C\(^1\) ACTIONS OF COMPACT LIE GROUPS ON COMPACT MANIFOLDS ARE C\(^\infty\)-EQUIVALENT TO C\(^\infty\) ACTIONS.

By Richard S. Palais.*

Introduction. Let \(C_1\) and \(C_2\) be two categories and let \(F : C_1 \longrightarrow C_2\) be a weakening of structure ("forgetful") functor, i.e. for each pair of objects \(X_1\) and \(X_2\) of \(C_1\) the map of \(\text{Morph}(X_1, X_2)\) to \(\text{Morph}(F(X_1), F(X_2))\) is injective. Let \(\hat{C}_1\) and \(\hat{C}_2\) denote the equivalence classes of objects of \(C_1\) and \(C_2\) defined by the equivalence relations of isomorphisms in the respective categories. Then \(F\) induces a map \(\hat{F} : \hat{C}_1 \rightarrow \hat{C}_2\) and the question of whether \(\hat{F}\) is injective, surjective, or bijective is often of interest. For example for \(0 \leq k \leq \infty\) let \(\text{Man}_k\) denote the category of \(C^k\) paracompact manifolds and \(C^k\) maps, and for \(k > l\) let \(\hat{F}_{lk} : \text{Man}_k \longrightarrow \text{Man}_l\) be the obvious forgetful functor. Then for \(l = 0\) \(\hat{F}_{0k} : \text{Man}_k \longrightarrow \text{Man}_0\) is neither surjective nor injective, i.e. there exist topological manifolds which admit no \(C^k\) structure \([3]\) and there exist topological manifolds with non-isomorphic \(C^k\) structures \([5]\). However if \(l > 0\) then \(\hat{F}_{lk}\) is always bijective, i.e. every \(C^1\) manifold admits a compatible \(C^k\) structure \([10]\) and if two \(C^k\) manifolds are \(C^1\) diffeomorphic they are \(C^k\) diffeomorphic (the latter is trivial from standard approximation theorems).

Below we shall prove the analogous statements for the categories \(\text{Man}_k(G)\) of compact \(C^k\) \(G\)-manifolds where \(G\) is a compact Lie group (see §\(1\) for precise definitions). Our main results are summarized in the following theorems.

Theorem A. Let \(G\) be a compact Lie group and let \(M_1\) and \(M_2\) be closed \(C^k\) \(G\)-manifolds \((2 \leq k \leq \infty)\). If \(M_1\) and \(M_2\) are \(C^1\) equivariantly diffeomorphic \((1 \leq l < k)\) then they are \(C^k\) equivariantly diffeomorphic. In fact any \(C^1\) equivariant map \(f : M_1 \rightarrow M_2\) can be approximated arbitrarily well in the \(C^1\) topology by a \(C^k\) equivariant map.

Theorem B. Let \(G\) be a compact Lie group and \(M_0\) a closed \(C^k\) \(G\)-mani-
fold \(1 \leq k \leq \infty \). Then there is a closed \(C^\infty \) \(G \)-manifold \(M_1 \) which is \(C^k \) equivariantly diffeomorphic to \(M_0 \).

The following is a more precise form of Theorem B.

Theorem C. Let \(M \) be a closed \(C^\infty \) manifold, \(G \) a compact Lie group, and for \(1 \leq k \leq \infty \) let \(\mathcal{A}^k(G, M) \) denote the space of \(C^k \) actions \(\alpha : G \times M \to M \) of \(G \) on \(M \) with the \(C^k \) topology and let \(\text{Diff}^k(M) \) denote the group of \(C^k \) diffeomorphisms of \(M \) with the \(C^k \) topology. Given \(\alpha_0 \in \mathcal{A}^k(G, M) \) we can find \(\alpha \in \mathcal{A}^\infty(G, M) \) arbitrarily near \(\alpha_0 \) in \(\mathcal{A}^k(G, M) \) and \(f \) arbitrarily near the identity in \(\text{Diff}^k(M) \) such that \(\alpha f = \alpha_0 \); where \(\alpha f \in \mathcal{A}^k(G, M) \) is defined by \(\alpha f(g, x) = f^{-1} \alpha(g, fx) \).

As an immediate consequence of Theorems A and B we have the following

Theorem D. For \(0 \leq k \leq \infty \) let \(\text{Man}_k(G) \) denote the category of closed \(C^k \) \(G \)-manifolds and \(C^k \) equivariant maps, and for \(l < k \) let \(F_{lk} : \text{Man}_k(G) \to \text{Man}_l(G) \) denote the obvious weakening of structure functor. Then if \(l \geq 1 \) \(\widehat{F}_{lk} : \text{Man}_k(G) \to \text{Man}_l(G) \) is bijective.

It is worth remarking that for the case \(l = 0 \) the situation is again quite the opposite and \(\widehat{F}_{0k} \) is in general neither injective nor surjective. For example there exist \(C^\infty \) actions of \(Z_2 \) on a sphere which are \(C^0 \) equivalent to the linear reflexion in a line but are not \(C^1 \) equivalent to a linear action [4]. Also whereas there are always at most countably many equivalence classes of smooth actions of a compact Lie group \(G \) on a compact smooth manifold \(M \) [8], so that in fact \(\text{Man}_k(G) \) is always countable for \(k \geq 1 \), \(Z_2 \) or \(S^1 \) can act in uncountably many topologically inequivalent ways on \(S^6 \), and more generally any non-trivial compact Lie group \(G \) can act uncountably many topologically inequivalent ways on some \(S^n \) [9], so that \(\text{Man}_0(G) \) is always uncountable and hence \(\widehat{F}_{0k} \) is never surjective for \(G \neq e \).

