


CRITICAL POINT THEORY AND THE
MINIMAX PRINCIPLE

RICHARD S. PALAIS!

1. Introduction. Since the goal of this paper is to present an exposition of a
fairly general method of attack on a certain class of problems in analysis. 1t is
perhaps in order to begin with a discussion of the domain of applicability of the
concepts and techniques we are going to describe. and to illustrate them in some
simple cases.

In a typical problem in analysis. both linear and nonlinear. we are given a space
X and a set of “equations™ defined on X and are asked to describe the set § of
solutions of these equations.

There are really two quite separate types of description. depending on whether
one Is interested in the properties of the elements of § on the one hand or in
describing the nature of the set S on the other.

Typical of the first type of description is classical “complex variable theory.™
Here we may take for X the sct of say C' complex valued functions defined in some
open set in the complex plane and for S the set of solutions of the Cauchy-Riemann
equations. The emphasis is placed on determining the properties that elements of
S have as distinguished from the general clement of X (e.g. the open mapping
property. the maximum modulus property. complex analyticity etc.).

It is, however, the second side of analysis that will engage us in this paper.
Here the elements of X are considered to be propertyless “points™ and the emphasis
is placed on describing the character of S. either considered intrinsically or as a
subset of X. For example a uniqueness theorem is a statement to the effect that S
contains at most one point and a local uniqueness theorem is a statement that S
Is a discrete subset of X in some topology. An existence theorem takes the form
that S is not empty or that S has cardinality (or dimension. or Lusternik-Schirelman
category) greater than some given positive integer. On a more sophisticated level.
when X is @ smooth Banach manifold. transversality theorems are designed to
give the result that S is a smooth submanifold of X of a certain given codimension.

One of the most powerful methods of attack on this type of problem consists
in setting up a bijective correspondence between the set S and the set of fixed
points of some self-mapping (or set of self-mappings) and then analyzing the
nature of these fixed point sets by means of one of the many fixed point theorems.
such as the Banach contraction principle or one of the forms of the Brouwer-
Leray-Schauder-Lefschetz theorem.

A second and seemingly distinct method of attack is to set up a bijective cor-
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respondence between S and the set of critical points of some set of smooth real
valued functions on differentiable manifolds and then to use critical point theory.
and in particular the so-called “Minimax Principle.” to analyze these sets of
critical points. It is this second technique that will be the basic concern of this
paper. As we shall sce it is closely connected to the fixed point approach via the
method of “steepest descent™ or “gradient-like flows.”™ Before discussing this
connection we recall a well-known cxample of the critical point method to clarify
precisely how it works in practice.
Let A: R" » R"be a C! map and let us write

A(X) = (A (X oo X AL X))

We look for the set S of solutions of the equations A(x) = 4x where ~ is any
real number. In particular if A is lincar. say A/(x) = ) ;a;;x;. then this is just
the problem of finding the eigenvectors of 4. To apply the critical point method
we assume ¢ A, Cx; = CA; Cx; (in case A is linear this is just the condition that A
be selfadjoint. ie. a;; = aj). Then there exists a C*-function f:R" — R (unique up
to an additive constant) such that 4, = ¢ f Cx;. In the lincar selfadjoint case we
can take f(x) = }{Ax. X) = é_‘ijcl,._,.\‘,u\‘,. Then the Lagrange-multiplier theorem
tells us that if tx, 1 =r > 0 then x, € S 1f and only if x, is a critical point of the
restriction of fto the sphere Z(r) = x e R"| |x}? = r?!. In particular we have the
theorem that for each r > 0 there are at least two points of S on the sphere X(r).
namcly points where f assumes a4 minimum or maximum on X(r). Note that
everything works equally well if we replace R" by a hilbert space H, except that
since Z(r) is no longer compact when H is infinite-dimensional we can no longer
assert the existence of a maximum or minimum of f on Z(r) in this case. However.
going back to the case where 1 is linear. it is easily seen that if 4 is a compact
operator then f must indeed assume a minimum and maximum value on each
2(r). This suggests that in proving cxistence theorems for critical points of a
function f. compactness or finite-dimensionality assumptions on the manifold on
which f'is defined can be replaced by some sort of “compactness™ assumption on
Jitself. Such a condition has been introduced by the author [7] and S. Smale [12]
and 1s referred to as Condition (C) below. Tt will be formulated explicitly in §4.
Returning to the case of R” for the moment, it might seem that there is a weak-
ness in the critical point method. For if 4 is linear then there will not be just two
critical points of f on X(r) but always at least 2n (and “generically™ cxactly 2n).
However. if the full power of the “minimax principle™ is used this result follows.
Indeed as was proved by Lusternik and Schnirelman [5] if /' is a smooth real-
valued function on a compact manifold X then it follows from the minimax
principle that fhas at least cat(.\) critical points on X (where cat(X). the Lusternik-
Schnirelman category of X. is the least number of closed sets. each contractible
in X. needed to cover X). Since the function f(x) = {Ax. x) satisfies f(x) = f(— x).
its restriction to the sphere X(r) can be considered as a function on the real projec-
tive (n — D-space P(r) = Z(r) x ~ (— x), and f will have twice as many critical
points on X(r) as it does on Piri. so it will suffice to prove that cat(P(r)) = n. But
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it is well known ([8] and [2]) that for connected X. cat(X) < dim(X) + 1 and
cal(X) > cuplong(X) + 1. where cuplong(X) is the largest integer k such that
there exist k cohomology classes of X of dimension greater than zero (with co-
efficients in any ring) whose cup product is nonzero. Since if x is the generator of
HY(P(r). Z,) then x"~ ' is the gencrator of H" ™ (P(r). Z,). cuplong(P(r)) = n — |
= dim(X) so cat(X) = n. We shall discuss the Lusternik-Schnirclman theory in
detail later and we shall see that it too extends to the infinite-dimensional setting
under the assumption of Condition (C).

