THE COHOMOLOGY OF LIE RINGS

BY
RICHARD &, PALAIS'

In this paper we will give an exposition of a cohomology theory for Lie rings
(more exactly Lie d-rings, see below for definition) with coefficients in a module.
While this concept arose naturally from investigating the problem of “lifting”’
a transformation group from the base space of a fiber bundle to the total space
along lines suggested by recent work of Dr. T. E. Stewart, we shall take up
these applications elsewhere and be concerned here with only the formal parts
of the theory and an elementary but perhaps a little surprising application to
differential geometry which we now explain. Since a differentiable manifold
can be canonically reconstructed from its set of differentiable real valued func-
tions, considered as an abstract commutative ring, it follows that any canonical
construction ¢ which assigns to each differentiable manifold M a structure
C(M) of some sort, gives rise to a construction €’ which assigns to each commuta-
tive ring R which is isomorphic to the ring of differentiable functions on some
manifold (say M) a structure C"(R) = C(M). We may then ask when (' is
ring theoretic, i.e. when there is a canonical construction defined for ali com-
mutative rings which restricts to €’. The application to differential geometry
mentioned above is the statement that if (' assigns to M its real cohomology
(considered as a graded group) then (' is ring theoretic in the above sense.
In the more precise language of categories we will define a functor fror the
category of commutative rings (with isomorphisms as maps) to the category
of graded abelian groups (with isomorphisms as maps) which assigns to the
differentiable functions on 3 the real cohomology of M.2

Another perhaps worthwhile facet of the theory is that the cohomology of
Lie algebras [1] and the de Rham cohomology of a differentiable manifold turn
out to be special cases of the same thing. In view of the obvious formal similar-
ities of the two theories it is no surprise that this should be so, but as far as the
author knows there has been until now no unified treatment of the two.

Whatever originality can be claimed for this paper does not go beyond the
definition of a Lie d-ring and a module over such. Once these definitions are
made the further development is completely parallel to that found in {1} and
only an occasional proof must be changed.

! The author is a National Science Foundation postdoctoral fellow.

2 Added in proof. In Abstract 575, Bull. Amer. Math. Soc. July, 1957, A. Nijenhuis
defined a functor from the category of commutative real algebras to the category of anti-
commutative, graded real algebras which assigns to the algebra of differentiable resl valued
functors on a differentiable manifold M the real cohomology algebra of M.
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1. Basic definitions. In all that follows I' will be a fixed commutative ring.
However, in starred sections we shall assume that T includes as a subring the field
of rational numbers. By a T-ring we shall mean a commutative ring R whose
additive group is a I'module in such a way that v(rs) = r(ys) for v ¢ T and
r, s e R. If T is the ring of integers then this is just the usual notion of a com-
mutative ring and if T is a field then R is just a commutative algebra over I'.
We define a I'-subring of R in the obvious way and by a module V over a I'-ring
R we mean an R-module in the usual sense which is also a T'-module in such a
way that (yr)v = y(rv) = r(yw) forye I, 7 e R, v e V. 1In particular R itself is
an R-module. If V is an R-module we write &r(1) for the ring of I'-endo-
morphisms of V and &,(V) for the subring of & (V) consisting of I'-endo-
morphisms which are also R-endomorphisms. Wenote that (V) isan R-module
and &z(V) a submodule. By a Lic ring we mean as usual an abelian group £
together with a pairing (z, y) — [z, ] of £ X £ into £ such that [z, 2] = Ofor
all z ¢ & (and hence [z, 4] = —ly, 2] for all @, y ¢« £ and (Jacobi
identity) [z, [y, 2]] + [z, [z, ] + [y, [z, 2)] = Oforalla, y, 2, e £ If R isa I'-
ring and ¥ is an R-module then &:(17) is a Lie ring under the commutator
pairing (z, ) — [z, ¥] = 2y — yx and &,(17) is a sub-Lie ring. Moreover we
note that the commutator pairing in &;(17) is bilinear over I'. By a derwation
of the I-ring R we mean a I-endomorphism X of R satisfying X(rs) =
(Xr)s + r(Xs). It is easily cehcked that the set D(R) of derivations of R is a
sub R-module of &r(R) and also a sub-Lie ring of &r(R) and that for X, ¥ ¢ D(E)
and r ¢ & we have