I would like to thank M. W. Hirsch for a conversation that was very helpful in the preparation of this paper.

1. **Notation and preliminaries.** \(G \) will always denote a compact Lie group. A (left) action of \(G \) on a space \(X \) is a continuous map \(\alpha : G \times X \to X \) such that the map \(\tilde{\alpha} : G \to X^X \) defined by \(\tilde{\alpha}(g)(x) = \alpha(g, x) \) is a homomorphism of \(G \) onto the group of homeomorphisms of \(X \). We call \(\tilde{\alpha}(g) \) the operation of \(g \) on \(X \) (defined by the action \(\alpha \)). A \(G \)-space is a completely regular space \(X \) together with a fixed action \(\alpha \) of \(G \) on \(X \) and generally we write \(gx \) for \(\alpha(g, x) \). If \(X \) and \(Y \) are \(G \)-spaces a map \(f : X \to Y \) is called equivariant if \(f(gx) = gf(x) \). A Fréchet \(G \)-module is a \(G \)-space \(V \) which is
a Fréchet space (complete, metrizable, locally convex, topological vector space) such that each operation of G on V is linear. If in addition V is finite dimensional we call it a linear G-space. In this case by choosing an arbitrary orthogonal structure for V and “averaging it over the group” (see Theorem 1.1) we can find an orthogonal structure for V with respect to which each operation of G is orthogonal, and with this extra structure we call V a Euclidean G-space.

By a C^k G-manifold $0 \leq k \leq \infty$ we shall mean a C^k manifold M, possibly with boundary, which is a G-space in such a way that the action $\alpha: G \times M \to M$ is a C^k map, so in particular each operation of G on M is a C^k diffeomorphism. If M is compact and without boundary we call it a closed C^k G-manifold. In particular we regard G itself as a closed C^∞ G-manifold with the natural left translation action.

If M is a C^k manifold we denote by $\mathcal{A}^k(G, M)$ the space of C^k actions of G on M and by $\text{Diff}^k(M)$ the group of C^k diffeomorphisms of M, both with the C^k topology. There is a natural (right) action of $\text{Diff}^k(M)$ on $\mathcal{A}^k(G, M)$, $(f, \alpha) \mapsto \alpha^f$, where $\alpha^f(g, x) = f^{-1} \alpha(g, fx)$. This action is easily seen to be continuous. Note that f is equivariant from M with the action α^f to M with the action α. If M_1 and M_2 are C^k G-manifolds we denote by $C^k(M_1, M_2)$ the space of C^k maps of M_1 to M_2 with the C^k topology and by $C_{G^k}(M_1, M_2)$ the subspace of equivariant maps. We note that $C^k(M_1, M_2)$ is in a natural way a G-space; namely if $f \in C^k(M_1, M_2)$ then $gf \in C^k(M_1, M_2)$ is defined by $(gf)(x) = g(f(g^{-1}x))$, and $C_{G^k}(M_1, M_2)$ is just the set of $f \in C^k(M_1, M_2)$ left fixed by each operation of G. If M is a C^k G-manifold and W is a linear G-space then $C^k(M, W)$ is a Fréchet G-module. In particular if W is any finite dimensional vector space we can regard it as a linear G-space by letting G act trivially and $C^k(M, W)$ becomes a Fréchet G-module, the action of $g \in G$ on $f \in C^k(M, W)$ being given by $(gf)(x) = f(g^{-1}x)$. In particular $C^k(M) = C^k(M, \mathbb{R})$ is a Fréchet G-module and more particularly still $C^k(G)$ is a Fréchet G-module.

The following is a classical and trivial remark ("averaging over the group ").

1.1. Theorem. If V is a Fréchet G-module then $A: V \to V$ defined by $A(v) = \int gvd\mu(g)$, where μ is normalized Haar measure on G, is a continuous linear projection of V onto the subspace V^G of V consisting of elements left fixed by each operation of G.

As a corollary we have:
1.2. **Theorem.** If \(M \) is a \(C^k \) \(G \)-manifold and \(W \) is a linear \(G \)-space then \(A : C^k(M, W) \to C^k(M, W) \) defined by \((Af)(x) = \int g(f(g^{-1}x))d\mu(g) \) is a continuous linear projection onto \(C_{G}^k(M, W) \).

1.3. **Corollary.** \(C_{G}^k(M, W) \) is dense in \(C_{G}^1(M, W) \) for \(0 \leq l \leq k \).

Proof. Given \(f \in C_{G}^1(M, W) \) choose a sequence \(\{f_n\} \) in \(C^k(M, W) \) converging to \(f \) in \(C^1(M, W) \). Then \(\{Af_n\} \) is a sequence in \(C_{G}^k(M, W) \) converging to \(Af = f \) in \(C_{G}^1(M, W) \).

Q.E.D.