If M is a smooth finite-dimensional manifold and ¢: M — R is a C? function.
then at a critical point p of ¢ the second differential of ¢ is a well-defined symmetric
bilinear form on T(M),. (called the Hessian of g at p) and if it is nonsingular, p
is called a nondegenerate critical point and its index (i.e., the number of minus
signs when the corresponding quadratic form is written as a sum and difference
of squares. or better the dimension of a maximal subspace on which the Hessian
is negative definite) is called the index of the critical point p. Clearly the index
measures the dimension of the “space of directions at p in which the function ¢ is
decreasing™ and is equal to 0 at a minimum and dim M at a maximum. It can be
shown by the Sard-Brown theorem that, except for a set of ¢ of the first category
in C*(M. R). g has only nondegenerate critical points. Such a ¢ is called a Morse
function and for such functions on compact manifolds Marston Morse [6]
established considerably more delicate results than follow from the Lusternik-
Schnirelman theory (and indeed the latter results were motivated by the attempt
to see what could be said when the nondegeneracy condition was violated). In
particular Morse showed that there must be at least as many critical points of
index k as the kth Betti number of M (relative to any coeflicient field). For example
if we go back to the function g induced on P(r) by the function f(x) = {Ax. x> on
R" then itis casily seen that g is a Morse function if and only if A4 has no nondegener-
ate eigenvalues. Since the mod 2 Betti numbers of P(r) in dimension &, 0 < k <
n — 1 are all one it follows that in this range there will be at least one critical point
of index k. In fact there is exactly one. namely the cigenspace corresponding to the
(k + Dst eigenvalue (arranged in increasing order). Once again all this goes
through in the infinite dimensional setting if we assume Condition (C). except
that we have no analogue to the theorem that “most™ functions are Morse func-
tions in this case.

