yo q;‘l is a differentiable map so ¢ and V¢ are differentiably

related.

DEFINITION I. Let @ be an m~dimensional involutive
differential system on an n-dimensional differentiable
manifold (M,¥) and let (xl cee Xy, C) be a cubical
coordinate system for M flat with respect to ® . If
Z is any m-dimensional slice of (X3 ... x,, ) the mapping
q— (xl(q) e+ x,(q)) of 2 into RM® is called a leaf chart
for M with respect to © . By theorems I and II the set of
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all leaf charts for M with respect to © form an m-
dimensional differentiable atlas for M . Let (M,®) be
the m-dimensional differentiable manifold it defines (i.e.
¢ 1is the complete atlas containing all leaf charts). Then
(M,®) 1s called the maximum integral manifold of @ . A

connected component of M with respect to the manifold
topology of (M,®) regarded as an open submanifold of (M,&)
is called a leaf of @ . We call the set of leaves of @

the foliation defined by @ and denote 1t by M/@ . We

denote by H® the quotient mapping of M onto M/® which
carries peM onto the leaf of © containing p . A subset
of M 1is called saturated (with respect to @) if it is the

union of leaves of ® , and if S € M the saturation of S

is nél(n@(s)) . The quotient topology for M/@ is the
strongest topology which makes n® continuous ; equivalently
its open sets are the images of saturated open sets of N

under H® .

We note that it is almést immediate from the definition of (M,®)
that (M,®) is an m-dimensional integral manifold of © and that any
integral manifold of ® is a submanifold of (M,¥) so the name maximmum
integral manifold of ® is justified. It follows that a connected me
dimensional integral manifold of ® (and in particular an m-dimensional
slice of a cubical coordinate system for (M,¥) flat with respect to @)
is an open submanifold of a leaf of ® . The fact that (4,8) is a
submanifold of (M,¥) implies in particular that the manifold topology
for (M,®) 1s stronger than the manifold topology for (M,¥) , hence if
(4,¥) 1is a Hausdorff manifold so is (M,8) , however, even in this case

1/® need not be a Hausdorff space in the quotient topology as we shall
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see later by example.

The task we set ourselves 1s, picturesquely, to 'factor! our n-
dimensional manifold (M,¥) into an m-dimensional manifold (M,d)
'parallel! to © and an n-m dimensional quotient manifold M/@
"transverse' to ® . The first part of this task, which 1s classical,
or at least well-known [1 Chapt. III §VIII] eand [3], has been ac-
complished above. The second part, namely putting a natural n-m
dimensional differentiable manifold structure on /8 cannot always be

accompllished and we investigate below the condition under vwhich it één.

3. The Continuation Theorem.

THEOREM III. Let © be an involutive m-dimensional

differential system on an n-dimensional differentiable

manifold M and let (X3 ... X;, O ) be a cubical coordinate

8ystem centered at p and flat with respect to @ . Let g

be & point of the leaf I =Iig(p) of ® containing p and

(¥3 ++¢ Tp»U) 2 cubical coordinate system flat with respect

o ©® such that q 1is on the m-dimensional slice defined by

(O «.. 0). Then there is an € > 0 and a diffeomorphism

h (tm+1 se e tn)"' (fm+l(tm+l cse tn) e fn(tm+l cve tn))

of T, = z(tm+l ees ty)eRDTM ‘tm+i,< 83 into RR"M  guch

that for all teT,; the m-dimensional slice of (¥ ... YpoU)

defined by t and the m-dimensional slice of (% .. x ,0)

defined by f(t) are parts of the same leaf of © .

PROOF. Let Z' be the set of qeZ for which the conclusion of the
theorem holds. It follows from Theorem II that pel' so 3' 1is not
empty. Since 2 1s connected it will suffice Fo show that if q 1is

adherent to 2' in Z then g 1is interior to 2' with respect to I .
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Let (2. oo zn,V) be a cubical coordinate system centered at q and

1
flat with respect to ©® and let W be the m-dimensional slice of

(zl oo zn,V) defined by (0 ... 0) « Then W 1is a neighborhood of §

in 2 so we can find q'eW/N ' . By definition of I' we can find a

5 < 0 and functions g ,i -.. g, defined on Ty such that
t - g(t) = (gm+1(t) cee 8 (t)) 1is a diffeomorphism and for teTy the
m-dimensional slice of (27 «.. 2,,V) defined by t and the m-
dimensional slice of (x1 .cee xn,(ﬁ) defined by g(t) are parts of the
same leaf of © . Let qgeW and let (yl see yn,U) be a cubical co- '
ordinate system flat with respect to @ containing q in its
m-dimensional slice defined by (0 ... 0). By theorem II there are
functions hm+1 oo hn defined in a neighborhood of the origin in RZ™™
such that zm+i(r) = hm+i(ym+1(P) ees yplr)) for r in an M neighbor-
hood of q and moreover if € 1s chosen sufficiently small

t —h(t) = (hm+l(t) ees b (t)) 1is a diffeomorphism of T, into Tg .
Define f on T, by f =geh . Then f being the composition of two
diffeomorphisms is a diffeomorphism. Moreover if teT then the m~
dimensional slice of (xy ... xn,(ﬁ) defined by f(t) = g(h(t)) 1is part
of the same leaf of @ ag the m-dimensional slice of (z1 cee zn,V)
defined by h(t) which in turn is a part of the same leaf of ©® as the
m-dimensional slice of (yl P yn,U) defined by t . This verifies that
qeX!' and hence that WS 3' . Since W 1s a neighborhood of q in 2,

q 1is interior to ' with respect to 2 as was to be shown.

DEFINITION II. Let (xl cee Xy C) be a cubical coordinate
system of breadth 2a in a differentiable mgnifold M which is
flat with respect to an m-dimensional involutive dlfferentigl
system © . A coordinate gystem (yl e yn,U) in M 1is

said to be subordinate to (x1 e xn,(ﬁ) with respect to @
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if it is flat with respect to @ , cubical of breadth 2b<2a ,
end if \t,4l<b 1 =1 ... nm implies that the m-dimensional
slices of (Xp e.- xp,O) and  (yp eeo ¥, U) defined by

(bppp *°° tn) are parts of the same leaf of © .

COROLLARY 1. Let (%g «.. xn,(?) be a cubical coordinate

aystem centered at p on the differentiable manifold M which

is flat with respect to an involutive differential system e .

If qen®(p) then there 1s a coordinate system centered at :q

and subordinate to (Xy e+ Xp, O) with respect to © .

PROOF. Let (yl o yn,U) be any cublcal coordinate system centers:
at q and flat with respect to @ . Then, letting fi4q »-» fn be the
functions given by the theorem, define functions 2; e+« 2Zp near q b7

2, =73 1 =1 eeem Byg = fm+i(ym+1 cee yn) =1 e.o n=m . Then if

is a suitably chosen neighborhood of q (29 «.. Z,,W) 1s centered at :

and is subordinate to (Xy ... x4, O) -

COROLLARY 2. If © 1s an involutive differential system

on a differentiable menifold M then Tg 1is an open mapping

of M onto M/© with respect to the quotient topology for

M/@ . Equivalently the saturation of an open set of M with

regpect to © 1s open.

PROOF. The equivalence of the two statements 1ls clear. Let C7 T
an open set of M and let q be in the saturation 6§ of O . Let =
be a point of O belonging to the same leaf of ® as q . Let
(xl s xn,U) be a cubical coordinate system centered at p and flat
with respect to @ with Ue @ (see coroilary of theorem I). By

corollary I we can find a coordinate system (yp «+- yn,V) centered =:

and subordinate to (X «-.-. xn,U) with respect to @ . 1If q'eV  thex
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q' Dbelongs to the same leaf of ® as does the m~dimensional slice of

(xl +++ X,,U) defined by (ym+1(q') eor ¥u(a')) , so in particular q!

is in the saturation of U and hence of O . Thus VE O g0, as Vv

i1s a neighborhood of q , gq 1s interior to & . Hence (O 1is open.
Now in general if I is a mapping of a topological space X

onto a set Y there is clearly at most one topology for Y such that

I1 is both continuous and open. Hence:

COROLLARY 3. If @ 1s an involutive differential system

on a differentiable manifold M then the quotient topology for

M/@ is uniquely characterized by the conditions that with respect

to it Iy 4is continuous and open.

lys  Regularity.

DEFINITION III. Let ©® be an involutive m-dimensional
differential system on an n-dimensional differentiable manifold
M « A coordinate system (xl cee xn,C7) in M will be called

regular with respect to @ if it is cubical, flat with respect

to ©, and if each leaf of @ intersects & in at most one
m-dimensional slice of (X7 «.. x,, 0) . A leaf of @ will be
called a regular leaf of @ if it intersects the domain of a
coordinate system regular with respect to ® . We call @

regular if every leaf of ® 1s a regular leaf of @ .

THEOREM IV. If @ is an involutive differential System

on & differentiable manifold M and (%3 oo x,0) is &

coordinate system in M regular with respect o @ then any

coordinate system in M subordinate to (x; «ee x,0) with

respect to @ 1s also regular with respect to © .
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PROOF. Obvious.

THEOREM V. Let @ be an involutive g—dimensional

differential system on an n-dimensional differentiable mani-

fold M . A necessary and sufficient condition that a leaf

3 of © Dbe a regular leaf of © 1is that for each Q&2

there 1s & cubical coordinate system centered at q which

is regular with regpect to ©® . A necessary and gufficient

condition that © be regular is that for each qeM there

is a cubical coordinate system centered at g and regular

with respect to © .

PROOF. Let 2 Dbe a ijeaf of ® . If there is so much as one point
qez for which there 1s a coordinate system regular with respect to @
centered at q then 1t is immediate from the definition that 2 1is
regular. Conversely suppose 2 is regular. Then there is a coordinate
system (xl vee xn,C?) regular with respect to © such that 2 inter-
sects (J in some point, say D - Define y3 = xi—xi(p) and let U Dbe
neighborhood of p which is a cube with center at p with respect to ¢t
coordinates (xl oo xn,(ﬁ) . Then (yl o yn,U) is clearly a coordirn
system regular with respect to @ centered at p . If 4 is any point
of & then by corollary 1 of theorem 111 there is a coordinate system
(29 o zpsV) centered at q and subordinate to (yy <+ yn,U) with
respect to @ . By theorem Iv (z1 e zn,V) is a regular coordinate
system with respect to © . This proves the first statement of the

theorem, and the gecond 1s an immediate consequence of the first.

COROLLARY 1. If © 1is an involutive differential system

Qg_g_differentiable manifold M then M' , the union of the

regular leaves of @, is the union of the domains of coordinate




LIE THEORY OF TRANSFORMATION GROUPS 15

systems regular with respect to @ and hence 1s a saturated

open set of M . If @' 1is the restriction of @ to the

open submanifold M' of M then @' is regular and M'/@'

being the image of M' under Ilg 1is an open set of M/® with

respect to the quotlient topology.

PROOF, Immedlate from the theorem.

COROLLARY 2. If © 1is a regular differentisl system on

8 differentiable manifold M and peM then the domains of

coordinate systems regular with respect to € and centered at

p for a basis of nelghborhoods at p with respect to the

manifold topology of M .

PROOF. Similar to the proof of the corollary of theorem I.

Vie have the following stability theorem for compact regular leaves.

THEOREM VI. Let @ be a m-dimensional involutive

differential system on the differentiable Hausdorff manifold M .

if 2 1is a compact, regular leaf of @ and W is any neighbor-

hood of 2 there is a saturated neighborhood ] of Z included

in W which is a union of regular, compact leaves of ® .

PROOF. Let peZ and let (xl +++» x,, 0) be a cubical coordinate
system centered at p and regular with respect to @ . By corollary 1
of theorem III1 for each qeX we can find a cubical coordinate system
(X% ‘o xg,Uq), say of breadth uaq, centered at q and subordinate to
(% +«+ x,,0) . By choosing U? sufficiently small we can suppose that
1t is relatively compact and included in W . Let V? be the cube of

breadth 2aq centered at q with respect to the coordinste system
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&

(X% ves xg,Uq). Choose q; »»» Q, such that 2 cv=Uv3 and et

v
3=

g= ' y9 . Then ¥ 4is compact and included in U and there are n--

J=1
uniquely determined differentiable functions f ., ... fn defined on ~*
q.—‘ q = - = * o0 .
such that f_,F U = x}  for 1=1...n-m and j=1 k . Let

B o= f;+l+ ...-+f; . Clearly Z 1is the set of points where F 1s zerc,
Since I is interior to V , and the frontier of V 1is compact, F hL:z:
a positive minimum on the frontier of V . Choose r such that

O <r<minimum of F on frontier of V and let W o= {qw :Fm§<1&.
Then W is a neighborhoocd of £ included in W . Let qu'. To com-
plete the proof we must show that the leaf Zq of ©® containing q 1=

. g = f . 1 -
compact and included in W . Let 34 {q ev ¢ fm+1(q ) fm+i(q)} .

Since F(q') = F(q) < r for q'ega it follows that Eé

Zq is clearly closed in V and as F(g') < r < minimum of F on

cW. Also

frontier of V it follows that Eé has no 1limit points on the frontier

of V. Thus Zq is closed in V and hence is compact. On the other
hand Eq 1s obviously the union of the m-~dimensional slices of the

q .
coordinate system (x%i cen xgj,v J) defined by (fm+1(q) .o fn(q))

and hence 1is an open submanifold of 2. . Since M 1s Hausdorff so

q
is Zq hence Zq is open and closed in Zq « Slnce leaves are con-
nected zq = zq . Thus Zq is a compact leaf included in W as was

to be proved.

COROLLARY 1. If @ 1ig an involutive differential system

on & Hausdorff differentiable manifold M then the set K of

compact regular leaves of © 13 an open Hausdorff subspace of

M/® with respect to the quotient topology.

PROOF. Let 3¢k and take W = 1 in the theorem. Then n®(ﬁ) c:

and is a neighborhood of 2 in M¥/® so K 4is open. If ZE' 4s alsc
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in K then since M 1s Hausdorff and 2 and 2! are disjoint compact
sets there are disjoint open sets W and W' of M including 2 and 3
respectively. By the theorem we can find open sets W and ﬁﬂ in M
which are unions of regular compact leaves of @ such that W S W and
WiewW' and zeW and 3'E W . Then MNg(W) and Ng(W') are
disjoint neighborhoods of 2 and 2' with respect to the quotient

topology for M/® .

COROLLARY 2. If © 1s a regular differential system on

a Hausdorff differentisble manifold M and each leaf of @ 1is

compact then the quotient topology for M/® is Hausdorff and

with respect to it T 1is a closed mapping.

PROOF. That the quotient topology for M/@ 1is Hausdorff is
immediate from corollary 1. If F is a closed set in M and
Ze(M/@—He(F)) then I &£ M-F , hence there is a saturated open set
W €M-F and including 2 . Then Zelly(W) € (M/6-Tg(F)) . Since HG(W)
is open 1n the quotient topology it follows that M/@—H®(F) is open in

the quotient topology so He(F) is closed in the quotient topology.

We recall that a submanifold Z of a differentiable manifold M
is said to be regularly imbedded in M if the inclusion map i of 3
into M 1is a homeomorphism {(or, since 1 1s always differentiable and
hence continuous, if i’l is continuous), and that 32 is called a closed
submanifold of M if its point set is closed in M and it is regularly
imbedded in M . It can be shown that if 2 1s a regular leaf of an
involutive differential system then 2 1is regularly imbedded in M
(the converse is false), however it is easy to construct an eXample where
Z2 1s not a closed submanifold. Thus the following theorem shows that

regularity of a differentiasl gystem has strong consequences for the
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topologlical structure of the leaves.

THEOREM VII. If @ 1s a regular differential system on

the differentiable manifold M then every leaf of @ 1s a

closed submanifold of M .

PROOF. Let 2 Dbe a leaf of ©® and let %pkx be a sequence in
S approaching peM . By thecrem V there is a regular coordinate
system (X7 ¢« xn,C}) with respect to © centered at p . For k
sufficiently large py ¢ Onz which is a single m—dimensionafislice ki
of (X] een x,, O), say the one defined by (B 4q o= tn). Since
0 = xm+j(p) =k13;no xm+j(pk) = tm+j , W 1is the slice of (xl cee xn,G)
defined by (0 ... 0). Thus peW so peZ proving that 2 1s closed in
M . Moreover by definition of the manifold structure in 2 (Xy ... X ,W

is a coordinate system in 2 and as eW for k sufficlently large

Py
and xi(pk)-—'xi(p) 1=1...m it follows that p, —p 1in the manifol
topology for 2 . Since {pkg was any sequence in 2 approaching p !
the topology of M this proves that the inclusion map of 2 in M has

continuous inverse and hence that 2 1s regularly imbedded.

COROLLARY. If M 1s a compact, Hausdorff, differentiable

manifold and © 1is a regular differential system on M then

every leaf of © 1s compact. Moreover the guotient topology for

M/® 1is compact and Hausdorff and with respect to it Ilg 1s a

closed mapping.

PROOF. Since M/@ 1s the continuous image of M under Il it Ls
compact. If % 1s a leaf of @ then it is closed in M by the theor::
and hence compact. The rest of the corollary follows from corollary <

of theorem VI.
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S. Quotient Manifolds.

THEOREM VIII. Let ®© be an E-dimensional Involutive

differential system on an n-dimensional dlfferentiable manifold

M and let (xl ces xn,(S) be a coordinate system in M regu-

lar with respect to ® . Then there 1s a unique n-m-dimensional
chart ¢ in M/@ with domain Tg(C) such that oo lg(q) =
(xpe1(a) ooe x5(q)) for all qe 0. Two such charts in M/®
are differentiably related and the set of all such charts for

M/@ 1is a differentiable atlas for /@ 1f and only if @ is

regular.

PROOF. 1If ZSUG(G) then 2 intersects & and since (x1 cee xn,O)
is regular with respect to © this intersection is a single m~dimensional
slice of (xl cee xn,(>), gay that defined by (tm+l o tn) . We define
0(Z) = (.7 +++ ty) « Clearly oo Ngla) = (xm+l(q) evs x,(q)) for
qu?. It 1s obvious that ¢ 1s one-to-one and 1its image 1is the cube in
RA-M  of the same breadth as (X7 ... xn,(9) . Thus ¢ is an n-m
dimensional chart in M/@ . That two such charts are differentiably

related 1s a consequence of theorem III. The last statement is a con-

sequence of the definition of regularity of a differential system.

DEFINITION IV. Let © be an involutive differential system
on the differentiable manifold M . A chart in M/@ such as

described in theorem VIII will be called a natural chart (with

respect to @). If @ 1is regular we call the set of all natural

charts in M/@ the natural atlag for M/® , and we call the

manifold defined by the natural atlas for M/® the quotient
manifold of M defined by ® , i.e. the quotient manifold 1s

(M/®,7) where ¥ 1s the unique complete atlas for M/6



20 RICHARD S. PALAIS

including the natural atlas. In general we denote it simply
by M/® .

It is important to note that although M/® is defined whenever @
1s involutlve, 1t is a manifold only when @ 1is regular. Also it can
happen that © 1is regular and M a Hausdorff manifold and that M/@
is not a Hausdorff manifold. For example let M = R2 - {(0,0)} and
for peM 1let @P be the subspace of the tangent space at p spanned
by 'D/’Bul )p . Then if O is an open set in M cubical with
respect to (uj,us) and pe U then (ul-ul(p),ug-ug(p),(?) is a regular
coordinate system with respect to ® . It follows that @ 1is regular.
The point set of M/® consists of the sets Z, = {(t,r) : teR} with
r#0, 33= {(£0) :t<0} ,end 3zt= {(t,00: ¢ 0} . The points
Z; and Zz cannot be separated by open sets. Thus picturesquely M/@
is a line with two infinitely near origins.

Though the following theorem is trivial it is useful 1in applying

other theorems and we state 1t for reference purposes.

THEOREM IX. Let M be a differentisble manifold and let

be the zero-dimensional differential system in M . Then @

®
is a regular differential system on M , its leaves are the unit

classes of points of M and Ilig : p —* 2p} is a diffeomorphism

of M onte M/8® .
Usually we identify M with M/® via the diffeomorphism Og -

THEOREM X. Let ©® be a regular m-dimensional differential

system on the n-dimensional differentliable manifold M . Then

g 1s a differentiable map of M onto M/® . If peM then

the null space of (5H®)p is ®p and the range of (5I'I®)p is

the entire tangent space at Ig(p) .
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PROOF. Let (xl o xn,(y) be a regular coordinate system with

respect to © centered at p . By definition of the menifold structure

~

for /@ there is a coordinate system (X ., ... ;;,H®(C3)) in M/®

such that xm+i ° I'I® = Xpet ot

at p . Moreover we clearly have 5Ilg( 9/'3xi)p =0 if is$ m and

This implies the differentiability of H®

5n@(’a/’axm+i)p = (9/9§m+i)n®(p) from which the other remarks follow.

COROLLARY 1. If @ 1s a regular differential system on

a differentiasble manifold M then Ilg is a continuous and

open mapping with respect to the manifold topology for M/@ .

PROOF. Since Il 1s differentiable it is continuous with respect
to the manifold topology for M/@ . If O 1is the domain of a coordinate
system in M regular with respect to @ then H®(O) is the domain of
a natural chart for M/® and hence is open with respect to the manifold
topology for 14/@ . By corollary 2 of theorem V H® is open with

respect to the manifold topology for M/® .

COROLLARY 2. If ® 1is a regular differential system on

a differentiable manifold M then the manifold topology for

M/@ and the gquotient topology for M/® are the same.

PROQF. Corollary 1 above and corollary 3 of theorem III.

COROLLARY 3. If @ 1is a regular differential system on

a Hausdorff differentiable manifold M then the set of compact

loaves of @ 1is an open Hausdorff submanifold of M/® .

PROOF. Corollary 2 above and corollary 1 of theorem VI.

COROLLARY L. Let @ be a regulaer differential system on

& Heusdorff differentiable manifold M such that each leaf of
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® 1is compact. Then M/® is a Hausdorff differentiable

manifold and Ilg is a closed mapping. If M/® 1is connected

(in particular if M 1is connected) then the leaves of © are

the fibers of a c” fibering of M with base space M/® and

projection g , and in particular the leaves of ® are all

C® isomorphic.

PROOF. The first conclusion follows from corollary 2 above and
corollary 2 of theorem VI. By the present theorem the rank of 6l
at each point of M 1is the dimension of M/@ so the second conclusion

follows from the proposition on page 31 of [l;] .

COROLLARY 5. If © 1is a regular differential system on

a compact, Hausdorff, differentiable manifold M then every

leaf of ® 1s compact, M/® 1is a compact, Hausdorff, differ-

entiable manifold and Ilg 1s a closed mapping. If moreover

M/® 1is comnected (in particular if M is connected) then the

leaves of © are the fibers of a C* fibering of M with

base space 4/@ and projection mapping H® , and in particular
the leaves of @ are all C® isomorphic.

PROOF. The corollary of theorem VIII and corollary 2 above prove

all but the last remark, and that follows from corollary L.

6. Factorization of Mappings.

A trivial but important result in the theory of topological quotier
gspaces ls the following factorization of mappings theorem: 1f R and
are equivalence relations on topological spaces M and N respectively
and f 1is a continuous map of M into N whigh carries R-equivalent

palrs of points into S-equivalent pairs of points, then there 1s a uniqt

mapping F of M/R into N/S satisfying Feo g =lgef and F
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is continuous with respect to the quotient topologiles [5, Chapt. 1, §9,
corollary of theorem 1] . As 1ls to be expected this has a natural
tinfinitesimal! analogue when M and N are differentiable manifolds,

R and S the relations of belonging to the same leaf of an involutive
differential system, and f a differentiable mapping. This is expressed

by (2) of the following theorem.