For each Fréchet \(G \)-module \(V \) we define a continuous bilinear map \((f, v) \mapsto f^*v \) of \(C^0(G) \times V \) into \(V \) by \((f^*v)(x) = \int f(g)gvd\mu(g) \). It is trivial that for fixed \(v \in V \) \(f \mapsto f^*v \) is a continuous, linear and equivariant (i.e. \((gf)^*v = g(f^*v) \)) map of \(C^0(G) \) into \(V \) and \(v \) is in the closure of its image (in fact if \(\{f_n\} \) is a sequence in \(C^0(G) \) of positive functions with integral one whose supports shrink to the identity, then \(f_n^*v \to v \)). An element of a Fréchet \(G \)-module \(V \) is called almost invariant if its orbit spans a finite dimensional subspace of \(V \). From the equivariance of \(f \mapsto f^*v \) it follows that if \(f \in C^0(G) \) is almost invariant in \(C^0(G) \) then \(f^*v \) is almost invariant in \(V \). According to the Peter-Weyl Theorem [1] the almost invariant elements of \(C^0(G) \) are dense, so since \(f \mapsto f^*v \) is continuous and has \(v \) in its closure we can find almost invariant \(f_n \) in \(C^0(G) \) such that \(f_n^*v \to v \). Since each \(f_n^*v \) is almost invariant in \(V \) this proves the following classical fact:

1.4. **Theorem.** In any Fréchet \(G \)-module \(V \) the almost invariant elements are dense.

2. **The \(C^k \) equivariant embedding theorem.** The following theorem is proved in [6], and [7] for the cases \(k = 1 \) and \(k = \infty \) respectively. While either proof extends easily enough to the case of general \(k \) we give here the appropriate generalization of Mostow's proof, which is the easier.

2.1. **Theorem.** If \(M \) is a compact \(C^k \) \(G \)-manifold with \(1 \leq k \leq \infty \) then there exists an equivariant \(C^k \) embedding of \(M \) in some Euclidean \(G \)-space.

Proof. Let \(W \) be a Euclidean space in which \(M \) admits a \(C^k \) embedding (e.g. \(R^{2n+1}, n = \dim M \)), regarding as a Euclidean \(G \)-space by letting \(G \) act trivially. Since the space of embeddings of \(M \) in \(W \) is open in the Fréchet \(G \)-module \(C^k(M, W) \) we can by Theorem 1.4 find a \(C^k \) embedding \(f : M \to W \) with \(f \) almost invariant in \(C^k(M, W) \). Let \(U \) be the linear span of the orbit of \(f \) in \(C^k(M, W) \), a finite dimensional invariant linear subspace of \(C^k(M, W) \) and hence a linear \(G \)-space. Choose a \(G \)-invariant positive definite product
for U, making U a Euclidean G-space. By a change of scale we can assume $f = f_1$ is a unit vector and we extend f_1 to an orthonormal basis for U; f_2, \ldots, f_m. For $g \in G$ $gf_i = \sum a_{ij}(g)f_j$ where, since G acts orthogonally on U and the f_i are orthonormal, $a_{ij}(g^{-1}) = a_{ji}(g)$. Now $U \otimes W$ is a Euclidean G-space (the action of G being defined by $g(u \otimes w) = (gu) \otimes w)$ and we will define a C^k equivariant embedding $F: M \to U \otimes W$.

Every element of $U \otimes W$ can be written uniquely as

$$f_1 \otimes w_1 + \cdots + f_m \otimes w_m$$

for w_1, \ldots, w_m in W, i.e. the choice of basis f_1, \ldots, f_m for U identifies $U \otimes W$ with the direct sum of m copies of W. Define $F: M \to U \otimes W$ by $F(x) = f_1 \otimes f_1(x) + \cdots + f_m \otimes f_m(x)$. Since the first component of F is the C^k embedding $f: M \to W$, a fortiori F is a C^k embedding of M in $U \otimes W$ so it remains only to show that F is equivariant. But

$$F(gx) = \sum f_i \otimes f_i(gx) = \sum f_i \otimes (g^{-1}f_i)(x)$$

$$= \sum f_i \otimes \sum a_{ij}(g^{-1})f_j(x)$$

$$= \sum (\sum a_{ji}(g)f_i) \otimes f_j(x)$$

$$= \sum (gf_j) \otimes f_j(x) = g \sum f_j \otimes f_j(x) = gF(x).$$

Q. E. D.

3. The tubular neighborhood theorem. Let $\pi: \xi \to M$ be a C^k vector bundle. If both ξ and η are C^k G-manifolds, π is equivariant, and each operation of G on ξ is a bundle map (i.e. g maps ξ_x linearly onto ξ_{gx}) then we call ξ a C^k-vector bundle. Given a linear G-space V the C^∞ manifold $G_m(V)$ (the Grassmannian of m dimensional linear subspaces of V) is in an obvious and natural way a C^∞ G-space. There is moreover a natural vector bundle ξ_m^V over $G_m(V)$, $\xi_m^V = \{(v,W) \in V \times G_m(V) \mid v \in W\}$, the projection being of course $(v,W) \mapsto W$. If we define $g(v,W) = (gv,gW)$ then ξ_m^V becomes a C^∞ G-vector bundle.

If $\pi: \xi \to M$ is a C^k G-vector bundle, N a C^k G-manifold, and $f: N \to M$ is a C^k equivariant map then the induced vector bundle $f^*\xi$ over N is clearly a C^k G-vector bundle (recall that $f^*\xi = \{(x,v) \in N \times \xi \mid fx = \pi v\}$ the action of G on $f^*\xi$ is just the restriction of the “product” action on $N \times \xi$).

If M is a C^k G-manifold ($k \geq 1$) and $f: M \to V$ is a C^k equivariant immersion of M in a linear G-space V then a C^1 G-normal bundle to f ($l \leq k$)
is a C^1 G-vector bundle ν over M of the form $\nu = h^*e_m^V$ ($m = \dim V - \dim M$) where $h: M \to G_m(V)$ is a C^1 equivariant map such that for each $x \in M$ $h(x) = \nu_x$ is a linear complement to $\text{im} (Df_x)$. We note that such an f always has a C^{k-1} G-normal bundle: namely give V a G-invariant positive definite inner product (i.e. the structure of an orthogonal G-space) and define $h: M \to G_m(V)$ by $h(x) = (\text{im} (Df_x))^\perp$. We shall see shortly that indeed f has a C^k G-normal bundle.