It is perhaps in order to clarify at this point. by another example. why we put
so much emphasis on extending results to the “infinite dimensional setting.” We
start with an apparently finite-dimensional situation. namely a complete C” n-
dimensional Riemannian manifold M and a C* path ¢:[a.h] —> M joining say
pand ¢.  2:[a.b] = TIM) (1) e T(M),,)is a (' vector field along o then the
condition that ~ be “auto-parallel™ along o is that 92.01 = 0 where 3,0t denotes
the covariant derivative along a. If ¢ denotes the tangent vector ficld of ¢ then o
Is a “geodesic™ if ¢ Is auto-parallel. ie if do" o1 = 0. We consider the problem
of finding the set S of all solutions of this second order ordinary differential
equation in the set C*([a, b]. M:p.q) of all C* maps of [a.h] into M starting at
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p and ending at ¢. In particular we would like to prove that S is not empty. For
case of exposition we assume M is 1sometrically embedded in some RY (by a
theorem of J. Nash this is always possible) and we assume p is the origin of R*.
Let H denote the set of all absolutely continuous maps o: [a.b] = R* such that
ala) = 0 and [7a'(1) *dt < . Then H is a Hilbert space under the inner product
(o.t> = "'t )y dtand Q = (e Hlimo = M and a(h) = ¢} isa C” closed
submanifold of H. We define the “encrgy function™ J: Q — Rby J(a) = §!a'(1)]*dt.
L.e., the squarc of the norm of H restricted to Q. Then it can be shown [7] that
J satisties Condition (C) and that if ¢ is chosen outside a set of measure zero in
M. all the critical points of M are nondegenerate. Morcover the critical points of
J are precisely the geodesics of M joining p to ¢. all of which are C”. It follows
that the number of geodesics from p to ¢ of index k is at least as large as the kth
Betti number of Q. In particular since it follows from theorems of Serre that Q
has infinitely many nonvanishing Betti numbers. there are infinitely many geode-
sics joining p to ¢. This 1s the simplest of a whole class of calculus of variations
theorems for which one can obtain strong existence type theorems using this
approach. Actually in the geodesic example above Morse obtained the basic
results by “approximating™ in an ingenious way the manifold Q by certain compact
finite-dimensional submanifolds [6]. However. in calculus of variations problems
involving several independent variables these approximation techniques seem not
to be possible and one must really work in the infinite-dimensional setting.

The basic technique in critical point theory is that of gradient (or gradient-like)
flows. also called ““the method of steepest descent.”™ As remarked above it estab-
lishes a connection with fixed point theory and also leads directly to the general
“minimax principle.” For simplicity of description we shall consider the case of a
C” real-valued function f on a compact C’ Riemannian manifold M. Before
preceding with the technical aspects of steepest descents we describe an extremely
valuable heuristic idea which not only explains the name of the game but also
accounts for most of the geometric intuition behind many of the theorems. In the
product manifold M x R we regard the M direction as “horizontal™ and the
positive R direction as “vertical.”™ We consider M x {0} as representing “sca-
level™ and we identify M with the graph of f under the usual “graph embedding™
X = (x.f(x)). Thus the value of f at a point of M is just its projection on the vertical
axis, L.e.. the height above sea level of the point. and the level surfaces /' = constant
are “isochnes.” If we place a “particle™ at pe M the “gravitational force™ it will
cxperience will be zero at a critical point of f'and elsewhere its component tangent
to M will be orthogonal to the isoclines. in the direction of —V{ . where Vf _ the
gradient of f at p. 1s the tangent vector at p dual to df, (i.c.. satisfying NV XD
= df(X) = X fforall X e T(M),) so that by Schwartz’s inequality —Vf, has the
direction in which ¢, is least. i.c.. in which f'is decreasing most rapidly. We release
our particle at time t = 0 and let it move under Aristotelian (rather than New-
tonian) dynamics: to be precise so that the horizontal component of its relocity
at any point is just the value of —Vf at that point. Let ¢,(p) denote the position
of the particle at time 1. so that ¢, is the “flow™ (i.c.. the one-parameter group of
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diffeomorphisms of M) generated by the C* vector field — V. For what should
now be obvious reasons ¢,(p) is called the path of steepest descent of the point p.
Now note that

d

dr(/(d)(p)) VoIV =Ny =Vgim? = = I Vhyimi

Thus there are exactly two possibilities: cither Vi, = 0.1e. pis a critical point
of f-in which case ¢(p) = p for all 1. or else Vi, = O in which case f(,(p)) is less
than (greater than) f(p) for ¢ greater than (luss than) zero. so that ¢,(p) = p for
1= 0. Thus for any t = 0 the set of critical points of fis the same as the set of fixed
points of the self-mapping ¢, M — M. This is the sense in which the critical point
method is a special case of the fixed point method. There is more to the connection
than this of course. For example a critical point p of fis nondegenerate if and only
if it is a nondegenerate fixed point of ¢,, and then the index of p as a fixed point
of ¢, is (— 1" where k is the index of p as a critical point of f. and it is also the
degree of the zero of V/at p. Thus if all the critical points of f are nondegenerate
the Lefschetz fixed point formula, the Hopf formula for the Euler characteristic
7 of M in terms of the degrees of the zeros of V/. and the “Morse equality” (namely
that = X(— 1)*M, wherc M, is the number of critical points of / of index k) all
reduce to the same thing.