THEOREM XI. Let @ and V¥ be involutive differential

systems on differentiable manifolds M and N regpectively

and let f be a differentiable map of M into N . Then the

following three conditions are equlvalent:

(1) There is a mapping F of M/® into N/Y such that

Fell, =Nye°f . If such a mapping exists it is unique and is
) ¥ 2 & 1%t 1S unlque and 18

continuous relative to the respective gquotient topologies, and

if ® and Y are regular it is a differentiable mapping rela-

tive to the respective gquotient manifold structures.

<
{2) For all peM 6f(®p) < wf(p) .
(3) Each leaf of @ 1is mapped by f 1into a single leaf

of V¥ .

PROOF. Suppose a mapping F of M/® into N/¥ satisfying
Fo H® = HW° f exists and let peM . Let (yl ces ys,V) be a cubical
coordinate system centered at f(p) and flat with respect to Y .
Since f 1is continuous, by the corollary of theorem I we can find a
cubical coordinate system (%X ... xn,C7) centered at p and flat with
respect to @ guch that f£(0) € V . The relation Fe lg = Hwt>f im-
plies that f maps a leaf I of @ into a leaf F(Z) of V¥, so in
particular f maps an m-dimensional slice of (xl cee Xp, 0) 4nto an
r-dimensional slice of (yl e yS,V) where m 1s the dimension of ®

and r 1s the dimension of ¥ . It follows that the yr+J of Thave
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expressions with respect to (xq ... xn,(ﬁ) which are independent of
their first m arguments, i.e. there exist real valued functions in

n-m o - .
R such that Tpe f£(q) gr+j(x (q) oeo xn(q)) . The differenti:

m+l
bility of f 1implies the differentiablility of the Brej o If 1< m

s f) = 0 from the above

then dij(m‘(?/‘axi)p) = (’t?/bxi)p(s'r+j

expression for yr+j° f . Since the (9,/9x1)p i<£&m span @p
and the dyr+j span the annihilator of Wf(p) this implies that

6f(®p) QEWf(p) , proving that (1) implies (2)}. The continuity of F
with respect to the quotient topologies for M/® and N/¥ follows fro-
the corollary of theorem 1 of [ 5, Chapt. 1, §9]. If ® and Y are
regular then using corollary of theorem V we can assume that (xl s xn‘*
is regular with respect to @ and that (yl oo ys,V) is regular with
respect to ¥ . Then by definition of the manifold structures on WM/6
and N/¥ there is a coordinate system (X .7 .. X;,Mg(C)) in u/0
such that Xm+j
In N/¥ such that ¥puj = Jo,5°Ty . If 360e(0) let qe O with

= im+j °lly and a coordinate system (§r+j coe V5 s OylV))

Mg(a) = 2 . Then F.,5°F(3) = yp5°f(a) = gnyjixgy(a)... Xa(q)) =
gr+j(im+l(z) eve X,(2)) . Since the Epyy 8TE differentiable F 1s
differentiable in H®(C7) and 1n particular at p . Since p was
arbitrary F 1is differentiable.

Now suppose that (2) holds. To prove (3) it suffices, in view of t-:
connectivity of leaves, to prove that the set of points of a leaf I of
@ mapped by f 1into a fixed leaf of ¥ 1is open 2Z . Using the notati:-
introduced above, the m-dimensional slice of (xl cee xn,C3) containing
P 1s a nelghborhood of p 1in the leaf of © containing p , hence it
will suffice to show that an m-dimensional slice of (xl ces xn,(ﬁ) is
carried by f into a fixed leaf of V¥ , or better still into a fixed r-

dimensional slice of (yl cee yS,V) « Equivalently it will suffice to

show that the expression for Yrej of with respect to the coordinate
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system (xl . xn,C7) is independent of its first m variables and

this in turn is equivalent to showing that (Q/Qxi)(yr+jof) = 0 for
i€$m. Nowif 1< m then (0/?x;) belongs to @ so 85(9 /0 xy)
belongs to ¥ by (2) and hence, since (dyr+j)q annihilates ¥, for
aeV , (2/2x4)(yp,y of) = dy,,;(8f(2/3x3)) = 0 . This completes the

proof that (2) implies (3).
Finally suppose (3) holds. Given a leaf 2 of @ 1let F(Z) be

the leaf of ¥ into which 2 1s mapped by f . Then clearly

Felly = ly°f proving (1).

COROLLARY. Let © be an involutive differential system

n a differentiable manifold M and let f be a differentiable

map of M into a differentiable manifold N . Then the follow-

ing three statements are equivalent:

(1) There is a mapping F of M/® 1into N such that

L= Fellg . If such a mapping exists it is unique and is con-

tinuous with respect to the quotient topology for MN/© . If

® 1is regular then F 1is differentiable with respect to the

quotient manifold structure on M/® .

(2) For all peM 6f(@,) = 0 .

(3) £ 1s constant on leaves of @ .

PROOF. 1In the theorem take Y to be the zero-dimensional differ-

ential system on N and use theorem IX.
7. Projection-like Mappings.

DEFINITION V. Let M and N be differentiable manifolds.

A mapping I of M into N will be called projection-like if

it is differentiable and for each peM 5l maps the tangent

space to M at p onto the tangent space to N at TM(p) .
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THEOREM XII. If 11 is a projection-like mapping of a

differentiable manifold M into a differentiable manifold

N then Il 1is open and in particular II(M) is an open sub-

manifold of N .
PROOF. See the remark page 80 of [1] .

THEOREM XIII. Let I be a projection-like mapping of a

differentiable manifold M of dimension n into a differentia-

ble manifold N of dimension s and let ¥ be an r-dimensional

regular differential system in N . For each peM 1let e be

the set of vectors in the tangent space to M at »p mapped by

8I1 into V¥

n(p) ° Then @ : p-—+®p is an m = r+n-s dimensionsal

regular differential system in M . There is a local diffeo-

morphism h of M/@ into N/¥ with the following properties:

(1) Hw"H:h"H@ .

(2) For each 2eM/@ NfZ is a projection-like map of

2 into h(Z) .

(3) If M/@ is compact, Hausdorff, and connected and if

N/¥ 1is Hausdorff and connected(in particular, by

corollary 5 of theorem X, if ¥ and N are compact,
Hausdorff, and connected) then (M/®,h) is a covering

space for N/¥ .
PROOF. If peM then 6Hp being onto has a null space of dimension

- Y § - -
n-sg, hence since dim(WH(p))— r and @, = an (WH(p) » dim(@,) = ren-s =
m. Let (y ... ys,V) be a coordinate system in N centered at T(p)
Yegular with respect to ¥ . By [jl, proposition 2, page 80] we can
find a coordinate system (xl cee X, &) in W, such that Xt =
Vpei°l 1 =1 ... s-r . Ve can assumé that (%9 ove X &) is cubiecal,

centered at p and that II{ O )<C V . The relation ax, .4 = GH*(dyb+i)
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together with the fact that the dyr+i are a base for the annihilator

of ¥ implies that dxm+i are a base for the annihilator of

@ = EH'I(W) « Thus (%] ... xn,C}) is flat with respect to @ and
hence ® 1is involutive. Since 58I(@) = ¥ it follows from theorem XI
that there is a map h of M/® into N/¥ satisfying Ngell = h=H® .

Let Z be a leaf of ® and suppose I Iintersects O in the m-dimension-
al slice of (xl cee X, O) defined by (tm+1 ves tn). Then if q is
in this slice yn,;°l(q) = Xm-i(q) = t,,4 e&nd since h(32) = hellg(q) =
Ngell (qa) , h(2Z) intersects V in the r-dimensional slice of

(yl .o yS,V) defined by (tm+l eee ty) + Since (yq --- ¥gsV) is
regular h(Z) can intersect V in but one r-dimensional slice, hence

$ can intersect & in but one m~dimensional slice. Thus (xl e xn, C?)
i1s regular with regpect to @ so, as p 1s arbitrary, © 1s regular

by theorem V. It follows from theorem XI that h 1s differentiable.
Sirce II 1is projection-like by hypothesis and IIw and Iy are
projection-like by theorem X, it follows from the relation 8hesllg =
6Tlg°6Il that h 1is also projection-like. Since dim(4/®)= n-m = g-r =
dim(N/¥) , 6h maps a tangent space to M/@ isomorphically onto a

tangent space to N/Y , whence h 1s a local diffeomorphism.

Let 32 be the leaf of ® containing p and let 1 be the
injection mapping of 2 into M . Then as II and 1 are differentiable
g = el = N3 1is a differentiable mapping of 2 into N . Since h(Z)
cuts V 1in a single slice of (yl N yS,V) the proof of proposition 1
[l, page 95] shows that g 1s differentiasble at p . Moreover if & 1is
the tangent space to X at p then &g(®) = 8Ie51(3) = 6H(®p) = wH(p) ,
and since the latter is the tangent space to h(Z) at TI(p) it follows
that g = IIfZ 1s a projection-like map of 2 into h(Z).

Finally suppose that M/® 1is compact, Hausdorff, and connected and

that N/Y is Hausdorff and connected. Then h(M/0) is an open and
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compact and hence open and closed subset of N/¥ so h(M/®)= N/¥ . If
ZeN/¥Y then, since h 1is a local diffeomorphism, h'l(z) is a discrete
subset of M/® . BY the proposition of page 31 of [ u] it follows that
(1/e,N/%,h) 1is a ¢® fiber bundle with dlscrete fiber, i.e. (1/®,h)

is a covering space for N/Y .

Taking for ¥ the zero-dimensional differential system in I and

using theorem IX we get the following.

COROLLARY. Let 1 be a projection-like mapping of a

differentiable manifold M into a differentiable manifold N

and for each peM let ®p be the null space of GHP . Then

® : p—*@p is a regular differential system on M and there 1s

a local diffeomorphism h of /@ into N satisfying T1 = h° g -

If qeN then n"1(q) 1is the set of components of niq) . 1If

M/© s compact, Hausdorff, snd connected (and in particular if

M 1is compact, Hausdorff, and connected) and N is Hausdorff

and N 1is Hausdorff and connected, then (M/@,h) 1is a covering

space for N .

8. The Uniqueness Theorem.

Suppose © 1s an involutive differentlial gystem on M . By theorem
X if @ 1is regular then g is a projection-like mapping of M onto
M/® with resgpect to the gquotient manifold structure. Conversely we will
now show that if M/@ can be given a manifold structure with respect to
which Ilg is projection-like then ® 1is regular and the given manifold

structure on M/® 1is the quotient manifold structure.

THEOKREM XIV. Let © be an involutive differential system

on a differentiable manifold M . If M/@ can be given a




LIE THEORY OF TRANSFORMATIONS GROUPS 29

differentiable manifold structure with respect to which H@ is

projection-like, then @ is regular and the given differentiable

mnifold structure on M/@ coincides with the quotient manifold

structure.

PROOF. Denote by N M/@ with a given differentiable manifold
structure with respect to which H® is projection-like. For each peM
let Wp be the null space of (5H®)p » By the corollary of theorem XII
¥ 1is regular and the leaves of V¥ are the components of inverse images
of points of N wunder H® s l.e. leaves of @ . Since an involutive
differential system is determined by its leaves ® =Y so ® 1ig regular.,
Also by the corollary of theorem XII it follows that there is a loeal
diffeomorphism of M/® onto N satisfying g = ho H@ « Clearly h 1is
the identity map. But to say that the identity map of M/® onto N is
a local diffeomorphism is just to say that the given manifold structure

on -M/@ coincides with the quotient manifold structure.

9. Products of Quotient Manifolds.

If (M,®) and (N,¥) are differentiable manifolds then the set of
maps o XV : (p,q) — (o(p),¥(q)) where o0ed& and Ve¥ 1is a differentiable
atlas for MXN and the manifold it defines is called the product of
(M,#) and (N,¥) . In general we denote the product of differentiable
manifolds M and N simply by MXN and we identify the tangent space
to MXxN at (p,q) with the direct sum of the tangent space to M at
p and the tangent space to N at q as in [1 page 2] . 1r @ 1is a
differential system on M and & a differential system on N we denote

by @& the differential system (p,q)—'*@p@ <I>q on MXN .

THEOREM XV. If © and & are regular differential

systems on the differentiable manifolds M and N respectively
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then 0% 1s & regul ar differential sysbtem on M XN . The
mapping h : (Z,Z')— ZX2! is a diffeomorphism of (M/@) X (N/¥)
onto MXN/@ed eand if we fdentify MXN/0©% with (M/@) X (N/¥)

via h then Iggs goes into Mg X Mg * (p,a)—(Tg(p),Mglal)) -

PROOF. Since Ilg and Hq; are each projection-like by theorem 2
go 1is Il@X qu and clearly the null space of 6(H®XH¢)(p’q) =
= & .
(5n@)p@(5n§)q is 8,0 %; (@ @)(p’q) by theorem X. Also the

inverse image of (2,2') under II®XI'I<I> {s =X3' . The corollary of

theorem XIII completes the proof.




Chapter II1
LOCAL AND INFINITESIMAL TRANSFORMATION GROUPS

If a Lie group G acts locally (and differentiably) on a manifold
M , then one can define in a natural way a homomorphism of the Lie
algebra of G into the Lie algebra of differentiable vector fields
on M . Such a homomorphism is called an infinitesimal G-transformation
group acting on M , and if it arises from a local action of G on M
then it i1s said to be the infinitesimal generator of this local action.
Lie's 'Hauptsatz der Gruppentheorie' or 'Second Fundamental Theorem!
|6, page 390] can be interpreted as saying that an infinitesimal G-
transformation group acting on M generates a local action of G on
soms neighborhood of each point of N .

Our goals In this chapter are two-fold. First, in sections 1-5,
we develop the basic general theory of infinitesimal transformation
groups that will be used in the following two sections and in later
chapters. The key idea here 1s the detailed study of the topological
structure and imbedding of the leaves of a certain involutive differ-
ential system on GXM assoclated with an infinitesimal G-transformation
group acting on M and called its infinitesimal graph. The theorems
look rather technical in nature but their value is amply indicated later
on.

Secondly, in sections 6 and 7, we prove a uniqueness theorem (which
is easy) and an exigstence theorem (which is not so easy) for local G-
transformation groups with a given infinitesimal generator. The existence
theorem is a globalizatlon of Lie's Second Fundamental Theorem (as stated
above) with respect to M : 1t states that an infinitesimal G-transforma-

tion group acting on I generates a local action of G on all of M .
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The question of globalizing Lie's Second Fundamental Theorem also with
respect to G will be taken up in chapter 1II, end in chapter IV we
apply the results to develop & Lie theory for the group of all diffeo-

morphisms of a manifold onto itself.

1. Notation.

Besldes the definitions, notations, and terminology of chapter I,
we introduce the following standing notation. G will denote a connected
r-dimensional Lie group, e 1ts identity, and Gg itg Lie algebra of
right invariesnt vector fields. M will denote an n-dimensional differ-
entiable (i.e. C% or gnelytic) manifold. We denote by Iz and Ty
the projections of GX¥ on G and M respectively. 1If X is a
tangent vector to G at g and Y a tangent vector to M at p then
we denote by (X,¥Y) the vector Z tangent to GXM at (g,p) such
that GHG(Z) = X and GHM(Z) =y . If X and Y are vector fields on
¢ and M respectively, then (X,Y) 1is the vector field on GXM de-
fined by (X’Y)(g,p) = (Xg,Yp) . TFor each geG right translation by
g-1 will be denoted by Ry , 1.6 for heG Ry(h) = hg~l . We denote
by ﬁg the map (h,p)'—*(hg‘l,p) of GXM onto itself. Thus
Ry = Rg* 1 shere I 1is the identity mep of M , end Rgollg = Mg ° R, -
Finally, we denote by R the mapping (g,h,p)‘*(hg'l,p) of GXGXM

into GXM¥ .
2, Elementary Definitions.

DEFINITION I. A local transformation group domain in GXM

is an open subset D of GXM such that for sach peM the set

{geG : (g,p) sD} is a connected neighborhood of e .

THEOREM I. Let O be an open get in GXM which includes
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fel X M, and for each peM let Dp be the component of e
in {geG : (g,p)eo} . Then D = ;eJM (Dp X {p} ) 1s the largest
local transformation group domain in GXM which 1s included in

o .

PROOF. The only non-obvious fact 1s that D 1is open. Suppose
that (g,p)eD so that ger « Since Dp is arcwise connected we can
find a continuous map o of [0,1]1 into Dp such that o(0) = e
and o(l) = g » Denoting by {ol the range of o, |0 Xfp} € o0
and, since O 1is open, for each he lo I- we can find a neighborhood

V, of h and a neighborhood Uy of p such that VhXUhQO . Since
lol 1s compact we can choose h, ... b, such that [a] € ik={ Vhi .

k
Then putting U =/ )\ U, we see that U 1is a neighborhood of p
i=1 i

and that {olX U< 0. Let V be an arcwise connected neighborhood of

g and W a neighborhood of p included in U such that VXW<C 0 .
Given (h,q)eVXW we can find an arc in V jolnting g to h . Then

o followed by this arc s an arc in { keG : (k,q)e0} Joining e to h .
It follows that hqu so (h,q)eD and thus VXW €D . Since VXW is

a nelighborhood of (g,p) , D is open.

COROLLARY. The set of local transformation group domains

in GXM 4is g lattice under inclusion. If U and V are local

transformation group domains in GXM then their least upper

bound is UUV and their greatest lower bound is \_/J (W, X fpi )
peM

Wwhere W, 1s the componment of e in {geG : (g,p)eUNV] .

DEFINITION II. A local G-transformation group acting on

M 1s a differentiable mapping ¢ : D(p-——)M where D(p is a

local G transformation group domain in GXM and
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(1) for each peM ol{e,p) =P
(2) 1if (h,p)eDw s (g,m(h,p))eD¢ , and (gh,p)eDw , then

olgh,p) = o(g,o(h,p)) -

If Dy = GXM then o 1is called & global G-transformation

group acting on M.

NOTATION. We shall always denote the domain of a local G-
transformation group © acting on M Dby Dw . Moreover for
each peM we pub pr = {geG : (8:P)€D¢§ and for each geG+

we put D, = {peM : {g,p)eD } . We define o¢P : D M Dby
(Dg [} oP

oP (g) = olg,p) end o, i Do, M DY 0g(p) = o(g,p) -

We note that if o 1s a local G-transformation group acting on M
then for each pelM pr is a connected open neighborhood of e and ¢p
maps 1t differentiably into M . Similarly for each geG D(pg is an open
gubset of M mapped differentiably into M bY Og * Property (1) of
definition II says that o4 is the identity map of M . If o 1is
global then property (2) of definition Il says that for all g,heG we

1

have ogy = ng o + In particular it follows that 0p-1 = o so each

g
mg is a diffeomorphism of M onto itself when o 1s global. We shall

use these facts freely.

DEFINITION III. If o 1s a local G-transformation group
acting on M then we define a mapping with domain %} called

the infinitesimal generator of o and denoted by ot as follows:

for each Leq m*(L) is the vector field on U defined by

ot (L), = 50P(L,) for all peM .

DEFINITION IV. An infinitesimal G-transformation group

acting on M is a homomorphism of S? into the Lie algebra of
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differentiable vector fields on M .

THEOREM II. If ¢ 1is a local G-transformation group act-

ing on M then its infinitesimal generator o! 1is an infinitesi-

mal G-transformation group acting on M . Moreover for each

(g,p)eD, 5wp(yg) = o*(L)m(g’p)

PROOF. Let Le g} and let f be a differentiable function at p
in M. Let F=fogp so that F 1s a differentiable function at (e,p)
in GXM . The vector field X : (h,q)— (L},,0) 1is differentiable on
GxM¥ snd hence H = XF 1s a differentiable function at (e,p) in GXM.
It follows that H : qg— H(e,q) 1s a differentiable functicn at p in
M . Now H(q) = Le(ftqu) = 6¢q(Le)f = (oM{L)E)(q), d.e. H= ot{L)f .
Thus ot(L)f is a differentiable at p 1in M . Since f was an
arbitrary differentiable function at p this shows that ®+(L) is a
differentiable vector field at p and as p was an arbitrary point of
M it follows that ot(L) 1s & differentiable vector field on M .

Now let (g’p)8D¢ and let q = o(g,p) « Then qu/”\prg-l is
a neighborhood of e and for all h in the latter set (g,p) , (hg,p} ,
and (h,o(g,p)) are in D, so that o(hg,p) = o(h,0(g,p)) , i.e.
oP o Rg_l(h) = ¢4(h) . Since this holds for all h in a neighborhood of
e 1t follows that ¢1 and oPo Rg—l have the same differential at e .
Now an element L of Q? is right invariant and hence satisfies
8Rg-1(Lg) = L

+ = ot = 5o = 5oP =
and so o' (L) o 0" (L), = 607 (Le) = 6070 6Ry-1(L) =

5¢P(Lg) . This L and ot(L) (ile oP related [1, page 8L] .

ir L'e‘%} then of course L' and ¢+(L') are also mp related so by
[1, page 85] (L,L'] and [ot(L), o*(L')] are ¢P related, i.e.
¢+((L,L'1)p = 80P ([L,L) ) = [m*(L),w*(L')]p + Since o' is manifestly

linear, this proves that it is a Lie algebra homomorphism.
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DEFINITION V. Let @ be an infinitesimal G-transformation
group acting on M . We shall say that © generates any local
G-transformation group acting on M for which it is the infin-
itesimal generator and that ® 1is generating if it generates at

least one local G-transformation group acting on M .

Suppose now that D is any local trensformation group domain in
GXM . If we define ¢ : DM by o(g,p) = p , then o 1is a local
G-transformation group acting on M . Thus every local transformation
group domain in GXM 1is the domain of at least one local G-transforma-
tion group acting on M . Aside from this trivial remark there seems
to be little of interest that can be gaid about the set of local trans-
formation groups acting on M with a given domaln.

Two more interesting questions, which will be the major concern of
this chapter, are the following. Given an infinitesimal G-transformation
group © acting on M , what are the local G-transformation group domalns
D in GXM for which there exists a local G-transformation group o wit:
domain D and infinitesimal generator © , and to what extent is ¢ deter-
mined by ©® and D, supposing it does exist? The answer that we shall
give to the second gquestion is quite straightforward: a local G-transfor-
mation group is uniquely determined by its domain and its infinitesimal
generator. As to the first question, perhaps the most interesting point
is whether or not there exist any local G-transformation groups acting on
M generated by @ , 1i.e. whether or not © 1is generating. Lie's Second
Pundamental Theorem glves an affirmative answer to this question in the
following local sense: for each peM there exlsts an open submanifold O
of M containing p such that the infinitesimal G-transformation group
acting on 0 defined by L —&(L)I 0 is generating. We shall show

(corollary of theorem XI) that if M 1is Hausdorff, and even more
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generally, we can take O = M , that 1s, that @ 1tself is generating.

3. 'Factoring' a Transformation Group.

In chapter 1 we have defined what it means for an involutive differ-
ential system @ to be regular, and given a regular differential system
® on a differentiable manifold M we have defined a manifold structure
on the set M/@ of leaves of ® with respect to which the quotient
mapping H® : M—M/® 1is differentiable. We will now show that, under
suitable conditions, a global G-~transformation group acting on M inducesg
one acting on M/® , and that the two 'commute' with Mg «

Let @ be an involutive differential system on M and let ¢ be
a global G-transformation group acting on M . If geG and 2 is a
leaf of @ , then since Qg maps M diffeomorphically onto itself it
maps 2 diffeomorphically onto a submanifold 2!' of M . If pel then
the tangent space to 2 at p 1is @p , 80 the tangent space to 3I' at
¢g(p) is bmg(®p) . Thus a necessary and sufficient condition that 3t

be an integral manifold of ©® 1s that 6@g(®p) =06 for each pel .