Assume now that $1 \leq l \leq k$ and that $\pi: \nu \to M$ is a C^l G-normal bundle to the C^k G-equivariant embedding $f: M \to V$. Identify M with its image under f and also with the zero section of ν and define $E: \nu \to V$ by $E(w) = \pi(w) + w$. Then E is clearly an equivariant C^l map and it is classical that if $\partial M = \partial$ then E maps a neighborhood N of M in ν diffeomorphically onto a “tubular neighborhood” U of M in V. If we define $\tilde{\pi}: U \to M$ by $\tilde{\pi} = \pi \circ (E|N)^{-1}$ then $\tilde{\pi}$ is a C^l equivariant retraction of U onto M and we call $\tilde{\pi}: U \to M$ the C^l G-tubular neighborhood of M defined by ν.

3.1. Proposition. Let M be a C^k G-manifold without boundary ($k \geq 1$) which admits a C^k equivariant embedding in a linear G-space V with a C^k G-normal bundle ν. If M' is a compact C^k G-manifold then there is a neighborhood \tilde{G}_0 of $C_0^0(M', M)$ in $C^0(M', M)$ and a continuous retraction $\tilde{A}: \tilde{G}_0 \to C_0^0(M', M)$ such that for $0 \leq r \leq k$ \tilde{A}_r restricts to a continuous retraction $\tilde{A}_r: \tilde{G}_r \to C_0^r(M', M)$ where $\tilde{G}_r = \tilde{G}_0 \cap C^r(M', M)$.

Proof. Let $\tilde{G}_0 = \{f \in C^0(M', V) | \text{im} f \subseteq U\}$ where $\tilde{\pi}: U \to M$ is a C^k G-tubular neighborhood of M defined by ν as above. Note that $C^0(M', M) \subseteq C^0(M', V)$ so we can define $\tilde{G}_0 = \{f \in C^0(M', M) | Af \in \tilde{G}_0\}$ where

$$A: C^0(M', V) \to C_0^0(M', V)$$

is the continuous linear projection of Theorem 1.2. Since \tilde{G}_0 is open in $C^0(M', V)$, \tilde{G}_0 is open in $C^0(M', M)$. Moreover if $f \in C_0^0(M', M)$ then $Af = f$ and so $\text{im} (Af) = \text{im} f \subseteq M \subseteq U$ so $f \in \tilde{G}_0$, i.e. \tilde{G}_0 is a neighborhood of $C_0^0(M', M)$. We define $\tilde{A}_0: \tilde{G}_0 \to C_0^0(M', M)$ by $\tilde{A}_0(f) = \tilde{\pi}_0(Af)$. Since A restricts to a continuous linear projection $A_r: C^r(M, V) \to C_0^r(M', V)$ for $0 \leq r \leq k$ by Theorem 1.2 and since $\tilde{\pi}: U \to M$ is an equivariant C^k retraction the proposition follows.

Q. E. D.

3.2. Corollary. For $0 \leq r \leq k$ $C_0^k(M', M)$ is dense in $C_0^r(M', M)$.

Proof. Given $f \in C_0^r(M', M)$ choose a sequence $\{f_n\}$ in $C_0^k(M', M)$ converging to f in $C_0^r(M', M)$. Since \tilde{G}_r is a neighborhood of f in $C^r(M', M)$ we can suppose all f_n are in \tilde{G}_r. Then $\tilde{A}_r f_n \in C_0^k(M', M)$ and
3.3. Proposition. If \(M \) is a \(C^\infty \) G-manifold without boundary then
\[M = \bigcup_{n=1}^{\infty} M_n \]
where \(M_n \) is an open invariant submanifold of \(M \), \(M_n \subset M_{n+1} \),
and each \(\bar{M}_n \) is a compact \(C^\infty \) G-manifold with boundary.

Proof. Let \(f: M \to R \) be a \(C^\infty \) proper map of \(M \) onto the positive reals
and let \(\bar{f}(x) = \int f'(dx) \), so \(\bar{f} : M \to R \) is an invariant \(C^\infty \) map. Given
\(c > 0 \) \(Gf^{-1}([0,c]) = X \) is compact and if \(x \not\in X \) then clearly \(\bar{f}(x) > c \), so
\(\bar{f}^{-1}([0,c]) \subseteq X \) and so \(\bar{f} \) is a proper map. Let \(M_n = \bar{f}^{-1}([0,c_n]) \)
where \(\{c_n\} \)
is a sequence of regular values of \(\bar{f} \) with \(c_n \to \infty \) monotonically. Q. E. D.

3.4. Theorem. If \(M \) is a \(C^\infty \) G-manifold without boundary then for
any compact \(C^k \) G-manifold \(M' \) \(C_G^k(M',M) \)
is dense in \(C_G^r(M',M) \), \(0 \leq r \leq k \).