Let K = K(f) denote the set of critical points of /. clearly a closed and hence
compact subset of M. The compact set of real numbers f(K) is called the set of
critical values of f and the complementary open set of real numbers is called the
sct of regular values of f. Thus ¢ € R is a critical value of £ if lhc “level"_t” ")
contains at least one critical point of f and is a regular value if f ~}(¢) is empty or
contains only regular points of f (so a nonvalue of {'is a regular valuc of /). The
minimax principle is a very general method for locating critical values of f. 1t is a
consequence of the deformation theorem which we shall consider next.

We shall denote by /¢ the part of M “below the level ¢ ien fC =/ (— x. ).
and K_will denote the set of critical points of fat the level ¢.ie.. K. = K~ f~ (¢)
(so K. = ¢ il and only if ¢ is a critical value of f).

LEMMA. Let xqoe M be a regular point of f and let f(xq) = ¢. Then there is un
&> 0 and a neighborhood Vof x, such that ¢ (V) < [0

PROOF. df (¢p(xy)dt = — MV/WW\ SO f{¢,(xy)) 1s monotone nonincreasing.
Morcover at 1 = 0 the derivative is — |V/, |* which is strictly negative, and
hence f((xg)) is less than f(py(x,) = f(x,) = ¢. so for some ¢ > 0, f(P,(x,))
< ¢ =g dnd hence for x in a neighborhood Vof x,,. f(¢ (X)) < ¢ — & Q.ED.

DEFORMATION THEOREM. Given ¢ € R let U be a neighborhood of K, in M. Then
there is an ¢ > 0 such that ¢ (f7° — Uy <[5 In particular if ¢ is u regular
value of [ then there is an ¢ > 0 such that ¢, ([ < [~

PRrOOF. For each x in the compact set X = f ~'(¢) — U choose a neighborhood
boof xin M and a o, > 0so that ¢ (V) = /<™. Let V, U ... UV cover X and
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let & = min(d,.....0, ) so that if & <o then ¢ (V, v ...V )< f°" Since
M is compact and ¢ = U v b, u...u b, is a neighborhood of /™ '(c). there
is an ¢ > 0, which we can assume less than o, so that f~'([¢ — e ¢ + ¢]) S C.
Then since "</ of Me—e ¢+te]) and ¢ —U SV U 0
T = U e Tro b v w I But both ¢ (£ ) and @ (V, w o)
are included in ¢ . Q.ED.

We are now in a position to formulate and prove the minimax principle. Let
F be a family of subsets of M. We define the minimax of f over .# by

Minimax (/.7 ) = InfSup | f(x)|x e F}.

I

It is easily scen that an equivalent definition is:
Minimax (f..#) = Inf {ce RAF € # with F < f].

The family # is called ambient isotopy invariant if given an isotopy ¢, of M (i.c.. a
C’ map (1. x) = g,(x) of [0, 1] x M into M with each ¢, a difftomorphism of M
onto M and g, the identity) and F €.# it follows that g,(F)e.#.

MINIMAX PRINCIPLE. If .# is an ambient isotopy invariant family of subsets of
M then Minimax(f..7 ) is a critical value of f.

PrOOE. Suppose ¢ = Minimax( f..#) is a regular value of fand let F €.# with
F < <7 where ¢ > 0 is chosen as in the deformation theorem. Since [¢,] ., .,
is an isotopy of M it follows that ¢,(Fie #. But ¢ (F) < P (f /" so
Minimax( f..#) < ¢ — ¢. a contradiction. Q.E.D.

One of the most important applications of the minimax principle is the deriva-
tion of Lusternik-Schnirelman theory. However, before taking up that topic. we
will consider some more elementary applications.

EXAMPLES.

(a) Let .7 = (M. Then Minimax(f..7) = Max,, f{X).

(b) Let .# be the family of all one point subsets of M. Then Minimax( f..#)
= Min_, f(x).

(¢) Let X be any space and let [ X. M] denote the set of homotopy classes of
maps of X into M. Given ;e [X. M] let # = 7(;) = |y(X)lge|. Then Mini-
max( /.7 (7)) is a critical value of f In particular (if X = §*) this associates critical
values of f to each element of m,(M).