“(D(S,P)
It follows that a necessary and sufficlent condition for wg(z) to be a

leaf of @ , whenever 2 is and geG , is that Gmg(®p) =® for

o(g,pP)
each (g,p)eGXM .

DEFINITION VI. Let @ be an involutive differential system
on M , and let ¢ be a global G-transformation group acting on

M . We say that ¢ 1s compatible with @ if either and hence

both of the following two equivalent conditions hold:

(1) For all (g,pleGXM 6¢g(®p) = ®¢(g,p)
(2) PFor each geG and each leaf I of @ , ¢g maps 2 diffeo-

morphically onto a leaf of © .

THEOREM III. Let © Dbe a regular differential system on M
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and let ¢ Dbe a global (}-transformation group acting on M .

Then if ¢ is compatible with @, there is a uniquely deter-

mined global G-transformation group ® acting on M/@ such

- = =t _ o mt
that H®o<pg = (pgol’l® for all geG . Moreover o = 51’I® Q7 .

PROOF. Let & be the zero-dimensional differential system on G .
By theorems IX and XV of chapter I, we can ldentify GXM/@®® with
G X(M/6) 4in such a way that Igeg ~ IXTg ¢ (g,p)——*(g,n®(p)) . MNow
if X 4is a vector tangent to M at p then 50(0,X) = 60P(0) + 5¢g(x) =
ng(x) 80 6@((@6@)(g’p)) = émg(@)p) = ®¢(8,P) . By theorem XI of
chapter I there is a uniquely determined differentiable map & of
G X{(M/®) into /@ such that oo (IxTy) = Ogo® , or equivalently
such that 5g° Mg = Mg © ®g for all geG . It is obvious that o 1is a
global G-transformation group acting on M/6 . If peM and 2 = H®(p)
then by the above commutativity relation 1'I®°<pp = 52 , hence if Le %
then 3 % (L) = 55 % (L,) = bllg° 50P(Lg) = 8llg ° 0¥ (L)

g(p) ®

4« The Infinitesimal Graph.

DEFINITION VII. Let © be an infinitesimal G-transforma-
tion group acting on M . We define a mapping @¥ on GXMU

called the infinitesimal graph of @ by:
7 = L,,0(L : .
®(g’p) { ( g’ ( )p) Le %}

If o 1s a local G-transformation group acting on M , then from
a strictly set theoretical point of view mp is the setb of ordered pairs
<I(g,wp(g)) : geDmp} . However, we shall use the term 'graph of ¢P'
for this geometrical object and reserve the symbol oP for situations
when, intuitively speaking, the mapping propertles of oP are being
considered. We shall show presently that @ 1is an involutive r-dimen-

aional differential system on GXM ,and that if © generates ¢ then
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for each peM the graph of o¢P 1is an open submanifcld of the leaf
25 of ®% containing (e,p) , in fact, it is the component of (e,p)
in Zp/ﬁ\Hél (pr) , with respect to the manifold topology of Ep .

This 1s the reason for the appelation tinfinitesimal grapht.

THEOREM IV. If © 1is an infinitegimal G~transformation

group acting on M then e is an involutive r-dimensional

differential system on GxM . If 2 1is a leaf of ©* then
the restriction of II; to 2 1s a local diffeomorphism of 2

into G . If (%} ..o X n,O) is a cubical coordinate system

+
centered at (g,p)eGXM and flat with respect to &' , then

the functions Wi ees W, defined near p 1in M by wi(q) =

Xp41(8,9) form a coordinate system in M about p .

PROOF. Given (g,p)eGXM , L—(L @(L)p) is clearly a linear map

g?
of CH' into the tangent space to GXM at (g,p) . If (Lg,G(L)p) =0

then Lg = 0 and hence, as L 1is right invariant, L = 0 . Thus the

above mapping 1s non-singular and so its range, which is @?g )
s

r-dimensional subspace of the tangent space to GXM at (g,p) .

, is an

Choosing a basis Iy ... L, for 9} it is clear that (Ll,®(Ll)) e
(Lp,®(Lp)) form a basis of differentiable vector fields for €% on all
of GXM ; moreover by the homomorphism property of ©® we have
[(xg,0(14)),(Ly,00300] = ([Lrg,15], [ews),e@] ) = (111,147,

o { Li,LJ] )) , and so by [1, proposition 1, page 88 ] ©* is an
involutive r-dimensional differential system on GXM .

If I is a leaf of ©* and (g,p)el , then the tangent space to 2

(g,p)

I
3

at (g,p) is ch . Since GHG(Lg,®(L)p) = Lg , 6ll; maps ©

g,p)
is isomorphlically onto the tangent space to G at g , and hence
Nz M2 1s a local diffeomorphism into G at (g,p) .

Finally suppose that (Xj ... Xpn ,0) 1is a cublecal coordinate
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coordinate system at (g,p) in GXM which is flat with respect 8" .
Define o : M— GXM by o(q) = (g,a) « Then o 1is a differential map
and we wish to show that wy = X,.40 0, i=1...n 1is a coordinate
gystem in a neighborhood of p . It suffices to show that the (dwi)p
are linearly independent, or since dw; = écﬁ(dxr+i) , that the null

)

Now as (xl e xr+n,0) is flat with respect to @¥ , the (ax

space of 60; is disjoint from the linear span of the (dxr+i (g,p)

r+i)(g,P)
. On the other hand, the

form a base for the annihilator of @Tg’p)
null space of 50* is the annihilator of the range of &¢ and,:és the
range of &0 = the set of vectors of the form (0,Y) where O 1is the
zero vector at g and Y any vector at p ) is clearly supplementary

to @?g p) ? its annihilator is in fact disjoint from the annihilator of
1
8 .
(g,p)

CCROLLARY. If ® is an infinitesimal G-transformatlion

group acting on M then every leaf 2 of CH satisfies the

second axiom of countability, and any differentiable map of a

differentiasble manifold into GXM with its range in 2 1is a

differentiable map into 2 .

PROOF. G is a connected Lie group and hence satisfies the second
axiom of countability. Since Z 1is connected and II; maps 2 locally
diffeomorphically into G , the proof of [1, lemma 3, page 97 ] (with G
playing the role of rd ) shows that 2 satisfies the second axiom of
countsbility. The second statement of the corollary follows from

[1, proposition 1, page 95 J.

The following rather technical result plays a central role in the

further development of the theory.
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THEOREM V. Let @ be an infinitesimal G-transformation

group acting on M , and let 2 be a leaf of ®* which is

Hausdorff in its manifold topology. If HG maps an open subget

0 of Z one-to-one onto a connected subgset V of G, then O

is a component of Z/”\Hél (V) in the manifold topology of I .

PROOF. Since 0 1is an open submanifold of 3 it follows from
theorem IV that Ii; maps O locally diffeomorphically onto V , and
being one-to-one on 0 1t acetually maps O diffeomorphically onto V .
It follows that O is connected. Hence, since 0 is open, it will
suffice to show that O i1s closed in Zr”\nal (V) . Let (g,p) be any
point of 2 F\H&l (V) not belonging to O ; we shall show that (g,p)
is not adherent to 0 1in the manifold topology of Z . Now there is a
unique point of O whose first component is g , say (g,q) . Since 32
is Hausdorff we can find 2 nelighborhoods U and W of (g,p) and
(g,q9) respectively which are disjoint. Once again making use of the
local diffeomorphism property of HG restricted to I , we can assume
that HG maps each of U and W diffeomorphically onto the same neigh-
borhood of g . Moreover since O 1is open in 2 , we can assume that
WEO0 . It is then immediate from the fact that HG is one-to-one on O
that U0 €W . Since UNW 1is empty it follows that U does not
meet O , and since U 1s a 2 neighborhood of (g,p) , that (g,p)

is not adherent to 0 1in the topology of 3 .

Note that the topology of 2 1induced by GXM 1is possibly strictly
weaker than the manifold topology of 2 (as a leaf of ©" ) and that it
is necessary to distingulsh these two possible topologies for I .
However, using the fact that 2 satlsfies the second axlom of countability
(corollary of theorem IV), it can be shown that if O is open in the mani-

fold topology of 3 , then the components of 0 are the same in both
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topologies. Thus, though we shall never need the fact, in the last line
of theorem V we could replace imanifold topology of Z! by ttopology of

axM'.

= -1

THEOREM VI. The mapping R @ (g,h,p) —(hg ~,p) of
GXGXM into GXM 1is a global G-transformation group acting
on GXM which is compatible (definition VI) with the infin-

itesimal graph of every infinitesimal G-transformation group

acting on M . EL&CHV then 8T ) = (-L,0) where L  is

the left invariant vector field on G such that f"e = Le .

PRCOF. That R is a global G-transformation group acting on GXH
is obvious. If © is an infinitesimal G-transformation group acting on
M and LSO& , then since ﬁg = RgxI and L is right invariant, 1t
follows that éRg(Lh,G)(L)p) = (GRg(Lh),GI((E(L)p)) = (Lpg-1 » e(L),) and

o B&8R_© = ¥
& g°(h,p) R(g,h,p)

compatible with ev .

for all (g,h,p)eGXGXH ; 80O R is

let J be the map h—‘>h"1 of G onto itself. Given geG and
peM let T be left translation on G by & and let f be the map
n-»>p of G into 1 . Then g(8P) = (peg)xf so s &P) =
5TeonI®6L « Now clearly &f = 0 , and if Le oa' then the relation
J(exp(tL)) = exp(-tL) together with the fact that the tangent vector
to the one parameter subgroup t —exp(tl) at e is 1L, implies that
6J(Lg) = -Lg - Hence Rt (L)(g ) = Gﬁ(g’p)(Le) = (5T ° 8J(Lg),8r(L,)) =
(s7(-L,), 0) = (-I,, 0) . ’

We shall henceforth be continually referring to the following

corollary.
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COROLLARY. If @ is an infinitesimal G-transformation

group acting on M , 2 a leaf of CH , and geG , then

X =§g(z) is a leaf of @  and R, maps 2 diffeomorph-

= g
ically onto 2Z' . If V 1is any open set in G , then ﬁg

maps each component of I r\nél(v) (relative to 3 )

-1 -
diffeomorphically onto a component of Z' N Il; (Vg l) {relative

to 2v).

PROOF. The first conclusion is an immediate consequence of the

theorem and definition VI. Since ﬁg maps GXM diffeomorphically
onto ltself and 2 diffeomorphically onto Z' 1t maps Z/’\Hél(
1 -1 -

(V) = 2\ O (Vg 1y , and hence

V)
diffeomorphitally onto ﬁg(z)/\ ﬁgn&
each component of I N Uél(V) diffeomorphically onto a component of

2t AmHve™h) .

THEOREM VII. If ¢ 1is a local G-transformation group act-

ing on M , then for each peM the graph of oP 1s an open,

connected submanifold of the leaf of o%" containing (e,p) .

It i

regularly imbedded in GXM and Il; meaps 1t diffeomorph-

ically onto DQP .

PROOF. Given pel, Dyp 1s an open, connected submanifold of G
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and & : g—(g,0(g,p)) maps it differentiably into GXM and onto the

graph of oP . Putting q = ép(g) we have, by theorem II, that for each

P - - +
Le @ 88°(L,) = (L 80P(Ly)) = (Ly,07 (L), (, o

the tangent space to D,p 1is mapped isomorphically by 5% onto Qa*

)) = (L,cp+(L))q . Hence

and it follows that if we carry the manifold structure of pr over to
the graph of oP via &P then the graph of @p becomes a connected
r-dimensional integral manifold of w** ,» and hence an open submanifold

of a leaf of ¢t* ., Since &P(e) = (e,p) , this leaf is the one
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containing (e,p) . The inverse of @° is Hg restricted to the graph
of &° . Since HG is continuous on G XM 1t follows that 3 isa
homeomorphism inte GX1U , and hence that the graph of oP is regularly
imbedded in G XM . The last conclusion is also a consequence of the

fact that HG on the graph of oP is inverse to aP

LEMIA. Let o Dbe a local G-transformation group acting

on M , peM , and I the leaf of ot® containing (e,p) . If

(e,q) 1Ls adherent to the graph of o in the topology of Z,

i

Lhen p = q -

PROOF. Let O be a neighborhood of g and V a symmetric
neighborhood of e such that VX0 C D¢ . Let U Dbe a neighborhood of
(e,q) in the graph of wq such that U €VXO0 . By theorem VII U 1is
a neighborhood of (e,q) in I . Since (e,q) 1is adherent to the graph
of oP in the topology of Z , there exists a point (g,o(g,p))eUMN graph
of oP . Then since (g,0(g,p))eU € graph of o 1t follows that
olg,p) = olg,q) . Now g'leHG(U)'l'E;V'l =V and m(g,p)eﬂM(U) co

so (g7 t,0(g,p)) = (g71,0(g,9))eVX0 S D, - Since (e,p) and (e,q)

are also in D¢ , 1t follows from definition II that p = ol(e,p)

o(gt,g,p)) = olg”t,0(g,q)) = ole,q) = q .

THEOREM VIII. If © 1s a generating infinitesimal G-

tpansformation group acting on M , then every leaf of e* ié

a Hausdorff manifold.

PROOF. Let ¢ be a local G-transformation group generated by @
and let 2 be a leaf of e = m** . Let (g,p) and (g',q) Dbe points
of 3 that cannot be separated by open sets of 2 . Since Z 1s a sub-

menifold of GXM , its manifold topology is stronger than the topology

induced from G XM ; hence (g,p) and (g!',q) cannot be separated
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by open sets of GXM . Since ¢ 1s Hausdorffr it follows that g = g' .,
By the corollary of theorem VI ﬁg maps 3 diffeomorphically onto the
leaf 3' of o ¥ containing {e,p) , hence (e,p) and (e,q) are
points of 3t that cannot be separated by open sets of 3zt | By theorem
VII the 8raph of ¢P ig g neighborhood of (e,p) in Z'  and hence meets
®ach 2' neighborhood of (e,q) . Thus (e,q) 1s adherent to the graph
of P in the topology of 1 and hence, by the lemma, p = q « Thus

(g,p) = (g',9) , which proves that 3 ig Hausdorrr,

== —_
—

COROLLARY 1I. Let @ be an infinitesimal G-transformation
— =2 2linltesimal - y2 o
group acting on M, peM, 3 the leaf of " containing (e,p),

and o any loecgl G-transformation group generated by @ . Then
= T T 7 ———-fmation group 2o EVed DY

-1
the graph of oP 1is the component of (e,p) 1in Z,’\HG (pr)
with respect o the manirfoig topology of =,

PROOF. By the theorem Z 1is a Hausdorrr manifold, By theorem VIT
the graph of oP is an open submanifold of j which HG maps one-to-

one onto pr + Since pr 1s connectedq theorem v completes the proof,

COROLLARY II. There exists a non- eneratin infinitesimal
—==—= SA1ISUS & non ating ——=-dibegimal

G—transformation roup.
—===-oimatlon group

il

PROOF. Choose e'¢G and let M GUle} . we meke M into an
analytic manifolqg by decreelng that G and ¥ - f e} shall be open sub-
manifolds and that the map g — g (g#e), e et shall be a diffec-
morphism of g onto M - f e} « Given .Leeg there 1s g unique analytic
vector fielgd ®L) on m such that (L) [ ¢ = L. Clearly o 14 an
infinitesimal G-transformation group acting on 1y . The leaf of g% con-
taining (e,s) consists of the pointsg (g,8) with geq and the point
(eye') , ang IL, maps 1t diffeomorphically onto p + Clearly (e,e) ang

(e,e1) cannot be Separated by open sets of this lear 80 it 1s not
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Hausdorff. By the theorem ® 1is not generating.

According to the above theorem, & necessary condition that an
infinitesimal G-transformation group acting on M Dbe generating 1s that
each leaf of ®% 1is a Hausdorff manifold. Theorem XI states that this
condition is also sufficient, so that if M is Hausdorff then every in-

finitesimal G-transformation group acting on M 1s generating.
€. The Local Existence Theorem.

LEMMA. Let © be an jnfinitesimal G-transformation group

acting on M , ped , and (xl ces Xr+n’Q) a coordinate system

in GXM centered at (e,p) and flat with respect to ¢ . If

(zq oee 2nsV) is & coordinate system in G centered at e , and
. = -1 -
if we define 2y (1=1...r) in T4 (V) by 23 = 230l then

Eggzgﬂgg_g_neighborhood 0 of (e,p) in GXM such that

(Zq eov BpaX ypeee X.,n'0) is & coordinate system in G XIi .

PROOF. Let S be the null space of (GHG) , 1.e. the set of

(e,p)
all vectors tangent to GXHM at (e,p) which are of the form (0,Y) .

Then (dzq) e.s (4Z) is a basls for the annihilator of 3 .
1 (e;p) r

(e,p)
on the other hand, since (X3 ... Xr+n’Q) 1s flat with respect to &7 .

(dxr+l)(e,p) vos (éxr+n)(e’p) is & basis for the annihilator of ®(e,p'
Then as S and O are clearly supplementary subspaces of the
{e,p)

tangent space to G at (e,p) , it follows that (le)( y
€,p

(dEn)( ,( .ee (dx ) is & basis for the space of
’

dx
e,p) r+l)(e,p) r+n’(e,p)
differentials at (e,p) , and the lemma i1s an immediate consequence of

this.
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THEOREM IX. Let ® be an infinitesimal G-transformation

group acting on M such that each leaf of e’ is a Hausdorff

manifold, and for each qell denote by Z, the leaf of @

which contains (e,q) . Given peM there exists an open neigh-

borhood U of p such that if V is any sufficiently small

open, connected neighborhood of e , then there is a unique

diffeomorphism ¥ of VXU into GXM satisfying the two

conditions
(1) HGow = HG!‘VXU

(2) for each qeU the map g-—V¥(g,q) i

a diffeomorphism of

s
V onto the connected component of (e,q) in zqnn('}l(v)

(relative to Zq ).

PROOF. Let (z. o.. zr,V) be a coordinate system in G centered

1

- . -1 -
at e, and define z; (i =1 ... r) in I, (V) by 23 = z;°1, .
Let (xy ... Xr+n’Q) be a Tlat coordinate system with respect to &

n
then by theorem IV there is a neighborhood U of p such that

centered at (e,p) . If we define W oee. w by w,(q) = x, 4(e,q) ,

(wl ««+ W,,U) 1s a coordinate system in M . Define Fvi (=1 ... n)
on %I(U) by v-vi = w0 Iy - By definition of the manifold structure on

GXM , (El ces Z xTvl v-vn,V XU) 1is a coordinate system in GXM . By

rb!

the lemma we can find a neighborhood 0 of (e,p) such that

(zl see Zpy X o eee xr+n,0) is also a coordinate system in GXM . By

reducing the sets 0 , U, and V we can suppose that both of the above

coordinate systems in GXM are cubical and of breadth 2a for some ad 0.

Then there 13 a uniquely determined diffeomorphism W of VXU onto 0
such that
(l') Ei o \1! = 21 3y

(21) Xr'_io\b:;l. .
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Since zi° HG = 2z4 = zg
in V it follows that HGO ¥ = HG

oy = zio HGO ¥ , end the z4 are a

coordinate system fV XU whick

If qeu and geV , then by (2') Xpyq (W(8,2)) = Wy (g,) = ¥

xr+i(e,q) . Since ¢ 1is onto 0 1t follows that Ww(V,qa) 1is the

p-dimensional slice of (% eee Xr+n’o) defined by (xr+l(e,q) .

xr+n(e,q)) . Then as (Xp s-» xr+n,0) is flat with respect to

follows that ¥(V,q) 1s an open submanifold of Zg - Now by (1)

HG(w(g,q)) =g, so I, meps y(V,q) one-to-one onto V . Sinc

connected and Eq i1g by hypothesis a Hausdorff manifold, 1t foll
theorem V that ¥(V,q) 1is the connected component of (e,q) in

2N nél(V) . By theorem IV I, maps v(V,q) diffeomorphically
and hence the inverse of nGl‘w(v,q) , which is g —Yy(g,q) , map
diffeomorphically onto ¥(V,q) = the component of (e,q) in th
This proves (2).

Clearly if V! 1is any open, connected neighborhood of e

in V then wIMV' XU also has the desired properties.

COROLLARY. If © 1is an infinitesimal G-transformatior

group acting on M such that every leaf of ®° 1is a Hausd

menifold, then given any peM there exists 2 neighborhood

such |

of p and an open, connected neighborhood vV of e
in Zq/\II

for each qeU II; maps the component of (e,q)

(with respect to the manifold topology of Zq ) diffeomorph

onto V .

Lie's Second Fundamental Theorem, in essentlally its classi
form, follows easily from theorem IX. Define ¢ oOn vV XU by
and let O = { (g,p)ev XU : w(g,p)eU} . Then O 1s open in

and {e}y X U SO0 . If D is the largest local transformation
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domain in O (theorem I), then o "D 1s a local G-transformation group
acting on U and (oPD)¥(L) = @(L)MU for all Le gg . However, we
omit details since we shall show in section 7 that we can actually paste
together a lot of o's in such a way as to get a local G-transformation
group acting on all of M which is generated by @ .

The corollary of theorem IX is the last result of this chapter that
will be needed in later chapters. The results of the next two sections,
while of some interest in themselves, are rather complicated, and since
they do not seem to lead anywhere in particular the reader may well pre-
fer to skip to chapter III where the theory becomes considerably more

interesting and elegant.

6., The Uniqueness Theorem.

We are now able to derive some important information concerning the
order properties of the set of local G-transformation groups acting on
M under the partial ordering relation '¢ 1s a restriction of ¢ '.

As a consequence we get a uniqueness theorem for local G-transformation
groups acting on M with a given domaln and a given infinitesimal

generator.

THEOREM X. Let the set of local G-transformation groups

acting on M ©be partlially ordered by restriction, i.e. we say

'o i3 less than ¢ ' if o = 11f“D(p . Then a necessary and

sufficient condition that two local G-transformation groups,

o and ¥ , have a lower bound is that they have the same in-

finitesimal generator. If thls 1s the case then ¢ and V¥

actually have a greatest lower bound, o , whose domain D 1is

the largest local transformation group domain included in

D¢f\ DW , (see the corollary of theorem I).
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PROOF. Suppose that ¢ and V¥ have a lower bound 8 . Then for
any peM 6° = oPT Dgp » and since Dgp is a neighborhood of e it
follows that for any LSQ} we have w*(L)p = éwp(Le) = Gep(Le) = e*(L)p
so ot = 6%t . Simllarly ¢' =06t so ot =yt , i.e. o and ¥ have
the same infinitesimal generator.

Conversely suppose that ¢ and ¥ have the same infinitesimal
generator, © , and for each peM denote by Zp the leaf of @ con-
taining (e,p) . Let Dp be the component of (e,p) in pr/\ pr ,

80 that by the corollary of theorem I D = %Eﬁ (Dp,X {p} ) + By
corollary 1 of theorem VII, given peM the graph of oFf is the component
of (e,p) 1in 3 N H(_}l(Dq)p). Since I, maps the graph of oP diffeo-
morphically onto Dmp (theorem VII), it follows that the graph of PP Dp
is the component of (e,p) in Zp/\ H&l(Dp) . Similarly the graph of
wpi‘Dp is also the component of (e,p) in 25N Hél(Dp) . Hence

oP T Dp =yPID and since p is arbitrary, ol D =y!'D . Putting

p ’
o for the common restriction of ¢ and ¥ to D , it is clear from the
fact that D 1s the largest local transformation group domain incliuded

in DQ/\ DW that o 1is a greatest lower bound for ¢ and V¥ .

COROLLARY 1. If o and V¥ are two local G~transformation

groups acting on M with the same infinitesimal generator and

C = .
D,< Dy » then o vl D¢

v

COROLLARY 2. A local G-transformation group acting on M

is uniquely determined by its domain and its infinitesimal

generator.