Proof. Represent \(M \) as \(\bigcup_{n=1}^{\infty} M_n \) as in 3.3. If \(f \in C^r(M',M) \) then
\(f(M') \subset M_n \) for some \(n \) since \(M' \) is compact, i.e. \(C_G^r(M',M) = \bigcup_{n=1}^{\infty} C_G^r(M',M_n) \),
so it will suffice to show that \(C_G^k(M',M_n) \)
is dense in \(C_G^r(M',M_n) \) for all \(n \), or equivalently we can assume that \(M \) is the interior of a compact \(C^\infty \) G-manifold \(\bar{M} \), possibly with boundary. But then by Theorem 2.1 \(M \)
adopts a \(C^\infty \) equivariant embedding \(\bar{f} : M \to V \) in a Euclidean G-space \(V \)
(Indeed \(\bar{M} \) does) and \(x \mapsto \text{im}(Df_x)^\perp \) is a \(C^\infty \) equivariant map \(g : M \to G_m(V) \)
where \(m = \text{dim } V - \text{dim } M \), so \(g^*(\xi_m V) \) is a \(C^\infty \) G-normal bundle to \(f \) and the
Theorem follows from 3.2. Q. E. D.

3.5. Tubular Neighborhood Theorem. If \(M \) is a compact \(C^k \) G-manifold, \(k \geq 1 \), and \(f : M \to V \)
is a \(C^k \) equivariant embedding on a linear G-space \(V \) then \(f \) admits a \(C^k \) G-normal bundle and hence if \(\partial M = \emptyset \) then
\(f(M) \) admits a \(C^k \) G-tubular neighborhood in \(V \) \(\bar{f} : U \to f(M) \).

Proof. We can assume \(V \) is a Euclidean G-space and we define \(f : M \to G_m(V) \), \(m = \text{dim } V - \text{dim } M \), by \(g(x) = \text{im}(Df_x)^\perp \), so
\(g \in C_G^{k-1}(M,G_m(V)) \).

Since \(G_m(V) \) is a \(C^\infty \) G-manifold, by 3.4 we can approximate \(g \) arbitrarily well
in \(C_G^{k-1}(M,G_m(V)) \) by \(h \in C_G^k(M,V) \). But clearly if \(h \) is sufficiently close
to \(g \) in the \(C^\infty \)-topology then \(h(x) \) like \(g(x) \) will for each \(x \in M \) be a linear
complement to \(\text{im}(Df_x) \) in \(V \). Then \(h^*(\xi_m V) \) is a \(C^k \) G-normal bundle to \(f \).
Q. E. D.
4. Fiberwise transversality.

4.1. Definition. Let \(\pi_1: E_1 \rightarrow M_1 \) and \(\pi_2: E_2 \rightarrow M_2 \) be two \(C^k \) fiber bundles, \(k \geq 1 \), and let \(G_2 \) be a \(C^k \) sub-bundle of \(E_2 \). A \(C^k \) map \(f: E_1 \rightarrow E_2 \) will be called fiber-wise transversal to \(G_2 \) if for each \(x \in M_1 \) \(f \mid (E_1)_x \) is transversal to \(G_2 \).

4.2. Proposition. Given \(\pi_1: E_1 \rightarrow M_1 \), \(\pi_2: E_2 \rightarrow M_2 \) and \(G_2 \) as in 4.1 with \(E_1 \) compact, the set of \(C^k \) maps \(f: E_1 \rightarrow E_2 \) which are fiber-wise transversal to \(G_2 \) is open in the \(C^1 \) topology.

Proof. Obvious.

4.3. Lemma. Let \(\pi: E \rightarrow M \) be a \(C^k \) fiber bundle, \(k \geq 1 \) and let \(G \) be a compact \(C^k \) submanifold of \(E \) with \(\partial G = \emptyset \). A necessary and sufficient condition for \(G \) to be a \(C^k \) sub-bundle of \(E \) (i.e. for \(\tilde{\pi} = \pi \mid G: G \rightarrow M \) to be a \(C^k \) fiber bundle) is that for each \(x \in M \) \(G_x = G \cap E_x \) be a submanifold of \(G \) of codimension equal to the dimension of \(M \).

Proof. Necessity is trivial. To prove sufficiency it is enough by a well-known theorem of Ehresmann [2] to check that when the condition is satisfied \(\tilde{\pi}: G \rightarrow M \) is a submersion, i.e. that for each \(y \in G \) \((D\tilde{\pi})_y: TG_y \rightarrow TM_y \) has rank equal to \(\dim M \). Now \(\text{rank}(D\tilde{\pi})_y = \dim G = \dim (\ker(D\tilde{\pi})_y) \). Since \(\tilde{\pi} \) is a fibering \(\ker(D\tilde{\pi})_y = T(E_x)_y \) and since \((D\tilde{\pi})_y = (D\pi)_y \mid (TG)_y \),

\[
\ker(D\pi)_y = \ker(D\tilde{\pi})_y \cap (TG)_y = T(E_x)_y \cap (TG)_y = T(E_x \cap G)_y = T(G_x)_y,
\]

so \(\text{rank}(D\tilde{\pi})_y = \dim G - \dim G_x = \text{codim} G_x \) in \(G = \dim M \). Q. E. D.

4.4. Theorem. Let \(\pi_1: E_1 \rightarrow M_1 \), \(\pi_2: E_2 \rightarrow M_2 \) be two \(C^k \) fiber bundles, \(k \geq 1 \), and let \(G_2 \) be a \(C^k \) sub-bundle of \(E_2 \). Assume \(E_1 \) is compact, \(\partial M_1 = \emptyset \), and \(\partial G_2 = \emptyset \). Let \(f: E_1 \rightarrow E_2 \) be a \(C^k \) map which is fiber-wise transversal to \(G_2 \) with \(f(\partial E_1) \cap G_2 = \emptyset \). Then \(G_1 = f^{-1}(G_2) \) is a \(C^k \) sub-bundle of \(E_1 \), \(\partial G_1 = \emptyset \), and the fiber codimension of \(G_1 \) in \(E_1 \) equals the fiber codimension of \(G_2 \) in \(E_2 \).