(d) Let X be a smooth manifold of dimension less than dim M. If ; 1s an isotopy
class of embeddings of X into M or a regular homotopy class of immersions of
X in M. then clearly .7 = Z(;) = |¢(X)jg e} is ambient isotopy invariant so
that Minimax( f..7) is a critical value of f.

(c) Let H, denote the &k dimensional homology functor (with arbitrary co-
cfficients). Given € H (M), = 0. let .# denote the set of subsets F = M such that
o s in the image of H (i) H,(F) — H(M). In particular if M is connected and
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we take ;' to be the generator of H (M) where k = dim M or zero. we get back to
Examples (a) and (b) respectively.

(f) Let H* denote a k-dimensional cohomology functor. ;' = 0 an element of
HXM)and let # denote the family of subsets F of M such that ;' is not annihilated
by the restriction map Hi,): HNM) — HMF). Again by taking the generators of
HYM) when M is connected and k = 0 or dim M we get back to Examples (a)
and (b).

All of these examples beyond (a) and (b) can be used for finding critical points
beyond the obvious minimum and maximum. However. we will only mention one
example of such an application- the same tired old example as in every other
discussion of critical point theory. Namely we let M be the two-dimensional torus
represented as an inner tube standing in ready-to-roll position on the (x. y)-plane
and we let f denote the projection of M on the vertical = axis. Aside from the
minimum and maximum of / there are two nondegenerate critical points of index
one which can be located by any of the methods of (¢). (d). (¢) or () [in (¢) or (d)
we let X' = S' and take 7 to be the usual generators of m,(M). which can be repre-
sented by embeddings. and in (e) or (f) we take k = | and » the usual generators
of Hy or H'].

Let us now take up the basic Lusternik-Schnirelman results on critical point
theory. A subset 4 of M is said to have Lusternik-Schnirelman category m in M
(and we write cat(4:M) = m) if A can be covered by m (but not fewer) closed
subsets of M each of which is “contractible to a point in M. the latter meaning
that the inclusion map into M is homotopic, as a map into M. to a constant map.
We define cat(M) = cat(M : M).

The following are some obvious properties of the nonnegative integer valued
set function cat(- ; M):

(i) catfd: M) =0ifand only if 4 = .

(1) cat(4A: M) = 1 if and only if 4 is contractible in M.

(ii1) cat(A:M) = cat(A: M).

(iv) I 4 1s closed in M then cat(A. M) < m if and only if 4 is the union of m
closed sets each contractible in M.

(v) cal(-: M) is monotone. ie.. if A € B = M then cat(4: M) < cat(B: M).

(vi) cat(- : M) is subadditive, i.e.. cat(4 w B: M) < cat(A: M) + cauB: M).

(vit) If 4 is closed and deformable through M into B (i.e.. if the inclusion map
of 4 into M is homotopic. as a map into M. with a map of 4 into B). then cat(4: M)
< cat(B: M).

Proor. Letting ii,: 4 — M be the homotopy. if BS F, U ... U F, with cach
F; closed and contractible in M. then 4 = G, v ... U G,, where G, = h; '(F) is
closed in M. Since /,{G; is a homotopy of the inclusion of G, with a map into F.
G, is contractible in M.

(viil) 1f i is a homeomorphism of M onto itself then cat(h(A): M) = cat(4: M).

Given a positive integer m less than or equal to cat(M) let us define .7, to be
the family of subsets F of M such that cat(F: M) = m. It is immediate from property
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(viii) that % , is ambient isotopy invariant. It follows that if we define ¢,, = ¢,(f) by
¢, f) = Minimax(f..#,)
= Inf Sup | f(x)|x€e 4]
cattt: M)y = m

= Inf {ce R|34 < /¢ with cat(4: M) > m]

then by the minimax principle for cach positive integer m < cat(M). ¢, (f) is a
critical value of f. We note that by the monotonicity of cat(- ; M) an equivalent
definition of ¢, () 1s

el /) = Inf {ce Rjcat(f<. M) > m].

Since cat( /. M) > m + | implies cat( /. M} > m (or equivalently since .7, ,
< .#,) it is clear that ¢, (f) < ¢,,.(f). It can of course happen that equality
occurs. For example if f'is constant all the ¢, (/) are equal. However, if equality
should occur then it is made up for by there being more than one critical point
on that critical level. In fact we have the following remarkable fact.