COROLLARY 3. If @ 1s an infinitesimal G-transformation

group acting on M , and o a local G-transformation group

generated by @ , then there ig a local G-transformation group
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14 acting on M, maximal under the ordering by restricgigg,

Such that 0 =y PDw * Any such ¥ hag g as 1itg generatorp,

PROOF. The exlstence of y follows p

Zorntg lemma, and thgt W+ = ©® follows from the theorem,

COROLLARY he 18 @ is an infinitesimal G-Eransfqrgation

group acting on M, then the following three Properties are

8quivalent:

(1) o is generating ang under the partial ordering by
restriction any two loecal G—transformation roups
—==—=ttilon any —Z2 tocal ————-—2=0n groups
generateq by e have An upper bound,

(2) The Set of loeal G-tragsformation groups generated by

® have & maximum element under the ordering by restriction.

—_—

(3) The set of local G-transformation groups Eenerated by g
form a Hon-empty lattice under the orderin by restriction.
=== & non __E_X._‘___l"____.____ —=8ring —==2iClion

PROCF, Suppose that (1) holds. Since @ i4 génerating, it follows
from corollary 3 that there ig 8 maximal G—transformation group,
generateq by e . It o 14 any local G-tp
by @ s then ¢ and g have gn upper boun
7y must be o itselr, This shows that o
In the set of a131 local G-transformation groups geénerateq by @
1) implieg (2).

s 1t 1g clegr from

v is g leasgt upper boung for [}
d ¥, s0 (2) implieg (3).

That (3) implieg (1) 15 obvious,

51

Y an elementary application of
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An infinitesimal G-transformation group, ® , acting on M 1s
called univalent if for each peM the leaf 2, of @% containing
(e,p) is mapped one-to-one (and hence by theorem IV diffeomorphically)
into G by HG . The theory of univalent infinitesimal groups is very
rich and elegant, and we will devote chapter III to it. For the present
we will content ourselves with a few elementary remarks. Suppose then
that © 1s univalent. It follows from theorem XI of the next section
that @ is generating. If ¢ and ¥ are two local G-transformation
groups generated by © and (g,p)eleﬂ DW , then by theorem IV it
follows that (g,0(g,p)) and (g,0(g,p)) Dboth belong to z, - Since
T, maps Zp one-to-one it follows that o(g,p) = ¥(g,p) and hence o
and V¥ sagres on their common domain. Then if we define 6 on Dm L)DW
by © PDQ = ¢ and 6°f DW =v¢ , 6 is an upper bound for ¢ and V¥ .
Thus univalent infinitesimal groups satisfy the conditions of corollary L
{(we do not know if, conversely, every infinitesimal group satisfying the
properties of corollary I, is univalent, but we suspect so). The maximum
local G-transformation group generated by a univalent Infinitesimal group
¢an be constructed quite explicitly, without any appeal to Zorn's lemma:
in fact, as we shall see in chapter III, it is uniquely characterized by

the property that for each peM the graph of oP 1is the entire leaf Zp .

7. The Existence Theorem.
In this section © will be an infinitesimal G-transformation group

acting on M such that each leaf of e¥ is Hausdorff. The latter

hypothesis will be necessary in order to apply theorem IX. Our goal is
to show that @ 1is generating, and we shall give a hammer and tongs
construction of a local G-transformation group acting on M which is
generated by © . As usual for each peM we will denote by Zp the

leaf of @° containing (e,p) . Whenever we speak of a component of
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a4 subset of Zq We shall mean with respect to the manifold topology of
Zq as a leaf of @* and not with réspect to the Possibly weaker topology
induced fropy GXu .

Let (zl cer 2.,W) be g fixed canonical coordinate System in ¢ .
By a cubical neighborhood °of e we shall mean a subset or g which ig
an open cube centered at €& with respect to (Zl zr,,W) + We note
that the cublieal neighborhoodg of e form a linearly ordered (by ineclu-

sion) basgis of nelghborhoods of e each of which is open, Connected, and

Symmetric. These are the only relevant broperties fop what follows,

DEFINITION VIIT, Let vy be a cubicg] neighborhood of e,
U an open set in y s and §y g diffeomorphism of VXU into
GXM . e shall call vy an auxiliary map if the Tollowing three
conditions gpe satisfieqd.
(1) Ooyoy = ItV xU
(2) Pop each qeU y g-—-»u/(g,q) maps V diffeomorphically onto
the component of (e,q) 1in Eq/\ Hél(V)
(3) For each qeU , Iz meps the component of (e,q) in zqr\ngl(v%

one-to-one onto V2 .

LEMMA a. For each PeM  there i

fomdi

& neighborhooq vy of p

such that ir w is any sufficient)lz 8mall cubical neighborhood

of e, then there is & unique au.xiliarz map of W XU into GXM.

PROOF, Choose y VXU > axu as 1n theoremnm IX, and 1et 0O be g
heighborhoogd of e such that 02 €v.,. Then ir y 1s any cubical nelgh-

borhood or € which ig included in O, whwxu is the unique auxiliary
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map of WXU into GXMU

LEmA b. Let W ¢ VXU—GXM be an auxiliary map, and
let peU . Then v(e,p) = (e,p) and if yP 1 VG XM is de-
fined by vwP(g) = ¥(g,p) , then for any Le % @(L)p = 5T, © syP

(L)

PROOF. W(e,p)e(component of (e,p) in zpnn('}l(v)) . But of
course (e,p)e(component of (e,p) in Zp Ha_l(V)) also. Then gince
N; maps the component of (e,p) in pr\nél(v) one-to-one and '
HG\IJ(e,p) =g = HG(e,p) , it follows that v(e,p) = (e,p) -

By (2) of definition VIII, \:/p maps V diffeomorphically onto the
component of (e,p) in pr\ n(’}l(v) . Now the latter is an open sub-
manifold of Zp and hence its tangent space at (e,p) 1is @z(“e’p) , 80O
by the first part of the lemma, if Le(g then GWP(LQ)“:@Te’p) . On the
other hend, by (1) of definition VIII HGO\VP maps V identically, so
811, © 5¥° (L) = Lg - Now (Lo,®(L),) 1s the only element of ®(0.p)
which is mapped onto L, by B8l , hence 5Ty © syP(L,) = 5Ty (Lg,®(L),) =

@(L)p .

LEMMA c. Two auxillary maps agree in the common part of

their domains.

PROOF. Let V¥ s VXU—GXM and V' : ViXTU' > GXHM be two
auxiliary maps. AsS both V and V' are cubical neighborhoods of e ,
either V€ V' or V! <V, and for definiteness we assume the latter.
Let (g,p)e(VXU)f\(V'XU') . Then V'(g,p)e(component of (e,p) in

lv)) . Also

Zp/’\HE}l(V')) C (component of (e,p) in zpr\n{}
v(g,p)e(component of (e,p) in pr\ H'él(V)) . Then since HG(\v(g,p)) =
g = Ng(v'(g,p)) , and I maps the- component of (e,p) 1in Zpﬂﬂal(V)

one-to-one, it follows that “y(g,p) = v'(g,p) -



LIE THEORY QF TRANSFORMATION GROUPS 55

LEMA d. Let v : VXU—-axH be an auxiliary map and
let ¢ = yow If (h,plevXxU , then Ry  maps Zp diffeo-
morphically onto Zo(h,p) » &N if W Cg then Ry maps any
component of pr\ H&_l(w) Qifi_e_pmorp_hic_al_;x onto a component

-1 (wn-1
of Z(D(h,p)n o5~ (Wn-+)

PROOF. Since (h,(p(h,p))=\11(h,p)e(component of (e,p) in
Zp/\Hél(V)), in particular (h,cp(h,p))ezp so (e,ep(h,p))ef_kh(zp) .

The lemma now follows from the corollary of theoren VI.

LEMMA e. Let ¥ 1 VXU —>exu be an auxiliar'[ map, and
let ¢ =D oy ., £ (b,p) , (g,0(n,p)) , and  (gh,p) all are
containédd in VXU » then o(gh,p) = o(g,0(h,p)).

FROOF.  Since v = vmn-lg y2u-1 (8,0(5,0(1,0))) = ¥(g,0(n,p))e
(component of {e,o(h,p)) 1n zw(h,p)n Hél(V)) & (component of
(e,0(h,p)) 1in Zo(h,p) N T3 (V2h1) | It rolrows that  (gh,o(g,o(h,p)))e
(corponent of (h,o(h,p)) in Zpﬂ H&l(Vg)) » from lemma d. wNow
(h,p(h,p)) = ¥(h,p)e(component or (e,p) 1in zp/\ngl(v)) < (component
of (e,p) 1in zpr\n(‘}l(vg)) ,» hence (gh,cp(g,co(h,p)))e(component of
(e,p) in I, N H&l(Vz)) + On the other hand, (gh,0(gh,p)) = V(gh,ple
(component or (e,p) in Zp nn&l(v)) C (component of (e,p) in
Zp/\Hél(Vz) + Since I; maps the component of (e,p) 1in pr\nél(vg)
one-to-one, and I,(gh,p(gh,p)) = gh = Is(gh,0(g,0(h,p))) » it follows
that o(gh,p) = o(g,e(h,p)) .

LEMMA £, Let Vv VXU ->GxH and Y! VXU gx

be two auxiliarz maps, ¢ = I'IMow y 8nd o! = ITM oyt Ir
(h,p) and (gn,p) belong to VXU and (gy0(h,p)) 1s in
VIXU' , then ¢(gh,p) = o' (g,0(h,p)) .
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PROOF. Case I : V& V' . Both (h,o(h,p)) = ¥(h,p) and
(gh,o0(gh,p)) = ¥(gh,p) belong to the component of (e,p) in
Z‘.pf\ l'lal(V) , so (gh,o(gh,p))e(component of (h,o{h,p)) in
I, N Hal(V)) . It follows from lemma d that (g,0(gh,p))e(component of
(e,0(b,p)) 1n Zy(y o) mgt(vn™h) . Now wmlecwl=v2cv?® s
a fortiori (g,0({gh,p))e(component of (e,0(h,p)) in zw(h,p)m nal(V'B)).
On the other hand, (g,w‘(g,w h,p))) = v¥'(g,0(h,p))e(component of
(e,o(h,p)) in 2 o(h,p )(\H (V')) C (component of (e,o(h,p)) in

-1 y12 .
Zo(n,p) N g (Vt€)) . Since M, maps the component of (e, h,p))" in

zw(h,p)
1t follows that o{(gh,p) = o'(g,0(h,p)) .

N ML (V12) one-to-one, and Ii,(g,e(gh,p)) = g =TI (g,0'(g,0(h,p))
G G G

Case II: V' C V . Since (g,0'(g,0(h,p))) = ¥ (g,p(h,p))e
(component of (e,o(h,p)) in z@(h, )f\ H_l(V 1)) , it follows from lemma
4 that (gh,o0'(g,o(h,p)))e(component of (h,o(h,p)) in ZPf\Hal(V'h)) .
Since V'h € V'V € V2 |, a fortiori (gh,o'(g,o(h,p)))e({component of
(h,o(h,p)) in Z, mnal(Vz)). Now (h,o(h,p)) = ¥(h,p)e(component of
(e,p) in 2 f\l’IGr (V)) € (component of (e,p) in Z‘. f\II'l(Vz)) , hence
(gh,0'(g,o(h,p)))e(component of (e,p) in 2, f\HGl(Vz)) But also
(gh,w(gh,p)) = y(gh,p)e(component of (e,p) in 2 NI 1(V)) € (component
of {e,p) in zpr\nal(VZ)) . Since Iy is one-to-one on the component
of (e,p) in zpr\n'l (v2), and T4(gh,o'(g,0(h,p))) = M(gh,olgh,p)) ,

¢(gh,p) = o(g,0(h,p))

LEMMA g. Let ¢ : VXU—GXM and Yr 2 VIX U GX M

two auxiliary maps, and let D = (VXU)Y WU (V'XU') . Then

d‘!O"
[a g {0}

ere is a uniquely determined map o of D into M such that

ol VXU = jyo¥ and oPVIXTU' =1, V' . Moreover
(L) if peUUU' then ofe,p) =p,

(2) if (n,p), (g,o(h,p)), and (gh,p) are all in D, then
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9(gh,p) = o(g,0(h,p)) .

FROOF. The existence and uniqueness of o follows directly from
lemma ¢, and that ® satisfies (1) isg an immediate ceonsequence of lemma
b. In proving (2) we ean by symmetry assume that vr cvy , If pev
then (h,p)ev X U and (gh,p)eVX U » 80 the relation ol{gh,p) =
¢(g,0(h,p)) follows from lerma e if (g,o(h,p))evxy and from lemma fr
ir (g;0(h,p))evix ur « If pgU , then (h,p)eVIX U1 ang (gh,p)eV'XU',
80 the relation o{gh,p) = o(g,0(h,p)) follows from lemma e ir
(g,(p(h,p))eV'XU' and from lemma r ir (g,0(h,p))evx U .

LEA b. Let (y, v, x U« = GXuf,  be the set of
all auxiliary maps, and let D = U(V,( X Ux ) . Then D 1is
- T oL e — -
a loecal transformation TOup domain in GXM , and there 15 g
T T ———=2fmation group domain in and is &

unique differentiable map, o, of D into such that for
qi.que ——===-Patlable map ol =nto

all o« ea @PV“XUD( =HI”°"V°< . Thig map o i & loeal G-

transformation group acting on n which is £enerated by o .
—=====ofmatsion —=xing on ———= == ffherated

PROOF, Let Aj:) = ?o(sA : peUd} for each PeM , and let

Dp = U Ve - By lemma g A is not empty, and Since egch '
ol CAP P

i1s a cubical neighborhood or e, 80 ig Dp s 80 in rarticularp each
Dp is a connected neighborhood of € . Now as egch V4« and U
is open, so 15 p s and since Dp is clearly fgeG : (g,p)eD} it
follows from definition I that D ig 4 loecal transformation group
domain in GXM . The existence ang uniqueness of ® 13 immediate
from lemma 8, and that ¢ 1g a local G—transformation group follows
from lemma g8 and the fact that D ig 4 local transf‘ormation group
domain in GXxm .

Let peM ang let ¢ : vxU-— GXM be an auxiliary map with peU ,
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If we define WP : V= GXM Dy WP (g) = v(g,p) then clearly
I © 4P = ¢PoV . Since V 1s a neighborhood of e it follows that

(5¢€g = bl O(éwp)e . Thus if Le gg-, then by lemma b, ¢+(L)p =
5®p(Le) = sl 0 GWP(LO) = @(L)p ; hence ot =@, so o 1is generated

by © .

THEOREM XI. A necessary and sufficient condition that an

infinitesimal G-transformation group, ® , acting on M be

generating is that each leaf of e be a Hausdorff manifold.

PROCF. WNecessity follows from theorem VIII, and sufficiency from

lemma h above.

CORCLLARY. If M is a Hausdorff manifold, then every

igfinitesimal G-transformation group acting on M 1s generating.

In view of the above corollary the reader may feel that the author
would have been well advigsed to disallow non-Hausdorff manifolds 1n the
first place. However, non-Hausdorff manifolds occur naturally, and as
it were of their own accord, in chapter III. It is to prepare for this,

and not out of a misdirected desire for generality, that we have allowed

them.



Chapter III
GLOBALIZABLE INFINITESINAL TRANSFORMATION GROUPS

In this chapter we will be concerned with the question of when an
infinitesimal G-transformation group acting on a manifold N generates
a global transformation group. If an infinitesimal G-transformation
group, © , generates a global G-transformation group, o , acting on
M, and F 1s a closed subset of 1 which is not invariant under s11
the transformations 0g » then the restriction of € 4to the open sub-
manifold M - F of | will no longer generate a global transformation
group. However, it is clear that such a restricted infinitesimal trans-
formation group is in no way inherently pathological: there are Just not
enough points around. For this reason, we introduce the notion of a
'globalizable! infinitesimal transformation group, one that generates a
global transformation group acting on a manifold which includes the
given manifold as an open submanifold. It is to the rich and elegant

theory of such infinitesimal transformation groups that we now turn.
1. Globalizations.

DEFINITION I. Let @ be an infinitesimal G-transformation
group acting on M , and let 0 be an open submanifold of 4 .
The restriction of @ to 0, denoted by ©to s 1s the infinit-
esimal G-transformation group acting on 0 defined by

®PMO(L) = e(L)r 0 for all Le eg .

DEFINITION II. Let ® be an Infinitesimal G-transformation
group acting on M . a globalization of @ is a pair (M™, )
such that:
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(1) ¥ is a differentiable manifold an M 1s an open
submanifold of M" .

(2) o 1is a global G-transformation group acting on ue o

(3) ©=o M .

(4) Given qu* there exists (g,p)eGXM such that o(g,p) = q.
A globalization (M*,9) of © will be called proper if

M =1 .
We shall call ® globalizable if it admits a globali-

zation and proper if it admits a proper globalization.

We note that if (1), (2), and (3) of the above definition hold, and
% is the set of qeM¥ for which (L) holds, then N 1s an open sub-

manifold of ¥ and (", GXN"™) is a globalization of @ .

DEFINITION III. Let (M*,cp) and (¥',¥) be two globali-
zations of the same infinitesimal G-transformation group acting
on M . A homomorphism of (M*,0) into (M',¥) 1is a mapping
f (not assumed to be continuous) of M° into M' such that:
(1) £MM is the identity map of M .

(2) ¢ °9g = wgof for all geG .
1f (M¥,0) admits a homomorphism into (11',v) , then we

say that (M',¥) is homomorphic to (" ,0) .

THEOREM I. If (M*,w) and (M',¥) are two globalizations

of the same infinitesimal G-transformation group acting on M ,

and if (M',¥) is homomorphic to (i{*,e) , then there is a

unique homomorphism, £ , of (M*,m) into (Mt',¥) . Moreover

f 1s a local diffeomorphism of M¥ onto M!' .

PROOF. Let f be any homomorphism of (M¥,0) into (M',y) .
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Given qeM™ choose (g,p)eGXM such that q = o{g,p) . Then

f(q) = f(¢8(p)) = Wg(f(p)) = wg(p) + This shows that f ig uniquely
determined. WMoreover we have fo og = wgo f,or f= wgo fo mél .
Now as o and ¢ agare global G-transformation groups, wg and mél
are diffeomorphisms, and as f 1is a local diffeomorphism (in fact
locally the ldentity map) at p = og(q) it follows that f ig g local
diffeomorphism at q .

Finally, given prer' we can choose (h,p)eGXM such that

f

P' = ¥(h,p) . Then since f(p) = p , we have P! = % (f(p)) = f(¢h(p)),

proving that r maps onto M!' .

COROLLARY. If ® 1is en infinitesimal G-transformation

Eroup acting on M , and (M¥,0) 1is a globalization of e,

then the identitz map of u* 1s the only homomorphism of
(M¥,0) into itselr.

DEFINITION IV, g homomorphism of one globalization of
an infinitesimal G-transformation group into another is an

isomorphism if and only 1f it is one-to-one.

61

We note that it follows from theorem I that a homomorphism of (M*,w)

into (M',¥) 15 an isomorphism if and only if it ig g diffeomorphism of
u onto M' , and that in this case 1its inverse is an isomorphism of

(',%)  dnto (M%,q) .

DEFINITION V. Let ® be an infinitesimal G-transformation
group acting on M . 4 globalization of @ will be called

universal 1ir every globalization of @ is homomorphic to it.

THEOREM II. Two universal globalizations of the same

infinitesimal G-transformation roup are isomorphic.
=Litnltesimal & D are &
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PROOF. We show that more generally if two globalizations of the
same infinitesimal G-transformation group are each homomorphic to the
other, then they are jsomorphic. In fact if f is a homomorphism of
(M*,m) into (M',¥) , and g 1s a homomorphism of (M',¥) into (M*,m),
then gef 1is s homomorphism of (*,9) into itself, and hence by the
corollary of theorem I gof 1s the identity map of ¥¥ . Thus f has

a left inverse and therefore is one-to-one, and hence an isomorphism.

It follows from the above proof that the jisomorphism classes of the
globalizations of a globalizable infinitesimal group are partially
ordered by the relation 'is homomorphic to!. We shall see that there is
a maximum element, i.e. every globalizable infinitesimal transformatlion
group admits a universal globalization (theorem X). It would be of inter-
est to kmow if there 1is also always a minimum element, and how to con-
struct in an effective way a canonical set of representatives from a

universal globalization. But these are problems we shall not consider

in this memoir.

o, TUnivalent Infinitesimal Transformation Groups.
We now consider a condition which, though at first glance quite

unrelated, turns out to be equivalent to globalizability.

DEFINITION VI. An infinitesimal G-transformation group,
® , acting on M will be called univalent if for each peM HG

meps the leaf of @° containing (e,p) one-to-one.

THEOREM III. If @ is a univalent infinitesimal G-

transformation group acting on M , then N; maps each leaf

of ©° diffeomorphically into G .
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PROOF. Let 2 be any leaf of ©° and let (g,p) be some
point of 2 . Then (e,p) = ﬁg(g,p)eﬁg(z) » So by the corollary
of theorem VI, chapter II ﬁg(z) is the leaf of ©° containing
(e,p) . Then l; maps ﬁg(z) one~to-one, and in fact by theorem
IV of chapter II diffeomorphically into G . Now Rg and ﬁg are

diffeomorphisms, and HG = RglC>HG<>§g s SO HG maps 2 diffeomorph-

ically into G .

THEOREM IV. If © is a univalent infinitesimal G-trans-

formation group acting on ¥ , then & is a regular differential

system (definition III, chapter I) in G XM , and the mapping

F : p—INg«(e,p) maps M diffeomorphically onto an open sub-

manifold of G XxM/@% .

PROOF. Let (x1 ess X 0) be a cubical coordinste system in GXM

r+n’
centered at (g,p) and flat with respect to " . By theorem IV of

chapter II, we can find a coordinate system (wl eee We,U) In M
centered at p such that if qeM then {g,q)e0 and wi(q) = xr+i(g,q) .
By reducing U we can suppose that (wl e wn,U) is cubical, say of
breadth 2a. Let V be the cube of breadth 2a and centered at (g,p)
with respect to the coordinate system (x7 ... Xr+n’o) » and suppose

that a leaf 2 of @ intersects V 1in the r-dimensional slices of

ess 8 ) and t = (%

r+n t )

V) defined by s = (s r+l 00 Span

(Xl eee X

r+n’ r+l

Then as Isy1 < a and {%3] < a, we can find dg and gy in U with

wilgg) = Speq and wi(qt) = tr+i . Then xr+i(g,qs) = wi(qs) = g

and Xr+i(g’qt) = wi(qt) =t,.4 5, 80 (g,qs) and (g,qt) belong to

r+i

the r-dimensional slices of (xl oo X V) defined by s and t

r+n’
respectively and so belong to 3 . Now according to theorem III HG
maps Z one-to-one, so as HG(g,qs) =g = HG(g,qt) it follows that
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q = qt , and so s =t . Thus 2 can intersect V in at most one r-
s
dimensional slice of (x:L e xr+n,V) . By definition III of chapter I,

(x1 cee X V) 1is a regular coordinate system with respect to @° , and

r+n?
since (g,p) was an arbitrary point of GXM , it follows that e 1s a
regular differential system from theorem V of chapter I.

ir H®-::-(e,p) = H@.x_(e,q) , then (e,p) and (e,q) Dbelong Lo the
same leaf of e" :+ since I'IG is one~to-one on leaves of ®" it follows
that p=q . Thus F : p-—)l’I@-:e(e,p) is one-to-one on M . Given peM

let (x:L ces X be a regular coordinate system with respect:‘ to @

r+n’o)
centered at (e,p) . By definition of the manifold structure on GXM/@*,
there is a coordinate system (X, «-- xr+n,n®.;;-(0)) in GXM/@" such
that x,.; = ;cm_iol'I@-::- . On the other hand, if we put o(q) = (e,q) ,
then we know by theorem IV of chapter II that there is a coordinsate

system (wl cee wn,U) in M centered at p such that Wy T X.,1°0 -
Then wy = )-{r+i°I'I®-::- °0 = X .4 oF , which proves that F 1is a local
diffeomorphism at p . Since p was an arbitrary point of ¥ , F 1is

a local diffeomorphism, and hence F(M) 1s an open submanifold of
GXM/®* . Since F 1is one-to-one, it maps M diffeomorphically onto

F(M) .