Proof. Since \(f \) is fiber-wise transversal to \(G_2 \) it is a fortiori transversal to \(G_2 \) and hence \(G_1 = f^{-1}(G_2) \) is a compact \(C^k \) submanifold of \(E_1 \) of codimension equal to the codimension of \(G_2 \) in \(E_2 \), and \(\partial G_1 = (f \mid \partial E_1)^{-1}G_2 = \emptyset \). Putting \((G_1)_x = (f \mid (E_1)_x)^{-1}G_2 = G_1 \cap (E_1)_x \), \((G_1)_x \) is a submanifold of \((E_1)_x \) of codimension equal to the codimension of \(G_2 \) in \(E_2 \) which, since \(G_2 \) is a sub-bundle of \(E_2 \) is the same as the fiber codimension of \(G_2 \) in \(E_2 \). Now since \(\dim E - \dim G = \dim (E_1)_x - \dim (G_1)_x = \dim E_1 - \dim \) it follows
that \(\dim G = \dim (G_1)_x = \dim E = \dim (E_1)_x = \dim M \), and Lemma 4.3 completes the proof.

Q. E. D.

4.5. **Theorem.** Let \(\pi_1 : E_1 \to M_1 \) and \(\pi_2 : E_2 \to M_2 \) and \(G_2 \) be as in Theorem 4.4 and let \(f_t : E_1 \to E_2 \) be a homotopy of \(C^k \) maps with each \(f_t \) fiberwise transversal to \(G_2 \) and all \(f_t(\partial E_1) \cap G_2 \) empty. Then \(f_{t}^{-1}(G_2) \) and \(f_{1}^{-1}(G_2) \) are \(C^k \) equivalent sub-bundles of \(E_1 \) and in particular for each \(x \in M_1 \) their fibers at \(x \) are \(C^k \) diffeomorphic.

Proof. Let \(S^1 \) denote \([0,1]\) with 0 and 1 identified. It will suffice to construct a \(C^k \) fiber bundle over \(S^1 \times M_1 \) which restricted to \(\{0\} \times M_1 \) is \(f_0^{-1}(G_2) \) and restricted to \(\{\frac{1}{2}\} \times M_1 \) is \(f^{-1}(G_2) \) (because bundles over \([0,\frac{1}{2}] \times M_1 \) are always of the form \([0,\frac{1}{2}] \times B \) for some bundle over \(M_1 \)). By 4.2 we can approximate \(f_t \) so that \((t,x) \mapsto f_t(x) \) is \(C^k \) without changing \(f_0 \) or \(f_1 \) and maintaining the other given conditions. By a standard argument we can also suppose that \(f_t = f_0 \) for \(0 \leq t < \epsilon \) and \(f_t = f_1 \) for \(1 - \epsilon \leq t \leq 1 \). Define \(h_t = f_{2t} \) for \(0 \leq t \leq \frac{1}{2} \) and \(h_t = f_{2t-2\epsilon} \) for \(\frac{1}{2} \leq t \leq 1 \). Then \((t,x) \mapsto h_t(x) \) is a \(C^k \) map of \(S^1 \times E_1 \to E_2 \) and if we regard \(S^1 \times E_1 \) and \(S^1 \times E_2 \) as \(C^k \) fiber bundles over \(S^1 \times M_1 \) and \(S^1 \times M_2 \) respectively then \(H : S^1 \times E_1 \to S^1 \times E_2 \) defined by \((t,x) \mapsto (t,h_t(x)) \) is clearly fiber-wise transversal to \(S^1 \times G_2 \) and \(H(\partial(S^1 \times E_1)) \cap S^1 \times G_2 = \emptyset \) so by 4.4 \(H^{-1}(S^1 \times G_2) \) is a \(C^k \) sub-bundle of \(S^1 \times E_1 \). Clearly \(H^{-1}(S^1 \times G_2) \cap \{t\} \times M_1 \) is just \(h_t^{-1}(G_2) \) so taking \(t = 0, \frac{1}{2} \) respectively we get \(f_0^{-1}(G_2) \) and \(f_1^{-1}(G_2) \) respectively as desired.

Q. E. D.

4.6. **Corollary.** Let \(\pi_1 : E_1 \to M_1 \), \(\pi_2 : E_2 \to M_2 \), \(G \) and \(f \) be as in Theorem 4.4 and in addition assume that \(E_1 \) is compact. Then there is a neighborhood \(U \) of \(f \) in \(C^k(E_1,E_2) \), which is in fact open in the \(C^1 \) topology, such that for all \(h \in U \), \(h^{-1}(G_2) \) is a \(C^k \) sub-bundle of \(E_1 \) which is \(C^k \) equivalent to \(f^{-1}(G_2) \).

Proof. There is a \(C^0 \) neighborhood of \(f \) in \(C^k(E_1,E_2) \) say \(U_0 \) such that for all \(h \in U_0 \) \(h(\partial E_1) \cap G_2 = \emptyset \). There is a \(C^1 \) neighborhood \(U_1 \) of \(f \) by 4.2 such that \(h \) is fiberwise transversal to \(G_2 \) for all \(h \in U_1 \). Now \(C^k(E_1,E_2) \) is locally contractible in the \(C^1 \) topology so we can take for \(U \) any contractible (or even pathwise connected) \(C^2 \)-neighborhood of \(f \) in \(U_0 \cap U_1 \). Q. E. D.