@ X, Y] =X, Y] — (INX

DerintTiox. Let R be a I-ring and £ a Lie ring whose underlying abelian
group has the structure of an E-module and suppose that the pairing (z, y) —
[z, y] of £ X £ into £ is bilinear over I'.  We shall call £ a Lie d-ring over R if
there is given as additional structure a map of £ into D(R) which is a homo-
morphism of the Lie ring and R-module structures such that (denoting the
image of X ¢ £ on r ¢ R by Xr) the relation (1) above holds for X, ¥ ¢ £ and
reR.

If the map of £ into D(R) defining the Lie d-ring structure of £ is the zero
map then £ is called d-trivial. In this case the pairing of £ X £ into £ Is bi-
linear over R.

ExamprLes. (a) R any DP-ring, £ = D(R) and £ — D(R) the identity map.

(b) T = real numbers, B = differentiable real valued functions on some
differentiable manifold M, £ = differentiable vector fields on M. Since the
natural map of £ into D(R) is an isomorphism onto, this is in fact a special case
of (a).

(¢) R a field, T any subring of R and £ a Lie algebra over B. Then £ is a
d-trivial d-ring over K.

We next define a concept meant to generalize the notion of a linear representa-
tion in example (c) above.
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DErFINITION. Let R be a I'-ring, £ a Lie d-ring over R, and let ¥ be an R-
module. We shall call 17 an £-module if there is given as additional structure a
map of £ into & (V) which is a homomorphism of the Lie ring and R-module
structures such that (denoting the image of X e £ onveV by Xv) the relation

2 X)) = (Xnv + r(Xv)

holds for X e &, re R, and v ¢ 7. We consider I? itself as an g-module called
the basic £-module by means of the map £ — ©(R) € &r(R) which defines the
d-ring structure of £ (condition (2) is just the condition for a derivation in this
case).

We note that the direct sum of two g-modules iz in a natural way an £-module.

If V,, Vs, Vs are three e-modules a map 1, X 17, into Vs, say (g, v2) — U2
will be called an £-pairing if it is a pairing in the sense of R-modules (i.e., bilinear
over R and T) and in addition satisfies ‘

3) Xw,) = (Xer + v (Xvs)

for XeL, v, e Vs

We note that (2) says that the map (r, v) — 7o is an £-pairing of R X V into
V where R is the basic £-module and V7 any £-module. An g-module V will
be called an £-ring if there is given as additional structure an associative and
commutative £-pairing of ¥ X V into 7. This amounts to saying that V is a
commutative ring over R and that the mapping of £ into &r(V) has its range
in D(V), the set of derivations of V. In particular then the basic £-module is
always an £-ring.

2. Cochains of a Lie d-ring with coefficients in a module. Let R bea I-ring,
£ a Lie d-ring over R and V" an e-module. Tor each integer p = 0 we define an
R-module C?(£, V) called the R-module of p-cochains of £ with coefficients in
T as follows: for p = 0 we put C*(£, V) = 1" and for p > 0 we define C”(£, V)
to be the set of maps of £7 into V' which are R and T linear in each argument
and skew-symmetric in each pair of arguments. The module operations in
C(g, V) are “pointwise”. We define the module of cochains of £ with coefficients
in V to be the weak direct sum cHe, V) = @,e0 C7(L, V). We define an E-
module automorphism ¢ — ¢ of C*(£, V) with itself by ¢ = (—1)% force C*(£, V).