COROLLARY. If © 1is a univalent infinitesimal G-trans-

formation group acting on M , then each leaf of & 1is a closed

submanifold of GXM .
PROOF. Theorem VII of chapter I.

THEOREM V. Let © be a univalent infinitesimal G-frans-

formation group acting on M . There is a unigue global G-

transformation group, o , acting on GXM/®* such that

g*e ﬁg =0,° Mg« for all geG . Moreover (GXM/6" ,0) is
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& globalization of &F©° @ , where F : p"‘”n@-;e(e,p) is the

diffeomorphism of M into GXM/6° considered in theorem IV.

PROOF. By the preceding theorem ®* is regular, and by theorem VI
of chapter II, R 1is compatible with e s 80 the exlstence and unique-
ness of ¢ follows from theorem III of chapter II. It also follows from
the latter theorem that o* = 6N R * , so ir Le O} and peM , then by

theorem VI of chapter II, o*(L) H®-;e ort(1) = 61'1®-::-(—Le,0) .

=5
F(p) (e,p)
To prove that (GXM/0",0) 1s a globalization of 6F©°® it remains
to verify (3) and (L) of definition II, which in the present case are
equivalent to
= ot
(31) 6F(®(L)p) ) (L)F(p) for all peM and Le%r , and
(4') given 3eGx1/0" , there exists (g,p)eGXM such that
2 = 0y (F(p)) .
Define o : M #GXM by ol(p) = {(e,p) . Then P = Mgreo , so
8F = 6H®% °80 , and hence in view of the above expression for w*(L)F(p)
(3') is equivalent to 5n®.x_((5o®(L)p) + (Lg,0)) = 0, or, since
e = 3 = . , *
5o(8(L),) (0,8(L),), to 811 (Le,®(L)p) 0 But as (Lg ®(L)p)e®(e’p)
the latter equality is a consequence of theorem X of chapter I.
If ZeGXM/€" , then choosing (h,p)eZ and putting g = h~% ,
we have wg(F(p)) = wg(n®*(e,p)) = H@%~°Rg(9,P) = n®*(hsp) =23,

which proves (}!).

3. Maximum Local Transformation Groups.

It may have occurred to the reader that in some ways 1t would have
been more natural if, in the definition of a local G-transformation group
acting on M (definition II of chapter II), we had replaced (2) by the
stronger condition

(') 1f (h,p) and (g,o(h,p)) belong to Dq) then so does (gh,p)

and Q(ghsp) = ‘P(gJ(P(h,P)) .
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Local G-transformation groups satisfying this stronger property we shall
call maximum, for it is clear that they do not admit a proper extension.
It turns out (theorem X) that a necessary and sufficlent condition
for an infinitesimal G-transformation group to generate a maximum local
G-transformation group is that it be univalent (or globalizable which,
again by theorem X, 1s equivalent to belng univalent) and then it
generates a unique one. Thus 1If we had used (2') in the definition of
a local G-transformation group, then theorem XI of chapter II would not
have been valid. This is why we chose the weaker condition and heﬁce
more general concept.

In this section we shall develop some of the principal properties
of maximum locsl transformation groups. Since there are a number of
maximality properties equivalent to (2') above, and there seems little
reason to prefer any one above the others, we formulate the definition

in the following alternative forms.

DEFINITION VII. By theorem VI below the following four
conditions on a local G-transformation group, o , acting on
M are equivalent. If ¢ satisfles any one and hence all of
these conditions, 1t will be called a maximum local G-trans-
formation group acting on M .

(1) 1If (h,p) and (g,o(h,p)) belong to D(p , then so does
(gh,p) ; equivalently, if heD(Dp then qu c Rh(D@P) .
where q = o(h,p) .

(2) For each peM the graph of o 1s the entire leaf of

(p+ 'y

(3) 1r (h,p)eD@ then (g,m(h,p))eD@ if and only if (gh,ﬁeDw s

containing (e,p) .

s

equivalently if hspr then D q ='R,(D,p) , where q = o(h,p).

(4) If peM and {gn§ is a sequence in pr approaching a
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point g on the frontier of pr » then o(g,,p)—w
(in the usual sense; namely that for each compact
subset, K , of M o¢(g,,P)¥ K for all sufficiently

large n).

THEOREM VI. If o 1is any local G-transformation group

acting on M , then the four conditions of definition VII are

equivalent.

PROOF. We show first that (1) implies (2). Let peM and let 3
be the leaf of o¢** containing (e,p) . Let (g,q) be any point of 3
which is adherent to the graph of ¢P 1in the topology of 2 . Choose a
neighborhood 0 of q and a neighborhood V of e such that
VX0 € D@ . Let U be a Z-neighborhood of (g,q) such that
0;(0) ¢ V'lg and Iy(U) € 0 . Since (g,q) is adherent to the graph
of oP we can find <(h,o{h,p))eU . Then (gh'l,m(h,p))eV>(O €D, , so
by (1), (gh'lh,p)eDw , 1.e. geDyp , 80 (g,q)szf\Hél(Dmp) + But by
corollary I of theorem VIII, chapter II, the graph of of 1is closed in
TN Hél(pr), and it follows that (g,q) 1s in the graph of oP . Thus
the graph of o¢P 1s closed in 3 . Since it is also open in 3 (theorem
VII of chapter II) and ¥ 1is connected, it follows that the graph of oF
is all of 2 . Thus we have derived (2) from (1).

Ve next show that (2) implies (3). Let (h,p)eD, , and put
a4 = ¢(h,p) . Then (h,q)egraph of ¢f = leaf of o*¥ containing (e,p).
It follows from the corollary of theorem VI, chapter II that ﬁh(graph of
oP) = leaf of ot containing (e,q) = graph of ¢% . Thus Rh(D@p) =
R, o II;(graph of of) = HG,Oﬁh(graph of o¢f) = I.(graph of o¢9) = Dyq »
which 1s one of the (trivially equivalent) forms of (3). Thus we have

derived (3) from (2).
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It is trivial that (3) implies (1). To complete the proof we show
that (2) is equivalent to (4).

Suppose first that (2) does not hold. Then for some pell the
graph of of 1s not the whole of the leaf, 2 , of o** containing
(e,p), so by theorem VII of chapter II it is a proper open submanifold
of 3 . Since 2 1s connected the graph of wp has a frontier point
(g,q) in 2 . Let {(gn,w(gn,p))} be a sequence from the graph of
mp approaching {g,q) 1in the topology of Z . By the corollary of
theorem V1II, chapter II, HG maps the graph of wp diffeomorphicaiiy
onto DCDp , and by theorem IV of chapter II II; is a local diffeomorphism
of ¥ into G at {(g,q). It follows that g 1s a frontler point of
D¢p . Now as % 3is a submanifold of G XM , its manifold topology is
stronger than the topology induced from GXM , so {(gn,m(gn,p))}
approaches (g,q) in the topology of GXM , i.e. gh—g and
o(gn,p)—a . This is inconsistent with (4), and so by contraposition
(2) implies (4).

Finally suppose that (2) does hold. Let ped end let {g | be a
sequence in D¢p approaching geG , and suppose that ¢(gn,p) —#» 00,
Then to prove (L) we must show that ggfrontier of pr . Since
Q(gn,p) —#> 0o, there is a compact set K such that m(gn,p)eK for
arbitrarily large n . By passing to a subsequence of fgn} we can
suppose that o(g,,p) — qeK . Then (gn,0(g,,p))— (g,q) in the topology
of GXM . Now (2) clearly implies that ot 1s wnivalent (for the graph
of a function with domain in G and range in M 1is mapped one-to-one by
I, ) so by the corollary of theorem IV, the graph of o = the leaf of
o~* containing (e,p) 1is closed in GXM . It follows that (g,q)egraph
of Qp , and hence g = HG(g,q)epr . Since pr is open in G ,

gffrontier of pr .
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In the course of the very last part of the proof we proved the

following corollary.

COROLLARY. The infinitesimal generator of a maximum local

G-transformation group acting on M 1is univalent.

THEOREM VII. If o is a maximum local G-transformation

group acting on M , and v is any local G-transformation group
acting on M with the same infinitesimal generator as o , then

\V=(Per .

PROOF. If peM then by (2) of definition VII the graph of oP ig
the leaf of ot¥ containing (e,p) . Then since w+* = ¢+* , 1t follows
from theorem VII of chapter II that the graph of Wp 1s included in the
graph of oF , 1.e. P = 4P erp + Since this holds for all peM ,

vV =olD

v

COROLLARY. Two maximum local G~transformation groups act-

ing on M with the same infinitesimal generator are identical.

THEOREM VIII. Let ® be a global G-transformation group

acting on M¥ » and let M be an open submanifold of u¥ . For
acving on ana Let 2€ &n open submenifold of Lor
each peM let Dp be the component of e in {geG : m(g,p)eM},

and let D = {_J (0p X{p} ) . Then olFD can be characterized
beM

as the unique maximum local G-transformation group acting on M

which 18 a

local G-transformation group acting on M generated by o*fu .

restriction of o, and also as the unique maximum

PROOF. Let 0 = {(g,p)sG)(M : w(g,p)eM} « It iscclear that 0 ig
open in GXM and that {el X M €0 ; hence by theorem I of chapter II,

D 1s a local transformation group domain In GXM . It is then obvious
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that oD is a local G-transformation group acting on M.

For each qeM let Oq = { geG @ (g,q)eo} so that Dq is the
component of e in Oq . Thus if her , then Dp is the component
of h in Op , and since R, maps Op diffeomorphically onto Rh(op) s
Rh(Dp) is the component of e in Rh(op) . Now if we put q = o(h,p) ,
then for any g&G we have the relation of{gh,p) = o(g,q) , which implies
that 04 = Rh(Op) , and hence that Dq = component of e in Rh(Op) =
Rh(Dp) . Thus ol D satisfies condltion (3) of definition VII, and so
is & maximum local G-transformation group acting on 1 . ’

Now suppose that o 1s any meximum local G-transformation group
acting on M such that o =0 FDy, . Then for any peM oP = @P!‘de s
end since Dp 1s a neighborhood of e 1t follows that (5cp)e = (anp)e
Then 1f Le Q} we have o*(L)p = 50P(Lg) = 60T (L) = ¢+(L)p , 8O
ot = ¢+P M . It is now an immediate consequence of the corollary of
theorem VII that ol D 1s the unique maximum local G-transformation

group acting on M which is a restriction of ¢ , or whose infinitesimal

generator is othm .

COROLLARY. Let © be an infinitesimal G-transformation

group acting on M , and let (M*,9) be a globalization of © .

Then there is a unique maximim local G-transformation group

acting on I , ¥ , which 1s generated by ©, and V¥ can also

be characterized as the unique maximum local G-transformation

group acting on M which is a restriction of o . For each
s included in the

peM the leaf of ®" containing (e,p)

graph of oF .

PROOF. The first conclusion i1g o restatement of the theorem in
slightly different terms and needs no extra proof. For each pell the

leaf of ©° contalning (e,p) 1is, by (2) of definition VII, the graph
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of P , which, since P = P} pr 1s included in the graph of of .

LEMMA. Let ® be an infinitesimal G-transformation group

acting on M , and let (1¥,0) be a globalization of © . ir

is any point of GX11/€* (i.e. any leaf of ©%) then there

by
is a unique point f£(Z) in M such that I C graph of of (Z),

PROOF. If (h,p)t-:D(p , and q = o(h,p) then the relstion
w(gh'l,q) = ¢o(g,p) , valid for all geG , implies that the graph of
0% = ﬁh(graph of ¢P) . Now given ZeG)(M/®* choose (g-l,p)ez .
Since (e,p) = ﬁg_l(g"l,p)eﬁg_l(z) » 1t follows from the corollary
of theorem VI, chapter II, that ﬁg—l(z) is the leaf of &% containing
(e,p) and hence by the corollary of theorem VIII ﬁg_l(z) € graph of oP
It follows from the remark at the beginning of the proof, that if we put
£(2Z) = o(g,p) then 3z ¢ ﬁg(graph of of) = graph of @f(Z) . If q 1is

-1

any point of M such that 3 C graph of 0% , then as {(g"",plez , it

follows that w(g'l,q) =p 8o that q = o(g,p) = £(3) .

THEOREM IX. A univalent infinitesimal G-transformation

roup acting on M admits a universal globalization (which,
group acting on 2 &

by theorem II, is unique to within isomorphism).

PROOF. Let F be the mepping p —+H®*(e,p) of M into
(}XM/@* - By theorem IV F 1s a diffeomorphism of M onto the open
submanifold F(M) of GXM/8" . Let us identify points of M with
thelr corresponding points in F(M) under F , so that &Fe® is
identified with @ . Thus, with this identification, there is by theorem

V a globalization (GXM/® ,0) of ® such that lg# °Ry = °ll_s for

®g
all geG . We shall show that this globalization is universal.
In fact let (M',¥) be any globalization of ® . By the lewma

there 1s a map f of GXM/8¥ into M' which is uniquely characterized
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by the condition that 2 C graph of wT(2) | Ir pem then by the
corollary of theorem VIII, F(p) = H®*(e,p) = (leaf of @ containing
(e,p)) € (graph of oP), so f(F(p)) = p . Since we are identifying

p and F(p) , this gives FIM = the identity map of M .

If 3eGXM/@" , and geG , then the relation Ig¥o ﬁg = g © Ngx
implies that ¢, applied to the point I of GXM/0" is ﬁg applied
to the subset I of GXM . Thus as Z € graph of Wf(z) it follows
from the remark at the beginning of the proof of the lemma that
vig,f(2))

@g(z) E—ﬁg(graph of wf(Z)) = graph of This gives )

f(¢g(z)) = Wg(f(z)) . Since 2 was any point of G)(M/®% it follows
that f = of .
°og = Vg
The last two paragraphs show that f 1s a homomorphism of
M}XM/®*,¢) into (M',¥) (definition III). Thus every globalization of
® 1is homomorphic to (G x4/6%,@, so the latter 1s a universal globaliza-

tion of @ .

L+ The Principal Theorem.
We swmmarize our previous results in theorem X.

THEOREM X. Let © be an infinitesimal G-transformation

group acting on M . The following four statements are equl-

valent.

(1) © admits a universal globalization (which is unlque to

within isomorphism).

(2) ® 1is globallzable.

(3) © generates a maximum local G-transformation group acting

on M (this maximum local G-transformation group 1s then

uniquely determined, and any local G-transformation group

acting on M generated by © 1is a restriction of it).

e L LT e e —— —

{4L) @ 4is univalent.
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PROOF. That (1) implies (2) is trivial. That (2) implies (3)
follows from the corollary of theorem VIII. That {3) implies (L) is
the statement of the corollary of theorem VI. And finally that (L)

implies (1) is the statement of theorem IX.

CORCLLARY. The mapping ¢ — m+ 13 a one-to-one corre-
spondence between maximum local G-transformation groups acting

on M and univalent infinitesimal G-transformation groups act-

ing on M . Hence given a univalent infinitesimal G-trans-

formation group acting on u , it makes sense to speak of THE
maximum local G-transformation group acting on M it generates.

5. Proper Infinitesimal Transformation Groups.

THEOREM XI. A proper infinitesimal G-transformation group

acting on M is univalent.

PROOF. By definition II a proper infinitesimal G-transformation

group is in particular globalizable, so theorem XI is an immediate con-

sequence of theorem X.

73

We now ask what distinguishes proper infinitesimal G-transformation

groups among univalent infinitesimal G-transformation groups.

THEOREM XII. Let © be a univalent infinitesimal G-

transformation group acting on M, and let o be the maximum

local G-transformation group it generates. Then the following

five statements are equivalent.

(1) For each peM o¢P maps subsets of D¢p which are rels -

tively compact in G into relatively compact subsets of M

(2) For each peM II; maps the leaf of e containing (e,p)

onto G .
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(3) o is global.
(4) (M,e) is the unique globalization of ® .

(5) ® 1is proper.

PROOF. Suppose that (1) holds, and suppose that for some
pell D p = HG(graph of oF) = I,(leaf of @ containing (e,p)) 1is
not all of G . Then since G 1s connected there exists a g in the
frontier of D@p « Choose {gn} a sequence in pr approaching g .
Then the set K of &, is relatively compact in G , while since
mp(gn)—*'oo by (4) of definition VII, oP(K) 1is not relatively compact
in M . Since this is contrary to (1), no such p can exist, i.e.
{2) holds. Thus (1) implies (2).

If (2) holds then for each peM Dyp = I,(graph of ¢P) =

Ny(leaf of @ containing (e,p)) = G . Then D, = pLsrjﬁ (Dyp X{pf ) =

GXM , so ¢ 1is global. Thus (2) implies (3).

Next suppose that (3) holds and let (M*,w) be any globalization
of ©® . By the corollary of theorem VIII, o = \UPDq) =yl GeXu . By
definition II, given gell we can find (g,p)eG Xl such that q = ¥(g,p).
But v(g,p) = ol(g,peM , so o= , and hence ¥ = yPM GXM = ¢ . Thus
(¥,v) = (M,p) , so we have deduced (ly) from (5).

That (i) implies (%) is trivial, so we show finally that (%) implies
(1) 1In fact if (5) holds then we can find a proper globalization of @ ,
(M,¥) . Then V¥ 1is a global and a fortiori maximal G-transformation
group acting on M , so ¢ = ¢ . Then if peM , then Dmp = G , hence
if K 1is a subset of Dep relatively compact in G , then K is a
compact subset of D,p , so @p(ﬁ) is compact. Since ¢P(K) 1is included
in oP(K) , this proves (1).

COROLLARY 1. The mapping' o — ¢+ is a one-to-one corre-
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spondence between global G-transformation groups acting on

M and proper infinitesimal G-transformation groups acting

on M . Hence given a proper infinitesimal G-transformation

group acting on M , 1t makes sense to speak of THE global

G-transformation group it generates.

COROLLARY 2. A univalent infinitesimal G-transformation

roup acting on a compact differentiable manifold is proper.
group actlng on a comp is

Equivalently, a meaximum local G-transformation group acting on

a compact differentiable manifold is global.

PROOF. If M 1is compact then condition (1) of the theorem is

automatically satisfied.

In the next section we shall prove what is for all practical
purposes a much stronger result; namely, (corollary 2 of theorem XVIII)
that if ¥ 4is compact and Hausdorff, and G simply connected, then
every infinitesimal G-transformation group acting on M is automatically
proper, and hence generates a unique global G-transformation group acting

on M .

COROLLARY 3. A necessary and sufficient condition that an

infinitesimal G-transformation group acting on I be proper is

that for each peM HG maps the leaf of CH containing (e,p)

one-to-one onto G .

PROOF. If @ 1is proper and peM , then letting o be the global
G-transformation group generated by © , Il maps the leafl of ®*
containing (e,p) = the graph of oP one-to-one onto pr =G . If
conversely ® satisfies the condition, then it is univalent by definition

VI, and hence proper since 1t satisfies condition (2) of the theorem.
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6., Uniform Infinitesimal Transformation Groups.

The 'healthiest! infinitesimal G-transformation groups are the
proper ones, i.e. those generating global G-transformation groups. Then
perhaps the mildest form of pathology in infinitesimal G-transformation
groups is a failure to be proper occasioned solely by the lack of slmple
connectivity in G , for this can be cured by replacing (in an obvious
sengse) G by its universal covering group. The symptom of this mild
sort of pathology 1s that for each leaf 2 of the infinitesimal graph,
the pair (E,HGF 2) is a covering space of G . It is important télbe
able to recognize when an infinitesimal G-transformation group is no
more pathological than this, and in this section, we consider a useful,
necessary and sufficient condition which we call uniformity. This
condition amounts, in essence, bo the existence of a2 neighborhood V
of e such that the restriction of the infinitesimal graph to Hal(V)
has leaves which are each mapped one-to-one onto V by Iz . Thus,
while global in the M direction, this condition is of a local nature
with respect to G , and herein lies its importance.

Perhaps the most striking result of this section is the very general
gufficient condition for proper-ness glven in corollary 2 of theorem
XVIII. However, a no less lmportant application of the results of this
section is made in proving one of the keystones of the next chapter

(theorem III).

DEFINITION VIII. Let @ be an infinltesimal G-transforma-
tion group acting on U , and for each pell denote by Zp the
leaf of 6* containing (e,p) . If 8 C M , then an open, con-

nected neighborhood, V, of e will be called a uniform neighbor-

hood for S with respect to @ if for each peS the connected

component of ({e,p) in zpf\ n&l(v) is mapped one-to-one onto
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V by HG «+ If such a vV exists then we say that 3§ is
uniform with respect to ® ., Ir M itself ig wniform with

respect to @ , then we say that @ igs uniform.

The following theorem Summarizes the trivial consequences of

definition VIII.

THEOREM XIII. Let © be an infinitesimal G-transformation
group acting on 1, g & subset of 1 , and V  a unifornm
neighborhood Tor s with respect to . Then
(1) 1ir v is an open, connected neighborhood of e includeq

in V., then v EMEEMQ@E&M@E& 5

with respect to ©,

(2) v is s uniform nelghborhood with respect to @ rfor any

subset of S ; hence 2 subset of a set uniform

with respect
o @ 1ig itselr uniform with reéspect to &, ang
(3) if S'cu ang V' 1is a uniform neighborhood fop 5" with

respect to @ , then the component of e in V Ay

&

a
uniform neighborhood for s gt with respect o © ; hence
the union of any two (and so or any finite number of ) sub-
sets of M uwniform with respect to @ 1s uniform with

respect to ® ,

DEFINITION IX. Let @ be an infinitesimal G—transformation
group acting on iy . The support of @ is the get of peM for
which @(L)p # 0 for some Le ?}.

THEOREM XIV. Let ® be an infinitesimal G-transformation
== & iblinitesimal —=dlislormation

=_==

group acting on M. If p 1s in the complement of the Support
of © then the leaf of o containing (e,p) is
3 = { (g8,p) : geG } with the manifold structure defined by

p —=Zc
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the condition that HGF 25 is a diffeomorphism.

PROOF. Clearly the tangent space to Zé {(considered as a sub-
menifold of GXM ) at (g,p) 1is {(Lg,o) : Le<g§ which is just
®Tg,p) since p is not in the support of ©® . Since Zﬁ is clearly
connected, it is an open submanifold of the leaf Zp of @ containing
(e,p) - Now Zé 1s closed in GXM and hence a fortiori 1t is closed

in 2 a submanifold of GXM . Thus Zé 415 both open and closed in

p s

and since 2 i1s connected, it follows that Zﬁ =32 .

Zp p P

COROLLARY., If © is an infinitesimal G-transformation

group acting on M then any connected, open neighborhood of

e 1is a uniform neighborhood, with respect to ® , for the

complement of the support of e .

THEOREM XV. If © is an infinitesimal G-transformation

group acting on 1 such that every leafl of ©" 1is a Hausdorff

manifold, then every relatively compact subset of M is uniform

with respect to € .

PROOF. By (2) of theorem XIII, it suffices to prove that compact
subsets of M are uniform with respect to @ and for this it suffices
by (3) of theorem XIII to prove that every peM has a neighborhood
which is uniform with respect to @ . But the latter is an immediate

consequence of the corollary of theorem IX of chapter II.