LUSTERNIK-SCHNIRELMAN MULTIPLICITY THEOREM. If ¢ = ¢, ,(f) = ¢+, f)
= ... = Co L) then [ has at least k critical points on the critical level ¢. Hence if
I < m < cat(M) then f has at least m critical points at or below the level ¢, ([)
(e in f) and in particular | has at least cat(M) critical points altogether.

ProOF. We can assume that there are only a finite number of critical points on
the level ¢. say x,.....x, and we must prove that r > k. Choose open neighbor-
hoods 1} of x; whose closures are disjoint closed balls. so that if ¢ =V, w ... U},
then clearly cat(¢. M) < r. By the deformation theorem, for some ¢ > 0. /<" — (
can be deformed into f * and since

¢ —e<c,.(f)y=1InflaeR

cat(f“: M) =n + 1!
it follows from property (vii) of cat(. M) that cat(f"* — (. M) < n. By the
monotonicity and subadditivity of cat(-, M).
cat( [T oMy < cat((f T —)ul M)y <n +r
and hence

c<c+e<InflacRl|cat(f“ " My=n+r+ 1] =«

n+r+1

sothatn + r + 1 > n + k and hence r > k. Q.ED.

Our final topic in this introductory section is a discussion of Morse theory in
the finite-dimensional setting.

Recall that at a critical point p of f the second differential of fat p is a symmetric
bilinear form on the tangent space to M at p which is independent of the co-
ordinate system at p used in computing this second differential. This form. denoted
by H{(f),.is called the Hessian of f at pand if it is nondegenerate. p is called a non-
degenerate critical point and the dimension of a maximal subspace of T(M), on
which H( f), is negative definite is called the index of fat p. Let ¢ be a neighborhood



CRITICAL POINT THEORY AND THE MINIMAN PRINCIPLE 193

of a point p of M and let ¢:¢ — T(M), be a chart at p mapping p to zero. We
shall say that ¢ 1s a Morse chart for f at p if there is an orthogonal projection P of
T (M), onto a subspace V'such that for x e(

Fx) = fip) = [ Ppx) 2 = [ — Py

Choose an orthonormal basis ¢, ....¢, ., for T(M), with ¢,.....¢; in }" and
¢isye.n0pin 1H Then we have coordinates x,..... X, Vy. ..., 3, in ¢ defined by
Nlg) = {en Plg)y and y(q) = {e;, ;. Pplg)> and in terms of these coordinates f is
given by

! K
e =rp+ Yai = Yo
=1 j -1
Note that if g€ and we put ¢ = ¢(¢g) and identify T(M), with T(M), by the
isomorphism d¢, then df, is given by

df vy = 2{q. Pv) = 2{g.I — Py

so that df, = 0 if and only if ¢ = 0. i.e.. if and only if ¢ = p. Thus p is the unique
critical point of f'in ¢ . Moreover the Hessian of f at p is clearly

H(f) (v. ) = 2{Py )y — 2 — Phow)

which is a nondegenerate and has 1 as a maximal subspace on which it is negative
definite. Thus p is a nondegenerate critical point and the index of p is rank(l — P)
= dim V'~ = k. The starting point of “Morse Theory™ is the following crucial
lemma.

MORSE LEMMA. If p is u nondegenerate critical point of f. then there is a Morse
chart for f at p.

We shall not repeat here a proof of this famous result of Marston Morse. An
elementary proof valid in the finite dimensional case we are considering at present
can be found in many places, in particular on p. 6 of [3]. The Morse Lemma was
extended to the infinite-dimensional case by the author in [7] (the proof appears
on p. 307).

As an immediate consequence of the Morse Lemma and the remark above
{that p is the only critical point in the domain of a Morse chart at p) it follows
that a nondegenerate critical point of f'is isolated in the set K of critical points of
/- Recalling that f'is called a Morse function if all the critical points of f are non-
degenerate it follows that for a Morse function K is discrete. Since K is always
closed in M. and hence compact, a Morse function has only a finite number of
critical points. More generally if we define a critical value ¢ of f to be a nondegyencerate
critical level of fif /'~ '¢) contains only nondegenerate critical points, then a
nondegenerate critical level ¢ of f contains only a finite number of critical points
and there exists an ¢ > 0 such that ¢ is the only critical value of f'in [¢ — &, ¢ + ¢].