FxamprLEs. (a) In example (b) of §1 if we take V = R the basic £-module,
then a p-cochain is a function ¢ which assigns to each p-tuple of differentiable

vector fields X, +-+ , X,on M a differentiable function ¢(X,, « -+, X,) on M,
the assignment being p-linear over functions and alternating. If x — ¢, is a
differentiable p-form on M then Xy, -, X)) — o(X,, -+, X,) where
e(X,, -, Xp@ = e (X 1)e 0 (X,).) is clearly such a function. That

conversely every such function arises from a unique p-form is a well-known
and easily proved lemma.®* Thus in this case the p-cochains are just the p-forms,
i.e., the p-cochains of the de Rham complex.

s Added in proof. For a proof see Proposition 3.4 of A. Frolicher and A. Nijenhuis, Theory
of vector-valued forms. 1, Indag. Math. vol. 18 (1956) p. 338.
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b) In example (c) of §1 C*(e, T) coincides with the definition given by
-zevalley and Eilenberg in [1].

2%, Let (v, v,) — vv, be an £-pairing of two L-modules 17, and V, into a
L rd T,. We define an associated map (¢, ¢,) — ¢, A ¢, of C*e, V) X

"L, V) — C*e, V,) which is an R-pairing (i.e., bilinear over R and T) by
-dning an R-pairing of (e, V) X (g, 1) into C* (e, V,) and then ex-
:ding in the obvious way. We put

= (VAN Cz(le e A = cl(ci<X1; Tty Xu)): p=0,
f “.7:,\\ C, /\ c2(Xl; Ty XZ’) = Cl(‘le’ T XP)C?’ q = 0,
i ¢ A Cz(Xl’ Tty XP+0>

1 - - -
= qu, Z e(w)cl(me, :‘Xw(pﬁcz(‘xw(pn), )Xw(p+q))

weSgp+g

* P, @ # 0 where S,,, is the group of permutations of (L, - ,p+ ¢) and ()
“ae parity of w. Now suppose that 17, = V5 and that we are given in addition
“mmutative £-pairing of ¥, X ¥, into V, such that @ = (""" for
0"y in V) X Vy X V,. Then a straightforward computation shows that
CLE) N = A A for (e, ¢, ) e CF e, ) X CH(L, V1) X C*(L, V)
(e A ep = (=1),, A ¢, fore, e C'(£, V). Thusif Visan £-ring we can
=V =TV, =V, = V, in the above and we see that C*(£, V) becomes an
B commutative graded ring over R and T. In particular if R is the basic
~.odule then C*(£, R) is an anticommutative graded ring. Moreover if V
-1y £-module then the pairing (r, v) = rvof R X Vinto V satisfies the above
Frootheses (R =V, V =V, = Vs) and we see that C*(g, V) is a module
s C*(L, R).

8 3. Interior products. ILet £ be a Lie d-ring over the T-ring R and let V be
e <-module. Tor each X ¢ £ we define an endomorphism of degree —1 of

Q- graded R-module C*(€, V) called the inferior product by X and denoted by
W :: follows:

7 xC

0 for ceC'(e,V) =V,
- 'iXC<X1: }Xp—l) = C(X: Xh ;Xzz—l); C“:Cp<£z V):P > 0.

| “'e leave to the reader the easy verification that X — ¢y isa R-module homo-
phism of £ into &,(C*(g, V)). It is not a Lie ring homomorphism for in
we have the following anti-commutator relation

o ixly -+ tyix = 0.

1", Assuming as in 2* that we have an £-pairing V, X V, — Vs we ask how

y -zhaves with respect to the associated pairing

C*(£, Vi) X cx(g, V) — c*(e, V).
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A straightforward computation shows that
) ixler A ) = (tx¢) AN e+ C A (¢xC2)
where ¢ — ¢ is as defined in §1. If V is an £-ring then (7) says that ix is an

anti-derivation of the graded ring C*(£, V).

4. The Lie derivative. Again £ is a Lie d-ring over R and V' an £-module.
We now define for each X ¢ £ a I'endomorphism dx of C*(L£, V), homogeneous
to degree zero, called the Lie derivative with respect to X, by

(8a) dxc = Xc if ceCUL, V) =17,
dxe(Xy -+ X,)
= XC(XI; cee ,X,,) - ZC(XU JX-‘—I: [X: Xi]yXH—U o ’Xv)

i=

(8b)
= Xe(Xy, -+, X))+ 2 (DX, X, Xy, 0, &, X))
if ceC?e,V),p>0.