THEOREM XVI. Let © be an infinitesimal G-transformation

group acting on M . If the support of @ 1is relatively com-
pact in 1 and every leaf of @ is a Hausdorff manifold then

€& is uniform.
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PROOF. An immediate consequence of theorem XV, the corollary of

theorem X1V, and (3) of theorem XIII.

COROLLARY 1. If M 1is a Hausdorff differentiable manifold

then every infinitesimal G-transformation group acting on I

with support relatively compact in N is uniform.

COROLLARY 2. If M 1s a compact Hausdorff differentiable

menifold then every infinitesimal G-transformation group acting

on M 1is uniform.

LEMMA. I ® 1s a uniform infinitesimal G-transformation

group acting on M and 2 1s a leaf of ®"  then
(1) 2 £s a Hausdorff manifold

() m5(z2) = ¢ .

PROOF. Let us denote by 2 the leaf of ®° containing (e,p).
Suppose (g,p) and (h,q) are points of 2 that cannot be separated by
open sets of 2 . Then as 2 is a submanifold of GXM , its manifold
topology 1is stronger than the topology induced from GXU , 8o (g,p)
and (h,q) cannot be separated by open sets of GXM . Since G is
Hausdorff 1t follows that g =h , so (g,p) and (g,q) are points of
Z that cannot be separated by open sets. By the corollary to theorem VI

of chapter II, Rg maps 2 diffeomorphically onto Zp = Zq , 80 (e,p)

and (e,q) are points of Ep = Zq that cannot be sepasrated by open sets.
If V 1is a uniform neighborhood for ™M with respect to @ then as the
component of (e,p) in Zp/\ H&l(V) and the component of (e,q) in

quﬁ Hél(V) are nelghborhoods of (e,p) and (e,q) respectively in

Zp = Zq they are not disjoint and hence are equal. Since Il 1s one-
to-one on the component of (e,p) in zp/“\nél(v) it follows that p = q.

Thus (g,p) = (h,q) which proves (1).
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We next prove that HG(ZP) = G for any peEM . Again let V be a
uniform neighborhood for M with respect to ® . e will show by
induction that for every positive integer n yh € HG(ZP) . For n=1
this is immediate for 1n fact II; maps the component of (e,p) in
zpn nal(v) onto V . Suppose vn’lg nG(zp) and let geVn_l . Then
there exists qeM such that (g,q)ezp . By the corollary to theorem VI
of chapter II, ﬁg(zp) = Zq . Since, as we have just seen, V & HG(Zq) ,

Vern,eR (Zp) = Rge HG(zp) hence Vg = Rg_1VS HG(Zp) . Now g was

g .
any point of Vol g0 YR = WRTIg HG(Zp) . This completes the induction.
Since ¢ 1is connected V generates G , hence HG(Zp) = G as claimed.

Now choose (g,p)el , then (e,p)eﬁg(z) so by the corollary of
theorem VI, chapter II ﬁg(z) =z, . Then [G(2) = Mo Rg-1(2,) =

Rg-1° Ng(2,) = Rp-1(G) = G .

THEOREM XVII. A necessary and sufficient condition that

r

an infinitesimal G-transformation group acting on 1 Dbe uniform

is that for each leaf 2 of @ the pair (2,;T32) isa

covering space for G .

PROOF. 1If this condition is satisfied, then clearly any simply
connected open neighborhood of e in G 1is a uniform neighborhood for
M  with respect to @ so © is uniform.

Conversely, suppose & 1is uniform and let 2 be a leaf of ®* .
To show that (Z,HGF‘E) is a covering space for G , we must show
(a) £ 1s a Hausdorff space
(b) Mm(2) =G
{(¢) For each geG there 1s a neighborhood W of g such that II,
_1(

meps each component of I M Iy W) diffeomorphically onto W .

Now (a) and (b) have already been proved in the lerma, so 1t
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remains to prove (c¢). Let V be a uniform neighborhood for M with

respect to © and let U be an open neighborhood of e such that

vl € V. Then if keU™* Uk 1is an open, comected neighborhood of

- e lncluded in V so, by (1) of theorem XIII, Uk is a uniform neigh-
borhood for M with respect to © . We shall show that we can take

W=7"Ug in (c¢). 1In fact let X be any component of I f\nél(Ug) and
let (h,q) be any point of X . Then heUg so gh'lsU'1 and there-

1 is a uniform neighborhood for M with

fore by the above remark Ugh™
respect to ® . Now (e,q) = ﬁh(h,q)eﬁh(z) so by the corollary of
theorem VI of chapter II, ﬁh(z) = Zq , and ﬁh(K) is the component

of (e,q) in Zq N Hél(Ugh—l) . Hence HG maps Rh(K) diffeomorphic-
ally onto Ugh™l . Since Ry-1 maps Ry (K) diffeomorphically onto K
and HG° ﬁh-l = Rh_lo HG it follows that Iz maps K diffeomorphically

onto Rh_l(Ugh'l) = Ug .

COROLLARY. If G 1s simply connected then an infinitesimal

G-transformation group acting on M 1s proper if and only if

it is uniform.

PROOF. An immediate consequence of the theorem and corollary 3 of
theorem XII, remembering that if (X,f) is a covering space for G ,
then by definition of simple connectivity f maps X homeomorphically

onto G .

THEOREM XVIII. Let G be simply connected and let © be

an infinitesimal G-transformation group acting on M with support

relatively compact in M such that each leaf of e is a Hausdorff

manifold. Then © is proper and hence, by corollary 1 of theorem

XI1, © generates a unique global G-transformation group acting

% III .
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PROOF. An immediate consequence of theorem XVI and the corollary

of theorem XVII.

COROLLARY 1. If G 1is simply connecbed and M is &

Hausdorff differentiable manifold then every infinitesimal G-

transformation group © acting on M vhich has relatively

compact support 1s proper and hence generates a unique global

G-transformation group acting on M .

CGOROLLARY 2. If G is simply connected and ¥ 13 a
compact Hausdorff manifold then every infinitesimal G-trans-
formation group acting on M is proper and hence generates
a unique global G-transformation group acting om M . in

other words, the mapping o— o' 1is a one-fo-one corres-

pondence between global G-transformation groups acting on M

and infinitesimal G-transformation groups acting on M.

Although corollary 2 above scems not to have been published pre-
viously, it 1s apparently known to a number of people who are interested
in such questions (for the case G = R this corollary can even be con-

sidered 'well-imown').

7. R-Transformation Groups.

We denote by R the connected Lie group of real numbers under
addition, by x the identity map of R onto itself and by D the vector
field 9/ Dx on R . Then D is a basis for the one-dimensional Lie
algebra of invariant vector fields on R , hence if M is any differ-
entiable manifold and X a vector field on ¥ then the map
@ : tD —> tX 1s clearly an infinitesimal R—tranpformation group acting

on U which is uniquely characterized by the conditilon ®(D) = X . We

thus have the following result.
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THEOREM XIX. The mapping ©-—+@(D) is a one-to-one

correspondence between infinitesimal R-transformation groups

acting on 1 and differentiable vector fields on M .

DEFINITION X. If X 1is a differentiable vector field on

M then the infinitesimal R-transformation group associated with

X 1s that infinitesimal R-transformation group ® acting on M

such that &(D) = X .

DEFINITION XI. A differentiable vector field X on M

will be called generating, univalent, or proper respectively,

according as its associated infinitesimal K-transformation group
® has these properties. A local R-transformation group gener-
ated by @ will be said to be generated by X , i.e. & local
R-transformation group ¢ acting on M 1isg generated by X if

o*(D) = x .
The following result is classical.

LEMMA a. If M is a connected, Hausdorfr, differentiable

manifold and p and q are distinct points of M then there

exists a continuous one-to-onme map , o , of the interval [0,1]

into M such that o(0) = p and o(l) = q .

LEMMA b. If f 1s a local diffeomorphism of a connected,

Hausdorff, differentiable manifold into & then f 1is one-to-

one and hence a diffeomorphism.

PROOF. Suppose on the contrary there were distinct points p and
9 In M with f(p) = f(q) and let o be a continuous one-to-one map
of [0,1] into M with o(0) =p and o(l) =qg. If g=rfoo then,

as o 1is one-to-one and f locally one-to-one, g is locally one-to- one.
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In particular g is not constant and hence assumes values other than
g(0) = g(1). For definltensss assume g takes on values greater than
g(0) « Then as (0,11 1is compact g assumes a maximum value at a point
t with 0 <t < 1. But as g 1is one-to-one and continuous in an open
interval I containing t , by a classical theorem 1t is strictly monotone
on I and hence cannot assume its maximum at t . This contradiction

completes the proof.

THEOREM XX. Let X be a differentiable vector field on M .

Then the following four conditions are equivalent.

(1) X 4is univalent.

(2) There exists a (necessarily uniqqg)@aximum local

R-transformation group acting on M generated by X .

(3) X is generating.
If © is the infinitesimal R-transformation Eroup

associated with X then every leaf of C is a Hausdorff

manifold.

PROOF. Let @ be as in (4). Then (1) means that © 1s univalent
and hence there is a unique maximum local R-transformation group ¢ act-
ing on M such that o%(D) = @(D) = X (corollary of theorem X) so (1)
implies (2). That (2) implies (3) is obvious and that (3) implies (4)
follows from theorem VIII of chapter II. If (L) holds, then by theorem
IV of chapter IT and lemma b above, [ maps each leaf of @ diffeo-
morphically into R , hence by definition VI @ 1is univalent, l.e. X

is univalent so () implies (1).

COROLLARY. If M 1is a Hausdorff differentiable manifold

then every differentiable vector field on M 1s univalent,

hence o-—o% (D) 1s a one-to-one correspondence between all
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maximum local R-transformation groups acting on M and all

differentiable vector fields on W . Thus given a differentiable

vector field on M it makes sense to speak of THE maximum local

R-transformation group it generates. -

PROOF. Since M is Hausdorff condition (L) of the theorem is

automatically satisfied.

This corollary is apparently a very old result and of course can be
proved ab initio with very little trouble. Though almost everyone inter-
ested in transformation groups seems to be aware of it in one form or
another (usually in the form that a vector field on a Hausdorff manifold
generates a local transformation group satisfying (1) of definition VII)
I do not know who first discovered it. Probably most people, like the
author, rediscovered it for themselves as the natural global form of the
classical existence and uniqueness theorem for first-order ordinary

differential equations.

8. The Need for Non-Hausdorff Manifolds.

In chapter II we remarked that in view of the corollary of theorem
XI it might have seemed well-advised, in the interest of elegance and
simplicity, to have disallowed non-Hausdorff manifolds throughout the
entire theory of transformation groups. Corollary 2 of theorem XI1I,
corollaries 1 and 2 of theorem XVIII and the corollary of theorem XX
seem to give additional weight to this view. There is, however, another
side of this coin. The manifold of the universal globalization of =z
univalent infinitesimal G-transforriation group acting on I , constructed
in theorem IX, was essentially GXLU@% « Now the quotient manifold of a
Hausdorff manifold defined by a regular differential system is not neces-

sarily Hausdorff. In particular, it is easy to construct a univalent
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infinitesimal G-transformation group acting on a Hausdorff manifold M
such that G)(M/®* is not Hausdorff. Thus if we were to disallow non-
Hausdorff manifolds we would have to drop (1) from theorem X. Actually
the situation would be even worse, we would have to drop (2) from theorem
X also as the example below shows. Needless to say (3) and (L) of
theorem X would still be equivalent, but to prove their egquivalence
without the intermediate steps involving (1) and (2) would be quite
complicated. In fact, the whole theory of non-Hausdorff manifolds and
of quotient manifolds developed in chapter I, and the theory of glogal—
izations developed at the beginning of this chapter, were developed ex-
pressly for the purpose of simplifying and of making more transparent
the suthor's original proof of the equivalence of (3) and (4) which used
these concepts only implicitly.

Wie now exhibit a univalent infinitesimal R-transformation group act-
ing on a Hausdorff manifold which admits no Hausdorff globalization.
Let M = RXR - {(0,0)} and let x and y be the usual
coordinate functions on M , i.e. x(s,t) = s, y(s,t) =t . Let ®
be the infinitesimal R-transformation group acting on M such that
@) = (1 - cos ) 9/ 9y where © 1s the usual polar angle. By
the corollary of theocrem XX, @ is univalent. Let ¢ be the maximum
local R-transformation group it generates. It is easy to say what 1s
o fairly explicitly:
Dcpp = R unless p 1is of the form (0,%)
(-t,00) if p 1is of the form (c,t) with t 20

"

pr
pr = (-o00,t) if p 1is of the form (0,t) with t <O

9P 1s uniquely determined by the conditions that X

xoo0 and
Y = yoo are the solutlons of the system of differential equations
dX/at = 0 dy/at = 1 - X/AV X2 - Y2 with domein pr and satlisfying

the initial conditions X(0) = x{p) , Y(0) = y(p) . It is easily
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verified from this that
1im ¢(2,(-1/m,-1)) = (0,+1) and that 1lim y(o{2,(1/n,-1)) =0 .

n—*oo n-r>s
We can now show that if (M,¥) 1is any globalization of ® then uois
not Hausdorff. 1In fact supposing M°  is Hausdorff we will derive a
contradiction. By the corollary of theorem VIII, ¢ =\ny¢ hence
gsince limits are unique in a Hausdorff space

v(2,(0,-1)) = W(IE@(E,(—l/ﬁ,-l))) = lim ¥(2,(-1/n,-1)) =
n-res

n~*o

lim ¢(2,(-1/n,-1)) = (0,1) . Hence 1 = y(0,1) = y(¥(2,(0,-1))) =

n-o

y(1im ¥(2,{1/n,-1)) = y(1lim ¢(2,(1/n,-1))) = lim y(o(2,(31/n,-1))) = 0
1N ~»0o

n-—+oo N0
which 1s the canonical mathematical contradiction.
The above counter-example 1s due jointly to the author and
Professor A. M. Gleason. Professor Garett Birkhoff provided another

counter-example at about the same time.

9. Can Theorem XX Be Generallzed?

The author originally hoped that theorem XX could be generalized
to say that 1f G 1s a simply connected Lie group and M a Hausdorff
differentiable manifold then every infinitesimal G-transformation group
@ acting on M 1is univalent. If M 1is compact then corollary 2 of
theorem XVIII provides a proof and in fact shows that @ must be proper.
After weeks of vain searching for a proof in the general case, we were
rescued by Dr. Albert Nijenhuls who gave an elegant counter-example for
the case G = R2 « As Dr. Nijenhuls himself realized, his example con-
tained all the essential ideas for a counter-example in the general case
such as we give below. It is interesting to note that R is character-
ized among all connected Lie groups by the property that each of its con-

nected subsets is simply connected, and it 1s this fact that bars any

generalization of theorem XX.
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LEMMA. If G is eny connected Lie group of dimension

r >0 other than R then there is an open neighborhood V

of the identity in G which is homeomorphic to RF™1 X st

(where S1 is the one-sphere = circle).

PROOF. If r =1 then G must be the circle group and we can
take V=G . If r > 1 let (xl «+e Xp, O) be a cubical coordinate
system of breadth 2 centered at e and take for V the hypervolume of
revolution generated by rotating {pe(j : xl(p) =0 and

x;{p)<1/8 i=2 ... 1 } gbout the (r-2)-plane x; =0, x, =1/} .

THEOREM XXI. If G 1is a connected Lie group of dimension

r > O other than R then there is a manifold M diffeomorphic

to RY and an infinitesimal G-transformation group @ acting

on M such that

(1) PFor each peM L — @(L)p maps Q} isomorphically onto the

tangent space to M at p (so a fortiori @ is a Lie

algebra isomorphism).

(2) @ 1is not univalent.

PROCF. Let V ©be an open neighborhocod of e in G homeomorphic
to Rr_lx Sl and let (M4,II) be a universal covering manifold of V .
Then M 1s diffeomorphic to R¥ and if for each Le q& we define
e(L) by 5H(®(L)p) = LH(p) (which is possible since I 1is a local
diffeomorphism) then © 1is an infinitesimal G-transformation group act-
ing on M satisfying (1). Since V 1is not simply connected, we ecan
find distinet points p and g in M such that I(p) =T{q) = e .
Let 6: [0,1]»M bea C% arcin N with o(0) =p and G&(1) = q
and let o =Ioeo . Defining o : [0,1]—’ GXM by o(t) = (a(t),o(t))

it is clear that o 1is an integral curve of e , hence its endpoints



(e,p) = 0(0)
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and (e,q) = 9(l) Dbelong to the same leaf 3

of

g"

Since HG(e,p) = e = HG(e,q),HG is not one-to-one on Z and hence

(theorem III)

® 13 not univalent.
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Chapter IV
LIE TRANSFORMATION GROUPS

In this chapter M will denote an n-dimensional Hausdorff
differentiable manifold and G(¥M) the group of bi~differentiable
homeomorphisms of M onto itself. we denote by V(M) the set of
proper differentiable vector fields on M . Each LeV(¥) generates

a global R-transformation group acting on I and it is natural to
try to develop a Lie theory for G(M) taking V(M) as the analogue
of the Lie algebra. If M 1is compact then every differentiable
vector field on M 1is proper, so V(M) 1s just the Lie algebra of
all differentiable vector fields on M . If M 1is not compact, how-
ever, then although V(M) 1s stable under multiplication by real
scalarg, it is not stable under addition and the bracket operation.
For example, let M = RXR with X and y the usual coordinate
system. Let X =73 9/ dx and Y = (x5/2) 9/ 3y . Then X and
Y are proper and in fact generate respectively the global R-trans-
formation groups ¢ and ¢ given by
o(t,(u,v)) = (u + vt,v) and V(t,(u,v)) = (u,v + u®t/2) .

On the other hand, [X,Y] = xy( A/97)-(x2/2)(d/9x) 1is not proper
and in fact the maximum local R-transformation group © generated by

[X,Y] is given by
B(t,l,v)) = ((2u/(2 + ut)),v exp(‘ft(Qu/(Z + uz))dz)) with
Dg = { (ty,(u,v)) ¢+ ut + 2> O} .

Also X + Y = y( 9/9x) + (x°/2)( ?/?y) 1is not proper. In fact

if o 1is the maximum local R-transformation group generated by X + Y
and we put f(t) = xeo(t,(u,v)) and g(t) = yoeol(t,(u,v)) then ¢
and g are solutions of the differential equations d4f/dt = g ,

dg/dt = fz/? , f(0) =u,g(0) = v . It is readily verified that these
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differential equations do not have solutions defined for all t unless
However, there is a remarkable fact that makes V(1) ‘tenough of a

Lie algebra' to develop a useful Lie theory; namely, that if a set of

proper vector fields on M generates a finite dimensional Lie algebra,

then this Lie algebra consists entirely of proper vector fields. It is

to the non-trivial proof of this fact that we now proceed (theorem III).

1. Two Theorems on Lie Groups.

We denote the adjoint representation of a Lie group G by ad.
Thus for each geG ad(g) is the differential of the inner automorphism
h -+ghg'l considered as acting on the Lie algebra gy'of right invariant
vector fields on G . We note that by [ 1, proposition 1, page 118 ]
(taking & to be h—»> ghg™ ) that if geG and Xe Of then
explad(g)X) = g exp()()g'l , and that from [1, page 124] for X and Y

in O(} we have [X,Y] =tE8(1/t)(ad<exp tX)Y - ¥) , the 1limit being

taken in the unique topology with respect %o which E} is a topological
vector space. Since every subspace of Q? is closed in the latter topo-
logy, it follows that if V 1s a subspace of Qg such that
ad(exp tX)Y ¢ V for all teR (so in particular ¥ = ad(exp 0X)Y ¢ V)
then [X,Y] eV .

A subset S of a Lie algebra £ will be called a set of generators

for K if there is no proper Lie subalgebra of L including S .

THEOREM I. Let G be a connected Lie group and @ the

Lie algebra of right invariant vector fields on G . If 3

[y

s a set of generators for 9} such that XeS implies tXeS

I

for all real t then exp(S) 1s a set of generators for &G .
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PROOF. Let H be the subgroup of G generated by exp(S) ,

y={xQ :oexptXeH for all teR}] and V the subspace of %

gspanned by U - Clearly S S USE V . 1f heH and XeU  then since

oxp(t ad(m)X) = exp(ad(n)tX) = nlex cx)n~t eH it follows that
ad(h)XeU . Thus ad(H)U €U so by 1inearity ad(HE)V&V . It follows
that if XeU and vev then ad(exp £X)YeV for all teR , so by the
remark just preceding the theorem [x,ikv . Thus [U,V)E V and by
linearity [V,V] ¢ v . Since by definition Vv is a subspace of 99,
this shows that it is actually a gubalgebra, and since S &V we ﬂave
Vv = (%} . Since V 1is the linear span of U we can find Xp .- %p
in U forming & bagis for q& . Then by the proof of [1, proposition
1, page 128] elements of the form {exp tlxl) v.s (OXD trxr) cover a
neighborhood of the identity in G and hence generate G . Since the

Xi are in U all the latter elements lie in 1 so H=G as was to

be proved.

THEOREM II. Let G be a Lie group and QJ its Lie algebra
of right invariant vector fields on G . If S 1is a set of
generators for () such that Xed implies tXes for all real

£ and X,YeS implies ad(exp X)YeS then S spans Q} .

PROOF. Let V Dbe the linear span of S . Since ad(exp(s))s & 8
if follows that ad{exp(sS))V &V and since (theorem 1) exp(8) generates
the connected component of the identity in G , which includes exp(V) ,
it follows that ad(exp(V))V € V . By the remark immediately preceding
theorem I, it follows that [V,VJ € v . Then since V 1s a subspace of

(%¥ 1t is a subalgebra of Cg and, since the get S of generators of g?

is included in V , vV = Cg. as was to be proved.
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2. Infinitesimal Groups.

In the following sequence of lemmas, © will denote an infinitegi-
mal G-transformation group acting on a Hausdorff differentiable manifold

M . For each peM we denote by Zp the leaf of @ which contains

(e,p) .

LEMMA a. A necessary and sufficient condition for a

locel R-transformation growp o acting on M to be generated

by @©(X) 1s that (exp tX,0.(p))eZ; for all (t,p)eD¢ .

PROOF. Let E(t) = exp tX and for each peM define
# 1D p=rG XU by &P(t) = (E(t),0P(t)) . Then BE(DY) = Xoy)
and so by theorem II of chapter II 58P (Dy) = (Xg(t)y, ot (D), (4,p)) -
Thus if ¢ is generated by @(X) , i.e. oY (D) = ®(X) , then
éé(Dt) = (XE(t)’®(X)¢(t,p))e®*§P so &P ig an integral curve or @~,
Since &P(0) = (e,p) 1t will follow that the range of &° ig included
in the leaf of @* containing (e,p) , which is Zp « Conversely if &
maps into Zp then since &° 1g a differentiable map into GXM it is
also, by the corollary of theorem IV, chapter II, a differentiable map
into Zp and therefore (Xe,o+(D)p) = Gép(De) belongs to the tangent

space Lo Z, at (e,p) , which is 6 - By definition of " it

e,p)
follows that q,"(D)p = @(x)p so o' (D) = ®(X) , 1.e. ® 1s generated

by @e(Xx) .