The importance of the Morse Lemma lies in the fact that it provides the basic
technical tool for solving what might well be called “"The Main Problem of Morse
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Theory™ namely: given regular values ¢ < b of a Morse function f reconstruct f*
from a knowledge of /“ and of the critical point structure of f'in /'~ '([a. b]). This
reconstruction of /7 can be either in the strictest sense of its diffeomorphism type
(and in this sense it is called “*handlebody theory™ and was first carried out in full
detail by S. Smale [12], [4] and lies at the heart of his h-cobordism theorem) or in
some weaker sense such as its homotopy type or ““homology type’.

We first consider the easy special case when [a, b] is a “‘noncritical interval,”
that is when all ¢ € [a. b] are regular values of f or equivalently when there are no
critical points of f'in ™ '(| . b]). In this case f is actually diffeomorphic (and in fact
1sotopic) to f“ and indeed a little more is true. namely:

NONCRITICAL INTERVAL THEOREM.  If [ has no critical values in the interrval
[a. b] then there is a C* flow W, on M such that

(1) f'is monotonically nonincreasing along each orbit of .

Q) g =

(3) given ¢ > 0 we can suppose y, leaves " pointwise fixed.

Proor. The functiong:f ~'([a. h]) — R defined by g(x) = (¢ — h)/||Vf, % is well
defined. C*, and strictly negative and can be extended to be a C* nonpositive
function on M which is identically zero on f* “if & > 0. Let i, be the C* flow on
M generated by the C* vector field ¢ V f. Then clearly y, leaves /“~* pointwise

fixed and since if p = ,(p,) then
( o -
WPl = gL = g(p) V1 < 0,

fis monotonically nondecreasing along each orbit. If p, e " and y(p,) € f* then
p=ydpo)ef '[a. b)) so gp) = (a — b)[Vf [* and hence dfi,(po))di = a — bh.
and since the same holds for all smaller positive values of t. f(,(po)) = f(py)
+ tla — b).

It follows that when r = (f(pg) — a)/(b — a) < 1 then f(,(py)) = ¢ and hence
SWipo)) < aie. i, (f) < [ A similar argument shows that  _,(f“) < f* and
since , and i _, are inverse diffeomorphisms w ( f*) = f“. Q.ED.

In view of the above theorem it is clear that the general case of the Main Problem
of Morse Theory can be reduced to the problem of reconstructing f* from f¢
when there is only one critical level ¢ in the interval [a. b] and moreover it cven
sutfices to consider the case ¢« = ¢ — ¢ and b = ¢ + ¢ for ¢ > 0 arbitrarily small.
To describe the situation in this case we need the concept of “attaching a handle™
to a manifold with boundary.

Let D* denote the closed unit ball in a Hilbert space of dimension k(0 < k < ¥)
considered as a C* manifold with boundary $* ! and let D* = D* — $* ! denote
the open unit ball.

DEerINITION. Let M be a €7 hilbert manifold (possibly with boundary) and N a
closed C” submanifold of M which is the closure of an open submanifold. Let
be a homeomorphism of D* x D' onto a closed subset h of M. We shall say that
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M arises from N by a (" attachment of a handle of type (k. ) (or of index k) and
we write M = N u_hif

() M =NuUh,

(2) 2(S*=' x DY is a C" isomorphism onto h ~ ¢N.

(3) %(D* x D'yis a C" isomorphism onto M — N.

Here are two examples of the process, which are of low enough dimension to be
pictured, and either one of which suggests why the nomenclature is as it is.

In the first M is a C" submanifold of the spherc S? consisting of the lower hemi-
sphere N (think of N as a basket) and a handle h consisting of a tubular neighbor-
hood of that part ¢ of a great circle lying in the upper hemisphere. If ¥ > 0 we must
“round off 7 or smooth the angles where & and N meet so that M = N U h is of
class C". In this case x maps D* x {0} = D' x |0} onto ¢ and maps {0} x D'
= {0} x D' onto a little segment of great circle normal to ¢ at the north pole.

In the second example M is the “solid torus™ thought of in the usual way as a
solid sphere D* = N with a handle h = D' x D? attached by identifying the two
“ends” [ — 1] x D?and {1} x D? with two disjoint discs on ¢D* = 52, Of course
if ¥ > 0 we must again smooth the corners along N m h.