4.7. **Theorem.** Let \(\pi_1 : E_1 \to M_1 \) and \(\pi_2 : E_2 \to M_2 \) be \(C^k \) fiber bundles, \(k \geq 1 \), with compact total spaces and \(\partial M_1 = \partial M_2 = \emptyset \). Let \(f_0 : E_1 \to E_2 \) be a \(C^k \) map which maps each fiber of \(E_1 \) diffeomorphically onto a fiber of \(E_2 \). If \(\sigma \) is any \(C^k \) section of \(E_2 \) with \(\sigma \cap \partial E_2 = \emptyset \) then there is a neighborhood \(U \)
of \(f_0 \) in \(C^k(E_1,E_2) \), which in fact is open in the \(C^1 \) topology, such that for every \(f \in U \), \(f^{-1}(\sigma) \) is a \(C^k \) section of \(E_1 \) disjoint from \(\partial E_2 \). Moreover the map \(f \mapsto f^{-1}(\sigma) \) is continuous from \(U \subseteq C^k(E_1,E_2) \) into the space \(C^k(E_1) \) of \(C^k \) sections of \(E_1 \) with the \(C^k \) topology.

Proof. In 4.6 take \(G_2 = \sigma \). Since \(f_0 \) maps each fiber of \(E_1 \) diffeomorphically onto a fiber of \(E_2 \) it is clear that \(f_0 \) is fiberwise transversal to \(\sigma \), and hence \(\sigma_0 = f_0^{-1}(\sigma) \) is a \(C^k \) sub-bundle of \(E_1 \) of fiber dimension zero, and in fact since \(f_0(E_1)_x \) meets \(\sigma \) in exactly one point, \(\sigma_0 \) is a section of \(E_1 \). It now follows from 4.6 that \(f^{-1}(\sigma) \) is also a \(C^k \) sub-bundle of \(E_1 \) with fiber a point, i.e. a \(C^k \) section of \(E_1 \), if \(f \in C^k(E_1,E_2) \) is sufficiently near \(f_0 \) in the \(C^1 \) topology. It remains only to show the continuity of \(f \mapsto f^{-1}(\sigma) \) as a map of \(U \) into \(C^k(E_1) \). Since \(M_1 \) is compact it will suffice to show that if \(f_n \to f \) then \(f_n^{-1}(\sigma) \to \sigma \in U \) in the \(C^k \) topology in some neighborhood \(W \) of each point of \(x \in M_1 \). We can choose coordinates in \(E_2 \) near \(\sigma(x) \) so that \(E_2 \) is identified with \(\mathbb{R}^k \times \mathbb{R}^m \), \(\pi_2 \) with the projection \(\mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^m \) and \(\sigma \) with \(\mathbb{R}^k \times \{0\} \). Then choosing coordinates near \(\sigma_0(x) \) in \(E_1 \) so that \(E_1 \) is locally \(\mathbb{R}^n \times \mathbb{R}^m \), \(\pi_1 \) is the projection \(\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \) and \(\sigma_0 \) is \(\mathbb{R}^n \times \{0\} \), \(f_0 \) is given locally by a map \((x,y) \mapsto (g_0(x),h_0(x,y)) \) of \(\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k \times \mathbb{R}^m \) with \(g_0(0) = 0 \), \(h_0(0,0) = 0 \) and \(y \mapsto h_0(0,y) \) a local \(C^k \) diffeomorphism of one neighborhood of \(0 \) in \(\mathbb{R}^m \) onto another. Given \(f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k \times \mathbb{R}^m \) near \(f_0 \), say \(f(x,y) = (g(x,y),h(x,y)) \), \(f^{-1}(\sigma) \) is represented as the unique \(C^k \) map \(\sigma_f: \mathbb{R}^n \to \mathbb{R}^m \) near zero which solves the equation \(h(x,\sigma_f(x)) = 0 \). By the implicit function theorem \(\sigma_f \) and its derivatives through order \(k \) depend continuous on \(h \) and its derivatives through order \(k \), which in turn of course depend continuously on \(f \) in the \(C^k \) topology.

Q. E. D.

5. Proofs of Theorems A, B, and C. The second conclusion of Theorem A is just Theorem 3.4. The first conclusion is an immediate consequence of the second since the space \(\text{Diff}^1(M_1,M_2) \) of \(C^1 \) diffeomorphisms of \(M_1 \) with \(M_2 \) is open in \(C^1(M_1,M_2) \), and hence if we approximate a \(C^1 \) equivariant diffeomorphism \(f: M_1 \simeq M_2 \) well enough (in \(C^1(M_1,M_2) \)) by \(g \in C^k_0(M_1,M_2) \) then \(g \) will be a \(C^k \) equivariant diffeomorphism of \(M_1 \) with \(M_2 \). This completes the proof of Theorem A.