It is clear that dxc as defined is skew-symmetric in each pair of arguments and
T-linear in each argument. To show that dxc is R-linear in each argument we

note that since
X, rX;] = r[X, X;] + (XnX;
it follows that

6X0<X1, ,TX,-, ,X,,) = X(TC(XU 7Xp))
- ZTC(XU 7[X’ Xt']; yXD) - (XT)C(XU e ,X,,)
=1

=TXC(X17 ,X,,) -r ZC<X17 1[X)X€]; et )Xv)
i=1

=7 aXC(XIy ] Xv)'

It is now clear that dx is a T'-endomorphism of each C*(£, V) and so extends
uniquely to a T'-endomorphism of C*(£, V). Unlike ¢ however, dx is not an
R-endomorphism in general for in fact it is easily seen that dx(rc) = raxc + (Xr)e.
The map X — dx of £ into &-(C*(£, V)) is obviously a T'-module endomorphism
and using the Jacobi identity we get easily that

©) dix, vy = [0x, 8]

which is to say that it is also a Lie ring homomorphism. Finally the commutator
of a Lie derivative dy and an inner product x is easily computed and turns out
to be another interior product

(10) [ay, 1xl = ’i[x,y].
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4*. Once again assuming that we have an L-pairing V; X V, — T, we now
ask how dy behaves relative to the associated pairing of cochain modules.
Another direct computation shows

(1D Ix(ey A €) = (Ixc) A € + ¢, A 9xCa.

In particular if V" is a Lie ring then each 9y is a derivation of the graded ring
C*(e. V.

6. Invariant cochains. If £ is a Lie d-ring over a I-ring R and V is
and £-module we define C%(£, V), the set of snvariant cochains of £ with coeffi-
cients in Vby C%(£, T) = {ce C(L, V) | dxc = O for all X ¢ £}. Since each
dx 1s a T-endomorphizm of C*(g, V) it follows that C%(L, V) is a I'-submodule
of C*(£, V) (but not in general and R-submodule) and since each 9y is homo-
geneous of degree zero it follows that C*(g, V) is the direct sum of the T'-sub-
modules C7(£, 17 = (7(g, V) N C%(L, V) of invariant p-cochains.

5% Assuming again an £-pairing of V', X V, into V, it follows from (11) that
ife; e C%(¢, 17,71 = 1, 2, then ¢, A ¢ ¢ C%(L, V,). In particular if V is an
L-ring then C*%/¢, 17 is a subring of C*(g, V).

6. The differential or coboundary operator. 1If £ is a Lie d-ring over a I'-ring
I then for each £-module V" we define d ¢ &r(C*(£, 1)), homogeneous of degree
~+1 as follows:

(12a) du(X) = X, veCUL, V) =71,
p+1l
dC(AYl~ ,-prl) = Z(_l)HlX&C(XIy )Xi} 7Xp+l)
(12b) et

+ Z (—1)i+ic([Xi; Xi]: Xl: ) X:’; R Xi; ) Xp+1>
if ceC(g, V),p > 0.
Using (8b) we see (12b) can be rewritten

de(Xy, o, Xy = 3 (=D 0K, o, Rey - X0
(13> i=1
+ Z (—1)"+i+10([X5,X,-],X1, ?Xi; e 7X1'7 7Xzz+l)

o<y

orif 1 4 1 has an inverse, 1/2, in T we can write

»+1

(14) dc(Xl X,,q) = %; ("1)“1{X-'C(X1 X.' Xp+1)
+ 0x9X; - X - X000

It is clear from any of these forms of the definitions that de is anti-symmetric
in each pair of arguments and I-linear in each argument. That dc is R-linear
In each argument is not so obvious but of course it suffices to prove R-linearity
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in the first argument. Now using (12b) and (1)

p+1

de(rX,, Xo, o+, Xpu) =71 ; (=) XXy, -, Xay oo X))
S X R Ko
+ 7 Z (=D (X, X1, X, 0 X5 X o)
+ g (=)D"= X0 X0, Xoy X X

The second and fmu"th terms cancel and the remaining give r de(X,, -+, Xp.0)-

Tt is clear that ¢ — dc is a T-homomorphism of each C*(&, V) into crie, M
and hence extends uniquely to a T-endomorphism of degree +1 of C*(g, V).