LEMMA b. If X ... X are Xk clements of % such that
©X;) 1s proper, 1 =1 ...k, and 1r ol is the global R-
transformation group gemerated by @(X;) , then for each pem
the mapping &P . (tl see 6) = ((exp £.X,) <. (exp 61X,

Ve, e Vg, (®)) is s air

ferentiable map of KX into 3 .
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i . s .
PROOF. Since the mappings (t,p)——awt(p) are jointly differentiable

in {(t,p) it is clear at any rate that each &P is a differentisble map
of Rk into GXM , so by the corollary of theorem IV, chapter II, 1t
suffices to show that &P has its range included in Zp . Now for

k =1 this follows from lemma a s0 Wwe proceed by induction on k and

assume the lemma holds for k =m . Let g= (exp tmxm) ... (exp tlxl)

and let q = W? .o wi (p) . By the induction hypothesis (g,q)ezp
m 1

80 (e,q)eﬁ Zp and hence by the corollary of theorem VI of chapter II
g

- m+1 -
=RZ . Nowby lerma a (exp t_ X Y)e2 =R Z so
24 = R, ¥ (exp b ., m+1’wtm+1(q a = R,

m+1l ;
| =
((exp tm+1xm+l)g’vtm+l(Q))ezp which is the desired result for k = m + 1 .
LEMMA c. Let X and Y be elements of Q} such that

®(X) and ©(Y) are proper. Then ©(ad(exp X)Y¥) 1is also proper.

PROOF. Let ¢ and V¥ be the global R-transformation groups acting
on M generated by &(X) and @(Y) respectively and let
j\t =0, v, o @il . Then A : (t,p)— Rt(p) is clearly a global R-
transformation group acting on i hence it will suffice to show that
it is generated by @©(ad(exp X)Y) . By lemma a it will be enough to show
for all (t,p)eRXM that (exp t(ad(exp X)Y) ,')t(p))ezp . But as
exp t(ad({exp X)Y) = exp(ad(exp X)tY) = (exp A)(exp tY¥)(exp -X) and

-At = ¢l«awto ¢_; this is an immediate consequence of lemma b.

LEMMA d. If there is a basis Xy ... X, for 9? such that

®(X;) is proper i =1 ... r then © 1is uniform.

PROOF. Let wi be the global R-transformation group generated by

®(Xi) and let (xl ces xr,V) be a canonical coordinate system of the
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second kind in G with respect to Xl . XP s 80 that for each
geV g = (exp xl(g)Xl) evs (exp xr(g)xr) - Then by lemma b for each

pel the map &P g-—+(g,wil(g) N W§ (g)(p)) is a differentiable map
r

of V  into Zp . Let VP be the image of &P . Then clearly s

maps vP one-to-one onto V . Moreover VP 1is open in Zp « In fact
given qeVP let U be a neighborhood of q in 3, such that T

maps U diffeomorphically into G {theorem IV of chapter II) and let

4 be a neighborhood of HG(q) in V such that &P (W) S U . Then

P (W) = (HGF U)-l(W) is an open set of Zp containing ¢q and included
in VP ., By theorem V of chapter II, it follows that VP is a component
of Ep(\ n&l(y) and in fact since &P(g) = (e,p) 1t is the component of
(e,p) in Zp/\ n&l(v). Thus for each peM N, maps VP = (the component
of (e,p) in Zp/\ Hél(V)) one~to-one onto V and hence by definition
VIII of Chapter III, V 4is a uniform neighborhood for M with respect

to @ and so ® is uniform.

THEOREM III. Let KL be a finite dimensional Lie algebra

of vector fields on the Hausdorff differentiable manifold M .

Then the following three conditions are equivalent.

(1) Every Le L is proper.
(2) The set of Le L which are proper generate the Lie algebra L.

(3) There is a connected Lie group G and a global G-transforma-
tion group ¢ such that
(a) g —o Qg is an isomorphism of G into G{M).

(b} ¢+ is an isomorphism onto L .
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PROOF. That (1) implies (2) is trivial. Suppose that (2) holds.
By & classicg&ltheorem there is a simply connected Lie group G with
Lie algebra Cg' isomorphic to [: . Let @ be an isomorphlsm of é;
onto C . Then © 1is an infinitesimal altransformation group acting
on M . Let S Dbe the set of Xe q; such that ®@(X) 1s proper. Then
by (2) S generates q; . If XeS and s 1is a real number then |
sXeS (in fact if o 1is the global R-transformation group generated by
X then (t,p)— o(ts,p) 1is the global R-transformation group generated
by 8X). By lemma ¢ 4f X and Y belong to S so does ad{exp k)Y .
it follows from theorem II that S spans Q; and hence we can choose &
base Xy «-- X, for Q; with each Xies , 1.e. such that each @(Xi)
is proper. By lemma d @ 1is uniform and hence by the corollary of
theorem XVII of chapter 111, ® 1is proper. Let V¥ be the global EL
transformation group acting on M generated by ® and let K Dbe the
kernel of g — wg . Then K 1is a closed normal subgroup of G. 1If
X is in the Lie algebra of K (which is a Lie subgroup of G by
{1, corollary, page 135} ) then for any peM wp(exp £X) = p and hence
oubting E(t) = exp tX,8(X), = \u"(x)p = 6yP(x ) = Yo OE(D,) =

0 and so ©(X) =0 and therofore, as © is an iso-

i

5(y o E)(D, )
morphism, X =20 . Thus K 1s a zero dimensional Lie subgroup of [

and so discrete and hence the natural homomorphism h of E’ onte G =
E/K is a local diffeomorphism. It 1is immediate that we get a global
G-transformation group @ with properties (a) and (b) of (3) by taking
o(h(g),p) = ¥(g,p) . Thus (2) implies (3).

Finally if (3) holds and Le L then L generates the global R-
transformation group (t,p)—+ olexp tet 1 (L),p) so L is proper. Thus

(3) implies (1).
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DEFINITION I. A finite dimensional Lie algebra of
differentiable vector fields on a Hausdorff differentiable
manifold M will be called an infinitesimal group of M if
it satisfies any one and hence all of the three equivalent

conditions of theorem III.

COROLLARY. If KL is a finite dimensional Lie algebra of
differentiable vector fields on a Hausdorff differentiable mani-

fold M then the proper vector fields contained in £ form

an infinitesimal group of M

3. Connected Lie Transformation Groups.

DEFINITION II. Let J be a connected Lie group whose
underlying group is a subgroup of the group G(lM) of diffeo-
morphisms of the Hausdorff differentiable manifold 1 . We

shall call :] a connected Lie transformation group of M if

the mapping ¢ : (t,p)— t(p) of JIX MM is differentisble
and hence a global ¢J =-transformation group acting on M . We
call ¢ the natural global J -transformation group and the

range of @* is called the infinitesimal group of :T .

Note that if J is a connected Lie transformation group and o the
natural global J -transformation group then oy = t so of course
t—-> 0, is one-to-one. If X is in the Lie algebra of right invariant
vector flelds on J then clearly (t,p)— (exp tX)(p) = olexp tX,p) is
the global R-transformation group generated by o (X) . Thus if
0H(X) = 0 then exp tX is the identity of J for all real t so X = O .
Hence ot 1s an isomorphism onto the infinitesimal group L of C7 .
Thus conditions (3a) and (3b) of theorem III are satisfied and L is an

infinitesimal group in the sense of definition I. Conversely:
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THEOREM IV. Every infinitesimal group of the Hausdorff

manifold M 1s the infinitesimal group of a unique connected

Lie tpansformation group of M .

PROOF. If C. is an infinitesimal group of M then by property
(3) of theorem III there is a connected Lie group G and a global G-
transformation group @ acting on M such that the range of ot is
L and g— (pg is an isomorphism of the underlying group of G onto
a subgroup T of a(m) . If wecarry the topology of G over to T
via g-—npg then T becomes a connected Lie transformation group J
with infinitesimal group /:, .

Let TJ v be any other connected Lie transformation group with
infinitesimal group L and et ¥ and o De the natwal global J
and J ' - transformation groups. Since \W and ot are isomorphisms
onto E , O'+-lo \y* i1s an isomorphism of the Lie algebra of J onto
the Lie algebra of J ' - By L1, the italicized remark at the bottom
of page 113] there is a local isomorphism h of a neighborhood V of
the identity in J onto a neighborhood V' of the identity in g
such that sh = ot~loy* . The map (%,p)— o(n(t),p) of VX M—>M
is a local J —transformation group acting on M with infinitesimal
generator ctosh = \|1+ and hence by chapter 111, theorem VII, it is a
restriction of ¥ . Thus for teV and peM tip) = ¥(t,p) = o(h(t),p) =
h(t)(p) , i.e. h(t) =t so h 1is the identity map. It follows in
particular that Vv 1is a neighborhood of the identity in J ' . Since

J and J ' are each connected they are each the subgroup of G(m)
generated by V and so have identical underlying groups. Since they
coincide in a neighborhood of the identity as topological groups, they

are identical as topological groups.
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L. Lie Transformation Groups.

When should we call a subgroup T of G(M) a Lie transformation

group? One natural requirement is that T be a Lie group in a topolegy
which 1s not too weak, namely stronger than the compact-open topology

(see section 1 of appendix) so that (t,p) —t(p) is a continuous map

of TXM into M . If this were all we were to require then we could
simply glve T the discrete topology. However, there is a second

natural requirement for a topology of T that goes in the other direction,
namely that if ¢ 1s a global R-transformation group acting on M such |
that @teT for all teR then t<—7¢t should be continuous, i.e. a one-
parameter subgroup of T . As we shall see, these two conditions deter-

mine, if any, a unique Lie group topology for T .

DEFINITION III. Let T be a subgroup of G(M) and L a
proper vector field on M with associated global R-transforma-
tion group o . We shall say that L is tangent to T if

@teT for all teR .

DEFINITION IV. Let Z] be a topological group whose
underlying group T 1is a subgroup of G(M) . We shall call
the topology of J a Lie topology for T 1if
(1) J is a Lie group,

(2) the map (t,)=>t(p) of J X M->Mu is differentiable,
(3) if L 1is a proper vector field on M tangent to T with
assoclated global R-transformation group ¢ then t ~+¢t

is a one-parameter subgroup of J (and hence by (1)

9y = exp tX for some X in the Lie algebra of J ).

We note that by virtue of I 7, theorem, page 212‘] it follows that

(1) could be replaced by (1') o] is & locally compact group, and (2)
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could be repl ced by (2') the map (t,p) = t(p) of JIxm—>M 1is
continuous, and that the stronger statements (1) and (2) would then
follow. However, this depends on some Very deep and recent discoveries
about the structure of locally compact groups and we feel that it is
preferable to frame definition IV with the stronger statements so as
not to obacure the elementary nature of the present theory.

The following well-lkmown result is an immediate consequence of the
existence of canonical coordinate systems of the second kind in a Lie
group and the fact [1, remark, page 128] that every one-parametef sub~
group of a Lie group is of the form t —>eXp tX for some X 1in the Lle

algebra.

LEMMA. Let G and H be Lie groups and let o be a

homomorphism of the underlying group of G 1into the underlying

group of H . If oo v is & one-parameter subgroup of H

whenever ¢ 1is a one-parameter subgroup of G then o is

continuous. In particular, if G and H have the same under-

lying groups and the same one-parameter subgroups they are
identical as topological groups.

THEOREM V. A subgroup T of G(M) eadmits at most one
Lie topology.

PROOF, Let J Dbe a topological group with underlying group T
whose topology is a Lie topology for T . If t = o, is a one-parameter
subgroup of J then by [l, proposition 1, page 128 ] t— o is an
analytic map of R 1nto 3 and so, by (2) of definition IV,

P (t,p)— Qt(p) is a differentiable map of RXM—M and hence 2
clobal R-transformation group acting on M . Clearly the infinitesimal

generator of © is tangent to T . Conversely, if L 1s a proper
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vector field on M tangent to T and o the global R-transformation
group it generates, then by (3) of definition IV ¢t = @y is a one-
parameter subgroup of J . Thus the one-parame ter subgroups of J

are uniquely determined by T and the properties listed in definition IV
as the mappings ¢ ud where o 1is a global R-transformation group
generated by a vector field tangent to T . The theorem follows directly

from this and the lemma.

DEFINITION V. A subgroup T of G(M) will be called a *

Lie transformation group of M if it admits a Lie topology.

By theorem VI it makes sense to speak of the Lie topology of

a lie transformation group of M . Properties having signifi-
cance for a Lie group when used in connection with a Lie trans-
formation group are to be interpreted with respect to its Lie
topology. 1In particular, if T 1is a Lie transformation group
of M , then we can speak of the connected component of the
identity T, of T . It is trivial from definition III that
Teo is a connected Lie transformation group of I (in the

sense of definition II). By the infinitesimal group of T we

shall mean the infinitesimal group of T, . It is clearly

Just the set of all proper vector fields on M tangent to T .

THEOREM VI. Let J be a Lie group satisfying the second

axiom of countability (or equivalently, with only countably

many components) whose underlying group T 1s a subgroup of
G(M) . If the mapping (t,p) = t(p) of JTX M—r 1s differ-
entiable then T 1is a Lie transformation group of M and

moreover the given topology of J , the Lie topology of T, and
the modified compact-open topology of T (definition A, section
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3 of appendix) are all the same.

PROUF. Properties (1) and (2) in definition IV hold by hypothesis
and property (3) of definition IV follows from theorem G of the
appendix. Thus T 1is a Lie transformation group of 1 and the topology
of T 1ts unique Lie topology. It also follows from theorem G of the
appendix that the topology of «J is the modified compact-open topology of

T.

COROLLARY. If J is a connected Lie transformation groub

of M in the sense of definition II then the underlying group

of (J 1is a Lie transformation group of M and the topology of

>y is its unique Lie topology.

We note that in theorem VI it would have been sufficient to asgsume
that :I was a locally compact topological group satisfying the second
axlom of countability and that (t,p)—> t(p) of JX M—M was contin-
uous. See the remark following definition IV.

We now develop & necessary and sufficient condition for & subgroup

T of G{(M) to be a Lie transformation group wnich is very useful for

applications.

LEMMA a. Let G be a topological group whes e underlying

group is a normal subgroup of a group T and suppose that for

each teT the map o g——+tgt‘1 of G onto itself is con-

tinuous. Then there is a unique topology for T which makes

T into a topological group in which G is an open subgroup.

PROOF. Obvious.

LEMMA b. Let G be a connected Lie group whose underlying

group EE a subgroup 9£ a group ¢ and suppose that for each teT

—_— YT e e ———
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and each one-parameter subgroup of G Oy is a one-

parameter subgroup of G , oy being the map g«—»tgt'l .

Then there is a unique Lie group topology for T wlth respect

Yo which G 1is the connected component of Ihe identity.

PROOF. Since G 1is connected it is generated by the 1mages of its
one-parameter subgroups; hence, the hypothesis implies in particular that
the underlying group of G 1is normal in T . By the lemma preceding
theorem V, each of the mappings 0y is continuous and lemma b now

follows from lemma a.

THEOREM VII. A necessary and sufficient conditi on that

& subgroup T of G(M) be a Lie transformation group of M

is that the set S of proper vector fields on I tangent to

T generate a finite dimensional Lie algebra L. If this

condition is fulfilled then S = AL = the infinitesimal

group of T .

PROOF. The necessity of the condition is obvious. Conversely,
suppose that L is finite dimensional. By definition I £ is an

infinitesimal group of M . Let G be the connected Lie transformation

group of M with infinitesimal group L {theorem IV) and let ¢ be

the natural global G-transformation group, so that ot 1is an isomorphism

of the Lie algebra 99 of G onto L . Ir Xe gy then clearly
exp tX = Wt where W 1s the global R-transformation group generated by

ot(X) . In particular, exp(¢+'l(s)) S T . Now clearly LeS implies
+-1(S

ol

tLeS for all real t so by theorem I exp(o )) generates & .
Since a set of generators of G is included in T it follows that G

itself is included in T , from which it follows that E =35 .
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Now let teT and let s —*ws be a one-parameber subgroup of G .
Then ¥ : (s,p)— ws(p) is a global R-transformation group acting on M
and since t 1is a diffeomorphism of M onto itself so also 1is
o 3 (s,p) > (t o Yge t_l)(p) . Now since for all seR WSEG €T and

lsT for all s and hence

since teT it follows that o = toy ot

the proper vector field L generating o is tangent to T and so be-

longs to &S = [: . Thus s> o4 is a one-parameter subgroup of G .
1t now follows from lemma b that there is a unique Lie group CT

with underlying group I such that G 1s the component of the identity

in :] . Since G is a connected Lie transformation group of M the

map (g,0) —>glp) of GXM-—>M is differentiable. If t, el then

Gt, is the component of t, 1in J . Now t—» tto_l maps Gt,

diffeomorphically onto G and as t, eG(M) p—t (p) maps U diffeo-

morphically onto M . Thus

(t,p)— (tt;l,tb(p))—é tt;l(to(P)) = t(p) is a differentiable map of

Gt XM —>M . Since Gt, 1s a neighborhood of b, in J it follows

that (t,p)=> t(p) of JX M—>M 1is differentiable.

Thus (1) and (2) of definition II hold. If L 1s a proper vector
field on M tangent to T and o the global R-transformation group it
generates, then LeS = C and hence t —» o is a one-parameter sub-
group of G and a fortiori of J  so condition (3) of definition IV is
also satisfied and the topology of Cj is a Lie topology for T .

We note that if Gl and G, are two Lie transformation groups of
M then the subgroup G of G(M) that thev generate need not be. For
example, let 1 = RXR ,

Gy = { oy : (u,v)——)(u+vt,v)} Gy = { Wt : (u,v)— (u,v+(u2t/2))f.
Then Gq and Go are clearly l-dimensional Lie transformation groups

of 1 but the group G they generate ls not. For X =1y 3/ dx 1s

tangent to Gy and Y = (x°/2) @/ 9y 4is tangent to G, so both X
1 2
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and Y are tangent to G . But the Lie algebra generated by X and Y
is infinite-dimensional as is easily checked directly or as follows from
theorem III since we saw that X + ¥ and [X,Y] were not proper at the

beginning of the chapter.

DEFINITION VI. Let E be a Lie algebra of differentiasble

vector fields on a differentiable Hausdorff msnifold 11 . e

shall call L a Kobayashi Lie algebra if for each pel the

mapping L‘~>Lp of E, onto Mp is non-singular. If moreover

C consists entirely of proper vector fields we shall call

a Kobayashi infinitesimal group.

THEOREM VIII. Let [ be a Kobayashi Lie algebra on the

n-dimensional Hausdorff differentiable menifold M . Then L

has dimension & n and if Ot is the set of proper vector fields

<
in £ then (1 is a Kobaysshi infinitesimal group of dimen-

sion say r € n . Define © : p—@6, by ®, = pr : Le Olf.
C)

Then is an involutive r-dimensional differential system on

M . Let A be the connected Lie transformation group with

infinitesimal group Ot (theorem IV). Then for any pell the

orbit of p under A coincides with the leaf Zp of ©

containing p and in fact o, :a— a(p) 1s a local diffeo-

morphism of A onto Zp « A necessary and sufficient condition

that oP be a diffeomorphism is that the isotropy group

A, = 1 aea : alp) = p } reduce to the identity; so that every

oP is a diffeomorphism if and only if A operates without fixed

points.

PROOF. Since M had dimension n and L'—’Lp is non-singular L

had dimension & n . By the corollary of theorem III Ol is an
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infinitesimal group of 1 . Since a subalgebra of a Kobayashl algebra
is clearly a Kobayashi algebra, Ol i3 a Kobayashi infinitesimal group
say of dimension r . That ® is an r-dimensional involutive differ-
ential system on ¥ follows from [ 1, proposition 1, page 88 ] . Let
¢ be the natural global A-transformation group. Then ot 1is an iso-
morphism of the Lie algebra of A onto Ol. since by theorem II of
chapter II we have 5¢p(xa) = ®+(X)a(p) it follows that (émp)a is an
igsomorphism of the tangent space to A at a onto ®a(p) . Since
oP(e) = p and A 1is connected o is a local diffeomorphism of ‘A
into S . 1In particular, the range of @p which 1s the orbit of p

P
under A 1is open in Zp . Similarly any other orbit under A which
intersects Zp is an open subset of Zp , and since orbits are disjoint
and Zp is connected, the orbit of p under A must fill up Zp ,

i.e. oP 1is onto Zp . The last conclusions of the theorem are obvious.

5. Tensor Structures and Their Automorphism Groups.

Suppose a manifold I comes to us equipned with some extra
structure, that is one or more fields of geometrical objects in the sense
of Nijenhuis [9] and others. Then it is of interest to discover the
automorphism group of this structure, that is, the subgroup of G(M)
leaving the given fields of geometrical objects fixed. It is of partie-
ular interest to be able to discern when such a group is a Lie trans-
formation group. This has been settled in certain particular cases by
Myers and Steenrod [10] (Riemannian structure), Nomizu [11] (complete
affine connection), and Kocbayashi (12] (absolute parallelism).

In this section we will be content with showing how the previous
results of this chapter can be used to get very general theorems in this
direction for the case of tensor structures. At a later time we hope

to treat this whole question in considerably greater generality and detail.
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DEPINITION VII. A tensor structure on a Hausdorff

differentiable manifold M 1is a set S of differentiable
tensor fields on M . We denote by A(S) the group of all
diffeomorphisms o of M onto itself such that for all

TeS we have 69poT = Togp (i.e. Bm(Tp) =7 for all

o(p)
peM , see [ 8] for the meaning of this notation). A(S) 1is

called the automorphism group gﬁ_pgg structggg S . We denote

by L (S) the set of all differentiable vector fields L on
M such that L[T] =0 for all TeS (here L [T] is the
Lie derivative of T with respect to L , see [8] ). iie

define Ol (S) to be the set of all proper vector fields in

L (s)..

THEOREN IX. If S is & ftensor structure on 1 then

01(8) is the set of all proper vector fields on U tangent

to A(S8) . Thus a necessary and sufficient condition that A(S)

be a Lie transformation group is that (U(S) generate a finite

dimensional Lie algebra. If this condition is fulfilled then

Ol (s) itselr is a Lie algebra and hence an infinitesimal

PROOF. That (N(S) 1is the set of all proper vector fields on I
tengent to A(S) follows from (8, corollary of theorem VI ]. The rest

of the theorem follows from theorem VII.

LEMMA. I T is a tensor field on the differentiable

manifold M and L and L' are differentiable vector fields

on M then [T,L'][H:L fvr (e1] - fogel] .
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PROOF. It follows easily from [ 8, lermas &, b, ¢ ] that the
lemma is true for T a differentiable function, the differential of a
differentiasble function, or a differentiable vector field. From (s,
lemma dJ if the theorem holds for two tensor fields I and T' 1%
holds for T®T' . An argument like that preceding [8, theorem IIJ

shows that the lemma holds for all tensor fields T .

THEOREM X. If S is a tensor structure on % then KL (8)

is a Lie algebra.

PROOF. Immediate from the above lerma and L 8, theoren III] .

DEFINITION VIII. Let S be a tensor structure on M .
We ghall call S almost rigid if /: (8) 4is finite dimen-

sional and a Kobayashi structure if £ (8) 1is a Kobayashi

Lie algebra.

THEOREM XI. I1f S 1is an almost rigid tensor structure

then O1(S) is an infinitesimal group. If S is 2 Kobayashi

structure then 1 (s) 4is a Kobayashi infinitesimal group.

PROOF. The first statement follows from theorem XI and the
corollary of theorem III. The second statement 1s a consequence of

theorem VIII.

CORCLLARY 1. The sutomorphism group of an almost rigid

tensor structure, S, is a Lie transformation group with

infinitesimal group gls)y .

PROOF. Immediate from theorems IX end XI.

GOROLLARY £. If S is a Kobayashi structure then A4(S)

is a Lie transformation group with infinitesimal group Ot(s) .
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For each peM the orbit, Zp » of p under A(S) is a

union of leaves of the differential system @ defined by ®p =

{ L :Le (1 (S)} s and a—> a(p) 1is a loeal diffeomorphism
o and is & =x2leomorphism

of A(S) onto zp .

PROOF. The first statement is obvious from corollary, since g
Kobayashi structure is clearly almost rigid. Let 45 (8) ve the
component of the identity in A(S) . If 1 is any element of A(S)
then a —»ap-1 1s a diffeomorphism of the corponent of b 4in A(S)
onto A (S) . It follows from theorem VIII that a = a(p) = ab-%b(p))
is a local diffeomorphism of the component of b in A(S) onto the

leaf of @ containing b(p) .