Now let \(M_0 \) be a closed \(C^k \) manifold and let \(\lambda: M_0 \to V \) be a \(C^k \) embedding of \(M_0 \) in some Euclidean space. Let \(\pi: V \to M_0 \) be \(C^k \) normal bundle to \(\lambda \) and \(v_\epsilon \) the \(\epsilon \)-disc sub-bundle of \(v \). As usual we identify \(M_0 \) with \(\lambda(M_0) \) and with the zero section of \(v \), and for \(\epsilon \) small enough we identify \(v_\epsilon \) with the \(\epsilon \)-tubular neighborhood of \(M_0 \) it defines, namely its image under the map
v \mapsto \pi(v) + v$. Let $k = \dim V - \dim M$ and let $\xi_k(V)$ denote the ϵ-disc bundle of the vector bundle $\xi_k(V) \to G_k(V)$. Define $f_0 : v_\epsilon \to \xi_k(V)$ by $f_0(v) = (v, v_{\pi(v)})$ (the Thom-Pontryagin map) so that clearly for each $x \in M_0$ f_0 maps $v_\epsilon(x)$ diffeomorphically onto the fiber of $\xi_k(V)$ over v_ϵ. If σ is the zero section $\xi_k(V)$ then $f_0^{-1}(\sigma) = M_0$. Now by 4.7 if $f_1 : v(\epsilon) \to \xi_k(V(\epsilon)$ is a C^k map sufficiently close to f_0 in the C^1 topology then $M = f_1^{-1}(\sigma)$ is a C^k section of v and hence $\pi | M_1 : M_1 \to M_0$ is a C^k diffeomorphism. In particular if we approximate f_0 by a C^∞ f_1, relative to the natural C^∞ structure for $\xi_k(V)$ and that for $v(\epsilon)$ inherited from V, then M_1 will be a C^∞ submanifold of V mapped C^k diffeomorphically onto M_0 by π.

Now suppose M_0 is a C^k G-manifold. Then by Theorem 2.1 we can suppose λ is an equivariant C^k embedding of M_0 in a Euclidean G-space V and by 3.5 we can suppose $\pi_0 : v \to M_0$ is a C^k G-normal bundle to λ in V so that $v(\epsilon)$ is a C^k G-tubular neighborhood. Finally since f_0 is clearly equivariant we can by Theorem 3.4 assume that our approximating $f_1 : v(\epsilon) \to \xi_k(V(\epsilon)$ is equivariant. Then M_1 is clearly an invariant C^∞ submanifold of V, hence a C^∞ G-manifold, and $\pi | M_1$ is of course equivariant. This completes the proof of Theorem B and we pass now to the proof of Theorem C.

Let M be any closed C^∞ manifold, $\alpha_0 \in \mathcal{A}(G, M)$ and denote by M_0 the resulting C^k G-manifold. According to Theorem B we can choose a C^∞ G-manifold M_1 for which there exists a C^k equivariant diffeomorphism $\gamma : M_1 \to M_0$. If $\alpha_1 \in \mathcal{A}(G, M_1)$ is the given action of G on M_1 then of course $\alpha_0 = \alpha_1 \gamma^{-1}$, i.e. $\alpha_0(g, x) = \gamma \alpha_1(g, \gamma^{-1}x)$. Given $f \in \text{Diff}^k(M)$ we have

$$\alpha = \alpha_1(\gamma^{-1})^{-1} \in \mathcal{A}(G, M), \quad \alpha(g, x) = f_\gamma \alpha_1(g, \gamma^{-1} f^{-1} x)$$

and $\alpha' = \alpha_1 \gamma^{-1} = \alpha_0$. Clearly $f \mapsto \alpha_1(\gamma^{-1})^{-1}$ is continuous from $\text{Diff}^k(M)$ to $\mathcal{A}(G, M)$ so in particular if $f \mapsto e$ in $\text{Diff}^k(M)$ then $\alpha_1(\gamma^{-1})^{-1} \to \alpha_0$ in $\mathcal{A}(G, M)$. Thus to complete the proof of Theorem C it will suffice to find $f \in \text{Diff}^k(M)$ arbitrarily close to the identity such that $\alpha_1(\gamma^{-1})^{-1} \in \mathcal{A}(G, M)$. But since $\alpha_1 \in \mathcal{A}(G, M)$ it is clear that if $\gamma : M_1 \to M$ is C^∞, and hence $(\gamma^{-1})^{-1} : M \to M_1$ is C^∞, then $\alpha_1(\gamma^{-1})^{-1} \in \mathcal{A}(G, M)$. Now $\text{Diff}^\infty(M_1, M)$ is dense in $\text{Diff}^k(M_1, M_2)$, so there exists $g \in \text{Diff}^\infty(M_1, M)$ arbitrarily near γ in $\text{Diff}^k(M_1, M)$. Then $f = g \gamma^{-1}$ is arbitrarily near the identity in $\text{Diff}^k(M_1, M_2)$ and $f_\gamma = g$ is C^∞.

Q. E. D.

5.1. **Theorem.** If M is a closed C^k G-manifold, $k \geq 1$, and M' is any compact C^k G-manifold, then $C^k(G, M)$ is dense in $C^r(G', M)$ for $0 \leq r \leq k$.

Proof. By Theorem B we can give M a C^∞ structure which makes it a C^∞ G-manifold, and the theorem then follows from 3.4.
Definition. A C^k manifold M is called C^k-asymmetric if there is no non-trivial C^k-action of any compact connected Lie group on M, or equivalently if there is no effective C^k action of the circle group S^1 on M.

5.2. Theorem. Let M be a closed C^∞ manifold and let $1 \leq l < k \leq \infty$. If M is C^k-asymmetric then M is C^1-asymmetric.

Proof. Immediate from Theorem C.

It would be interesting to know whether we can take $l = 0$ in Theorem 5.2. In particular in a paper to appear Atiyah and Hirzebruch have shown that if M is a closed, orientable $4k$ dimensional manifold with $w_2(M) = 0$, then M is C^∞-asymmetric (hence C^1-asymmetric) provided the A-genus of M (a topological invariant!) is non-zero. It would be quite remarkable if such M could admit non-trivial C^0-circle actions.*

BRANDEIS UNIVERSITY.

REFERENCES.

[8] ———, “Equivalence of nearby differentiable actions of a compact group,”

*Added in Proof: Atiyah has in fact constructed just such a remarkable example.