Using (13) and the commutation rule (10) we get by direct computation the
anti-commutation rule :

(15) 9y = dix + ixd.

Now just asin [1, p. 116] we show in turn that dox = dxd and that
(16) dod=0.

Using (15) and (16) we can find the common value of ddy and dxd, namely
(17 ddy = 9xd = dixd.

However the real importance of (16) of course is that it says that (C*(£, V), d)
is a graded cochain complex with a differential of degree +1. We will use all
the standard notation and terminology that this implies. We note that since
d is a T-endomorphism the cocycle group Z e, V) =@,2°(L, V), the cobound-
ary group B*(g, V) = @, B’(£, V) and the cohomology group o*g, V) =
@, H™(L, V) are all T-modules.

1t follows from (17) that the invariant cochains C*(£, V) of an £-module 1
form a sub-cochain complex of C*(g, V) giving rise therefore to the notions of
invariant cocycles Z%(&, V) = Z¥(e, V) M C%(g, V), invariant coboundaries
Bx(e, V) = d C%(&, V) (not the possibly larger B*(£, V) M cx(£, V)) and
invariant cohomology group H%(L, V) = Z%(&, V)/B%(£, V) all of which are
again graded I'-modules.

Examprus. (a) In example (a) of §2 d is the usual exterior derivative. For
a proof see [2].

(b) In example (b) of §2 d is defined precisely as in [1].

6*. Assuming once again an £-pairing of two £-modules V, and V, into a
third Vs we ask for the relation of d to the related pairing C*(£, Vi) X
Cc*(L, Vi) — C*(£, V). Once again straightforward computation leads to the
desired formula, namely

(18) dles A ) = (de)) Aes +E A (dey).

This allows us to compute how much d misses being an R-endomorphism, for




THE COHOMOLOGY OF LIE RINGS 137

aking V', to be the basic £-module R and V' 2. = Van arbitrary £-module we

19 dre) = rde 4 dr A c.

We can now use (19) and (15) and the fact that trx = rix to see how much
X — 3y misses being an E-homomorphism. The result is

20) O.x =71 dx + dr A iy

~here (dr A ix)c = dr A (ixe).

However the most important fact about (18) is that it says that in case V'
< an L-ring d is an antiderivation of the anti-commutative ring C*(£, V) and
-ence that B*(£, V) is an ideal in the subring Z*(g, V) so that H*(e, V) has
ne structure of an anti-commutative graded ring over I'. In the same way
T%(£, V) also has such a structure.

7. Cohomology of Lie d-rings and of T-rings. If R is any I'-ring then for
:ach Lie d-ring £ over B we define H*(£), the cohomology group of £, to be
1e graded I'-module H*(g, R) where R is the basic £-module. In case I' con-
"ains as a subring the rational numbers we consider H *(£) as an anti-commuta-
“ve graded ring as noted in §6*. Similarly we define the invariant cohomology
D& HA(L) by Hx(g) = H(e, R).

I R is any P-ring we define the cohomology and invariant cohomology of R by
H*R) = H*D(R)) = HND(R), R),
HR) = HY(D(R)) = HYD®R), R),

“aere as usual D(R) is the set of derivations of R considered as a Lie d-ring.
uce again if T includes the rational numbers as g subring then H*(R) and
“%(R) have the structure of an anti-commutative graded ring. Since all con-
ructions have been canonical it is clear that every I'-isomorphism of g T-ring
onto a I'-ring R’ induces an isomorphism of A *(R) onto H *(R') in a natural
zy. In other words the map R — H*(R) is a functor from the category of
-rings with I-isomorphisms as maps to the category of graded I'-moduleg
nti-commutative graded rings over T in case Q@ C I') with homogeneous
-somorphisms.  Moreover as follows from the remarks made in Examples

of §§2 and 6 if I' is the field of real numbers and R the ring of differentiable
:I valued functions on g differentiable manifold A then H*(R) is by de Rham’s
2orem the real cohomology algebra of /.
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