The property of being an almost rigid structure or g Kobayashi
structure is infinitesimal in nature and is usually very easily checked.
For example, it ig quite easy to show that the structure given by a
Riemannian tensor isg almost rigid and part of the results of Myers and

Steenrod in  [10] follow from this and corollary 1 above,

DEFINITION IX. An absolute parallelism on an n-dimensional
differentiable manifold M is a tensor structure g consisting
of n differentiable vector fields {Xl oo Xn} on M which are

everywhere linearly independent.
The following is g well-known result.

LEmA. If 8= {X; ... X} 1is an absolute parallelisnm
on M and p 1is any point of M then there 1s a cubical co-

ordinate system centered at P, (X e.. x ,V) gay of breadth
VA av 1 n 28y ol breadth

8, such that 1f |yl < a 1=1 ... 1n am © 1is the maxi-

mum local R-transformation group acting on M generated by




110 RICHARD S. PALAIS

n
i__gluixi then (1,p)eD¢ , of{l,p)eV and xi(w(l,p)) =uy .

n
PROOF. If we write o{t,p) = exp t(ig1 uiXi) and p = € then the

proof is to be found on pages 116 and 117 of ['1] .

THEOREM XII. An absolute parallelism 5 = {Xl ‘e Xn,}

on a connected Hausdorff manifold M 1is a Kobayashi structure.

PROOF. Let Le L (S) . Then if wuy ... uw are any constanfs we
n n
have by [ 8, lemma c] 0= -iZ::l\liL [Xi] = = [L’igl uixi] = [iil uiXi,L]—

n
(3 uixi) [L] . Thus if o 1is the maximum local R-transformation group
i=1

n
generated by i§1 uiXi then by [8, corollary of theorem VI] Gmt(Lp) =

Lmt(p) . In particular if Lq = 0 then Lwt(q) = 0 . Now by the lemma

points of the form @l(q) , for varying choices of Uj ««. Uy cover a
neighborhood of g 80O that the points where L vanishes is open. Since
it is clearly also closed it follows that L does not vanish anywhere
unless it is identically zero. This together with theorem IX shows that

[ (s) 1is a Kobayashi Lie algebra.

The theorem proved by Kobayashi in [12} is actually stronger than
what 1s evident from theorem XIII and corollary 2 of theorem XII. 1In the
first place, the group ¢ considered by Kcbayashl is & priori larger
than A(S) . By definition G 1is the set of homeomorphisms of M onto
itself which commute with all maximum local R-transformation groups

n
generated by vector fields of the form iz uiXi, Uy eee Uy being
=1

arbitrary real numbers. But it is immediate from the lemma above that
any oeG 1s differentiable and it then follows that oeA(s) [12, lemma :

Tt is also evident from the lermma above that the set of points left fixed
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by any atA(S) is open and closed, and so is either void or all of 1 .
Thus 4(8) acts without fixed points and so (in the terminology of
corollary 2 of theorem XI) a-— a(p) 1is actually a diffeomorphism of
4(S) onto Z, . Moreover it can be shown that zp is closed in M
(12, lemma 7] and that a-—sa(p) is bicontinuous. It follows easily
that the Lie topology of A(S) 1is the compact-open topology and that
Zp is a regularly imbedded closed submanifold of M diffeomorphic
to A(S) . In [10] Myers and Steenrod prove roughly similar results
for the group of isometries of a Riemannian manifold and it is natural
to try to prove corresponding thecrems for the automorphism groups of
general almost rigid structures.

We end this chapter with a conjecture whose positive solution would
make avallable a powerful tool for the further study of the Lie structure

of G(M) , and would in itself give a much clearer insight into this

structure than we now have.

Conjecture: Let M be a connected differentiable manifold and G
a connected Lie transformation group of M . Denote by é the clogure
of G 1in G(M) taken relative to the compact-open topology. Then é
is a Lie transformation group of M and the Lie topology of & 1s its

compact-open topology.

An equivalent formulation is that every connected Lie transformation
group of M 1is an analytic subgroup of a Lie transformation group whose
Lie topology 1s its compact-open topology.

It would be of interest to know if this were true even for one-
parameter Lie transformation groups G . PFor this special case it would
suffice to show that either G = G or else 5 is compact (or even

locally compact) in the compact-open topology.

o R B e e
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Appendix to Chapter IV

1. Compact-Open Topology.

We recall here a few fgets about the compact-open topology for
homeomorphism groups. See [13] for details.

If G is a group of homeomorphisms of a topological space X
then the compact-open topology for G is the topology having as a basis
all sets of the form
(Ky --v K,0p +vs Og) = [geG 3 glK) €0 1 =1.eem }
where the Ki are compact and the Oi open subsets of X . If X 1is
locally compact then the compact-open topology is the weakest topology
for G making the map (g,p)— g(p) of GX X — X continuous. If X
is locally compact and locally connected, then G becomes a topological

group with the compa ct-open topology.

2. Making a Topology Locally Arcwise Connected.
The following theorem of general topology 1s known but perhaps not

well enough known.

THEOREM A. Let (X, J ) be a topological space and let B

be the set of arc components of open sets of {(X,J). Then

(1) B is a base for a topology Jt for X .

(2) If 2z is a locally arcwise connected (l.a.c.) space and

£ :2— (X, J) is continuous then f 12X, J")

is continuous.
(3) (X, ') 1is l.a.c. and in fact J' 1s the weake st

l.a.c. topology for X which is stronger than T

{ stronger = more open sets).
(4) If X is & group and (X, J ) a topological group then

(X, ') is a topological group and every one-parameter
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subgroup of (X, J ) (= continuous homomorphism of R
into (X, J )) 1is a one-parameter subgroup of (X, J ').

PROOF. Let By , Bye B and et B; be an arc component of

1
O4¢ J . Then if peB;/\ B, the arc component of p in Olﬂ 05
which belongs to B , 1s clearly included in Blf\ 132 . Thus Blf\ B2
is the union of sets from )6 so ﬁ is a base for a topology D’ ',

Let Z be a l.a.c. and let f : Z —>(X;, J) be continuous.
Given Ba'B let 0Oed with B an arc component of O . Gilven
pef'l(B) let W be the arc component of p in f-l(O) . Then £(W)
is arcwise connected, intersects B at f(p), and is included in O and
hence f(W)€ B and so W ¢ f-l(B) . Since 2 1is l.a.c. and f'l(O)
is open W 1is open. It follows that f_l(B) is open. Since  is a
base for J' f : Z— (X, ’7') 4is continuous.

Next, let Be B . Given p and q in B then since B is an
arcé component in the topology J we can find a map o : [O,l] — B
continuous in the topology J with o(0) = p , o(l) = g . By (2) o
is continuous with respect to the topology J ' and it follows that B
is arcwise connected as a subspace of (X, 7 '). Since 1 is a base for
JJ ' it follows that J' is l.a.c. Since any element of J 1is the
union of its arc components and the latter are open in J ' it is clear
that JJ ' is stronger than TJ . Suppose (%7 '!' is a l.a.c. topology
stronger than J . Then the identity map of (X, J '') onto (x, J )
is continuous and hence by (2) the identity map of (X, J '') onto
(X, J ') 4is continuous, i1.e. [J '' 1is stronger than J ' so 7 !
is the weakest l.a.c. topology stronger than J .

If X is a group let f : XXX—X be defined by f(x,y) = xy L .
If (X, J ) 4is a topological group then f : (X, JJ Yx (X, T )—> (X, )

is continuous and hence since JJ ' 1is stronger than J
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£ (X, J ')XCX, F V-2 X, J ) is continuous. Since (X, J ')}X

(X, 3 1) is l.e.c. it follows from (2) that £ : (X ,3') x(X, T —
(X, J ') 1is continuous, j.e. (X, J ') is a topological growp. Since
R 1s l.a.c. it also follows from (2) that any continuous homomorphism

of R into (X, J) is a continuous homomorphism of R into (X, 3J')

3. The lodified Compact-Open Topology.

DEFINITION A. Let G be a group of homeomorphisms of the

topological space X onto 1tgself. The modified compact-open

topology for ¢ 1is the weakest locally arcwise connected top-
ology for G which is stronger than the compact-open topology,
that is (theorem A) 1t is the topology which has as a base the

arc components of open sets in the compact-open topology.

THEOREM B. Let G be a group gg_homeomorphisms of the

locally compach, locally connected space X onto itself and

let 8’ be G with the modified compact-open topology. Then

A~

G 1s a locally arcwise connected topological group, the map

(g,p) — glp) of GXX—=> X is continuous, and if t— oy is

a homomorphism of R into G such that (t,p)— 0, (p) 1is

a continuous map of RX X — X then it is a one-parameter sub-

o =N I I ee————— ——

~

group of G .

PROOF. An immedlate consequence of theorem A and the remarks in

section 1.

. Weakening the Topology of a Lie Group.
The theorems of this gection are due to Professor A. M. Gleason.
Though theorems ¢ and D are quite possibly known, the result con-

tained in the statement of theorem E (which states in essence that a
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locally arcwise connected group topology cannot be strictly weaker than
a locally compact group topology satisfying the second axlom of count-

ability) and the elegant proof of this theorem seem to be new.

THEOREM C. Let X be a connected, locally connected, and

locally compact Hausdorff space. Let iEn} be a sequence of

disjoint closed subsets of X such that E; # 4 and

oo
E;é.Eh =X . Then E; =X and hence E =g for n 2.

PROOF. Suppose El # X . We shall construct by induction an
increasing sequence %nk} of integers and a sequence {'Vk} of subsets
of X with the following properties: (1) Vi, 1s open and connected

and V) 1is compact, (2) V, meets the frontier of B, , (3) V, 1is
k

included in V and is disjoint from ElkJ EE\J cee U Enk_l .

k-1

Let n, = 1 . Since El is a proper subset of X 1t has a
frontier point Py - Since X 1is locally connected and locally compact,
we can find a connected open neighborhood Vl of Py with 61 compact.
Suppose ny ...y and Vl eoe Vk are chosen satisfying the required

properties. Since Vk meets the frontier of En end is open it con-
k

tains points not belonging to E + Since it contains no point of

Ty
o
BLU +e0e UE and k~) E =X 1t must contain a point of E for
1 nk-l n=1 n m
gome integer m 2 n, . Let N be the least such m . Then

EnkH f\Vk is a proper subset of Vk (for Vk also meets Enk and

E and E are disjoint) and since V, 1s connected NV
By Ny4q k Enk+ 1k

has a frontier point Pr.1 relative to V, . A fortiord Pro is a
— +
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frontier point of E relative to X . Now

nk+1

0=V, -(Eluhgu ees U B

_ is an open set containing P .
ny 1 k+l

1)

Since X 1s locally compact and Hausdorff, it is regular and, since
it is also locally connected, we can £ind an open, connected neighborhood

. v c
Vieel of Prsl such that V.1 = 0 . Clearly nk+l > ny and Vk+1

satisfies the required properties and the induction is complete.
Now { Vk% is a decreasing sequence of non-empty compact sets

and hence the V, have a common point p . By (3) and the fact that

k
{ nk} is strictly increasing D does not belong to any En ,
Qo

contradicting X = o By
n=1

LEMA. A Hausdorff gpace W which is the continuous image

of a compact locally connected space X is locally connected.

PROOF. Let f map X continuously onto W . We note that to show
K< W is open it suffices to show that f—l(
o

K) 4is open, for then

£~1(CcK) = ¢f™7(K) 1is closed in X and hence compact so that

ck = ££-L(CK) 1is compact and hence closed in W . Let K be a

corponent of an open set 0 of W . If a component B of f_l(o)

meets f—l(K) then f£(B) is a connected subset of 0 meeting K
and therefore is included in K so that B& £7H(k) . Thus r~1(x) =
W, { B :B is a component of f—l(O) and B/\f-](K) # ¢} . Now
as X is locally connected and f_l(O) is open, each component of
r~1(0) 1is open so that f_l(K) is open. By the remark at the bepinning
of the proof K 1is open. Thus every component of an open set of W 1is

open and so W 1is locally connected.

THEOREM D. Let X be an arcwise connected Hausdorff space
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and leb {Eng be a sequence of disjoint closed subsets of

X such that Ej # ¢ end nszlE“zx . Then By = X and

hence E, =g for n > 2.

1 - Given qeX 1let W Dbe the image of an arc

joining p to gq . Then { W En} is a sequence of disjoint closed

Oo

subsets of W with W/ E # ¢ and %1__)1(‘»&‘/\ E)) =W . Now W is

PROOF. Let peE

locally compact (in fact compact), connected, and by the lemma locally
connected, so by theorem C Wf\El =W . It follows that qul 80 as

q was an arbitrary point of X it follows that E; = X .

THEOREM E. Let ¢ te a continuous one~to-one homomorphism

of a locally compact group G satisfying the second axiom of

countability onto a locally arcwise connected group K . Then

m'l 1s also continuous.

PROOF. Let V ©be a compact neighborhood of &g - It will suffice
to show that ¢{(V) 1is a neighborhood of ey - Let U be an open,
symetric neighborhood of e such that 52 €V . Then V - U and hence
¢(V - U) are compact so the complement of o(V - U) 4is a neighborhood
of ey * Let X Dbe an arcwise connected, open neighborhood of eH such
that XX~1 does not meet o(V - U) .

Given g; and gy, in w’l(x) we put gy~ 8o if and only if
glgéleﬁ . Since U is a symmetric neighborhood of eq, v is symmetric and

reflexive. If g ~ g, and g, ~ g3 then 81851 =

-1 -1y 72 -1 T | .
(glg2 )(ggg3 YeUCV . But cp(glg3 ) w(gl)m(g3) eXX which i1s dis-

joint from ¢(V - U) so glggl £V - U and hence glggl eU  so glf\/g3 .

Thus ™~ is transitive also and hence an equivalence relation. Let {g“}

be a complete set of representatives of @'1(X) under ™, one of which

we can take to be eG . Given gew'l(x) we can find a EBu ™~ g 80
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- - R -l ~ - -
gelg, - Thus {USu‘ 13 a covering of ¢ (X) . If gelUg, M Ugﬁ

then g, & €U = U and ggglea so 8, -1e{® cV . But

olg, g;l)exx'l which is disjoint from o{V - U) so g;ggl gV -1

and so g;g;leﬁ . Thus g4 ~8g so =0 and it follows that the
ﬁg“ are disjoint. Since the Gg« have non-empty interiors and G
satisfies the second axiom of countability it follows that { ﬁgd}

ig a countable set. Now as ¢ is one-to-one { XN m(ﬁgd )} is a
countable disjoint covering of X . Moreover as each ﬁg¢ is compact
so is each m(ﬁg¢ ) so each X r\w(agd } is closed in X . Sincé
eyeX r\¢(ﬁeG) it follows from theorem D that X = X No(T) . Thus

X ¢ w(ﬁ) < o(V) so o(V) is a neighborhood of ey -

THEOREM F. Let G Dbe a Lie group satisfying the second

exiom of countability (or equivalently, with only countably many

components). Suppose the underlying group X of G is &

topological group H = (X, J ) in a bopology J weaker than the
topology of G - Then the topology of G has the arc components

of open sets of H for a basis and any one-parameter subgroup of

H 1is also a one-parameter subgroup of G .

PROOF. Let J ' be the topology for X having the arc components
of open sets of H as a basls. By theorem A 1t follows that (X, J ')
ig a locally arcwise connected topological group, that any one-parameter
group of H 1is a one-parameter group of (X, J '), and that the topology
of G 1s stronger than :} t , By theorem E it follows that the topology

of G 1is actually equal to J ' .

THEOREM G. Let AJ be a Lie group satisfying the second

axiom of countabilivy (or equivalently, with only countably

many components) whose underlying group G 1s a group of
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homeomorphisms of a locally compact, locally connected space

X . If the map (g,p)—> g(p) of A x x—>Xx is continuous

then the topology gf./U is the modified compact-open topology

for G and any homomorphism t —» o, of R 1into G such
that (t,p) = ¢,(p) 1is continuous as a mep of Rx X—X is

& one-parameter subgroup of AL .

PROOF. If we take H to be G with tke compact-open topology
then the assumption that the map (g,p)— gl(p) of NXX-X is
continuous implies that the topology of AL is stronger than the topology
of H . The hypothesis that X is locally compact and locally connected
implies that H 1is a topological group, so the first conclusion follows
from theorem F. The second conclusion is then a consequence of theorem

B.

Theorem G 1s a consequence of the statement of [13, theorem 9 ]
for the important case that X 1is a manifold and G acts differentiably.
Unfortunately, the proof of that theorem is vitiated by an invalid appli-
cation of the implicit functlion theorem. In fact in the generality that
[13, theorem 9 J is stated (i.e. without countability restrictions on
G ) it is false. For example, let H be a Lie group with a proper
analytic normal subgroup N . Then (lemma b of theorem VII) the under-
lying group of H can be made into a Lie group G (not satisfying the
second axiom of countability) in which N is the connected component of
the identity. If we let G act on H by left translation then the
compact-open topology 1s easily seen to be the given ‘topology on H .
Since H 1is locally connected [13, theorem 9] would give In this case

the intorrect result that G = H .
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Fixed Notations

Notations introduced on pages 1-5 are not noted here.

G, e, E?., M, Iy, T, Rg’ ﬁg, and R..... NN S 11
D¢, pr’ D@g, oP, and Ogeevrrenes e rsesssesssscrsseessSEO
ot = the infinitesimal generator of

the local G-transformation ©.......cccveevvvese.. 868

8" = the infinitesimal graph of an
infinitesimal G-transformation group @........¢...508

®l0 = the restriction of the infinitesimal
G-transformation group @ acting on
M to an open submanifold O of Me.veiceeeeceesess 80

page

page

page

page

page

32
3l

34

38

59



LIE THEORY OF TRANSFORMATION GROUFPS 121

Terminological Index

The terminology introduced in pages 1-5 is not indexed here.

absolute parallelismeceeeeiioncececeananen ceeeesseanans ceeenessassesel09
almost rigld (tensor StrUCtUre)cves vvissroeneeocscessorasennesessss.lO8
automorphism group (of a tensor structure)...ecseece.eoo... Ceeeaeels107
compact-open LopPOLlogyseeereeiiseaeossnseseesoasssosannosesscsnssssnansoes 112
modified #iiditte s it vncannnoanse e
compatible (global transformation group i=issi. terteeestcacesarsaseaslT
with an involutive differential system)
connected Lie transformation group....................................97
infinitesimal group of a =it .....................................97
foliation (defined by an involutive differential system)..eveeee.s.....
generates (pertaining to an infinitesimal transformation group).......36
(pertaining to a vector fleld)e....eeeeereiiinrennnennannnsaBB’
generating
#infinitesimal G-transformation BrOUD s st etoststtecnncassnsesslb
wvector fieldeovo.vivieerannnnn Cee et et ceenas teeeese83
global G-transformation groUpP.. .t ettt eirivrtoteeseneoannenesas ......%3
globalizable infinitesimal G-transformation groupe.....cocciiieiinnies
globalization of an 1nf1nitesimal G-transformation groupse.cesececse... .59

homomorphism of a = PN cesesaicsnaenns Y 1)
1somorphism of a == seececesstsesese st earassarsnonesaBl
proper i e s et e s s e et et eae s et r e e e .60
universal e e eenveosnasastaananans B <
homomorphism (of one globalization into another).eee.ceiienevenn. ce.es60

infinitesimal generator (of a local G-transformation group)...........3u
infinitesimal graph (of an infinitesimal transformation Froup)........38
Iinfinitesimal groUp.eecvee ettt titisvecsoctossessssvssnssssosscoscsssnesaesd?
- of a connected Lie transformation groupece.cecesveerinensaessa?7

wwicdt of a Lie transformation group...... B Ko
1nf1nite31mal G-transformation group acting on Meeoo.vie.an.. B 1 11
generating s=ei=ei. .. f e e te i e tee s ea et s et e aeaenn .36
globalizable . . Cees e teteecesns-aaB0

teeressesrsatsnensessBO

globallzation of an &=

1nf1n1te31mal graph of an * .o MRS P 1=
proper Cessseesenoransne ceiseassteenessen N 1)
uniform = e sanne et esterrerietarses e s sastecenaaans o 77
univalent cesesacene s caetecetee sttt aen e vecasesaaasbB2

infinitesimal R- transformation group associated with a vector fleld...83
isomorphism (of one globallzation into another)........civeveeeereesaabl
Kobayashi infinitesimal grOUD. s is i reovessosecssasssssseesessnnsnssalOS
Kobayashi Lie algebra................................................105
Kobayashi tensor strucbure.....c.iceveeieenn.cnns cesereereeesnasssessselO8
leaf (of an involutive differential syst M) e teeoeesnenacnooossnnnonnenal
leaf chart (w.r.t. an involutive differential System)eeeeeeeeeeeeseses 8
Lie topology (for a group of diffeomorphisms). .oiiieenrerneeeernnnnes a9
Lie transformation BT OUP e t s o s ssovoosocesosoascnssesannssssonesnssaes .101

connected 3

infinitesimal group of a smtie .
local G-transformation group... Ceteecese e e et ceeee .+33

infinitesimal generator OFf & 83t et esnresenseeansonnsoeneeenns e 30

MaXimam HE6 e s i e e e e .
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local bransformation group domgin...... Ce bttt eseresaes e O 1
maximum integral manifold (of an 1nvolut1ve differential system).......9
maximum local G-transformation group............ ........... PN S 181
natural chart(for a Foliablon)eeeee i ieieair it eortesenasaannnns 19
natural atlas (for a foliation deflned by a regular dlfferentlal
systew)......... e tteeeeieea i et e eeess19
projection-like MAPPINge e toeretnriaiereaaesarotettsriiatenanes P 214
proper
s rglobalization. . .oeeevrvieeneeneinnnns B s 10
infinitesimal u—transformatlon EPOUPs e o sasesecsosanss PN 510)

5 : vector field....... P TR eeseae ..........83
quotlent manifold (defined by a regular dlfferenthl system)e..ovoe...19
quotient topology (for 2 foliation).......... e ecea et e e .9
regular

= . coordinate system (w.r.t. an involutive differential system).1l3

leaf of an involutive differential systemeescsceseeceeesaeenal3
- differential system.......coco0n T A
restrlctlon (of an infinitesimal G-transformation group
acting on ¥ to an open submanifold of M)e..e.eieiiieriiseoB9
saturated set (w.r.t. an involutive differential system)sseeeeeneenaes®
saturation (of a set w.r.t. an involutive differential system)........1l
tangent vector field (to a group of diffeomorphisms)eeceeeseceecsaseas99
LOTISOT SErUCHUI . et evervvesncrssesasesesstasssssnsssacasessssossessssdt07
almost rigid
Kobayashi 3=
automorphism group of a ¢

uniform
im0 neighborhood for a set w.r.t. an infinitesimal
transformation groupe........ Y ¢
36t Wer.bt. an infinitesimal transformation groups.cssceccecse.77
X . infinitesimal transformation ZroUpPe..esecsccsereccossvesnnass |
univalent
: infinitesimal G-tra:s formation group..s..ee.c.e. ceseresens ..a62
: vector flelde..cuieeesennnioinncnnans R T I ceceseeeses83
universal globalization (of an 1nfinite51mal transformation group)....61

vector field

U N 01
et res et s e e ee s et aaraene veseees108

PP I o

e s s e s s e

generating : fessescasseraaens Geeresreaesnars s ‘o e eB83
1nf1nitesxmal R~ transformatlon group associated with a dHmidte. oo o83
proper e c e e e S I = 5

seiisic bangent to a group of dlffeomorphisms ..... Cerast i reeseeassID

P < X

univalent 3
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