Suppose we have a sequence of (" manifolds N =N, N, € ... < N, =M
such that N, arises from N, by a (" attachment x; of a handle of type (k,, /). If
the images of the »; are disjoint subsets of N. then we shall say that M arises from
N by disjoint " attachments (x,.....2,) of s handles of type ((k;.!,),....(hk. [}
(or of indices (k. ..., k). With this terminology we are in a position to describe
how f* changes as ¢ “"passes through™ a nondegenerate critical value.

THEOREM ON PASSING A NONDEGENERATE CRITICAL LEVEL. Let ¢ bhe a nonde-
generate critical level of f and suppose ¢ is the only critical value of [in [a.b]. If
k... kg are the indices of the critical points of fon the level ¢ then there is an isotopy
Y, of M such that \ (f*) arises from f* by the disjoint C* attachment of s handles
of indices (k. ..., k). Given ¢ > 0 we can assume " is pointwise fixed under .

Proor. The proof of this theorem is given in excruciating detail in §§11 and 12
of [7]. Here we shall only give a sketch, emphasizing the geometric ideas. As has
already been remarked it follows from the noncritical interval theorem that we
can replace a by ¢ — ¢ and b by ¢ + ¢ with ¢ > 0 arbitrarily small. It is also clear
that we lose no generality if we assume ¢ = 0. Finally it simplifies the writing to
assume s = 1, the necessary modifications for general s being fairly clear, hence
we assume that there is a single critical point p of f on the level zero and that p
has index k. We identify a neighborhood ¢ of p in M with a neighborhood of the
origin in T(M), via a Morse chart ¢ for fat p. Then f'is given in ¢ by f(x, v) = |[x|?
— | v|? where we have written T(M), = H' ® H*. H* being a maximal subspace
of T(M), on which the Hessian of f'at p is negative definite and H' its orthogonal
complement. The part of f/* inside ¢ is represented on Figure 1 by the region
between the two branches of the hyperbola marked f = ¢, while the part of /' 7*
in ¢ is similarly represented by the two regions which are respectively above and
below the upper and lower branches of the hyperbola marked /= — .
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We now explain how to define a flow ¢, on M such that ¥ ,( /*) arises from f
by the (" attachment of a handle of index A.

Let 2:R — R be a C” nonincreasing function with A(x) = 1 for x < 4. 2(x) > 0
for x < I and 2(x) = 0 for x > | and define ¢:¢ — R by

glx v = flxon) — (3¢ 2)(] x[|7e).

Suppose f(x.y) = |x|? — [¥[* > — 2¢ and that f(x.yv) = g(x.1). Then clearly
Al x|?e) = 0soix? < candthen [y 7 < [x[2 4+ 2e < 3eand [v2 + v 2 < 4
Thus for ¢ so small that the sphere of radius 2, ¢ is included in ¢ we can extend

gtobe C’ in [~ Y[ — 2&.¢]) by defining ¢ = foutside ¢ .

H*

FIGURE |

Note also that if f(x. ) > & then x> ¢s0 A(][x|?/2) = 0 and g(x, y) = f(x. v).
In particular the levels f = ¢ and g = ¢ coincide and so do the regions /* and ¢".
One next shows that Vf(g) > 0 in the region ¢ '([ — «.¢]). For points outside
(. where ¢ = f. this is obvious and inside ¢ it follows from a straightforward
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computation (Proposition (1) §12, [7]). By an argument essentially identical to
the proof of noncritical level theorem (using for i, the flow generated by — GVf
where G: M — R is a nonnegative C” function cqual to 2¢/'Vf(g) in g~ Y= ec]
it follows that there is a C” flow ¥, on M such that W, leaves 2 fixed (because
we can assume G = 0 there) and such that (/%) = ¥, (g") = ¢ *. Thus we are
reduced to proving that ¢ ~* arises from f~* by the C* attachment F of a handle
of index k. The handle / is defined as the set of (x, v) € ¢ such that g(x,y) < —¢
and f(x,y) = —e. the hatched region in Figure 2. The homeomorphism F of
D* » D' onto his given explicitly as
Fxop) = (ot x 1902 + )" 2y + (ol x]12)" 2y

where ¢:[0. 1] - [0. 1] is defined by taking for a(s) the unique solution ¢ of the
equation

o)l + o) = %(1 — 5).

That F indeed maps D* x D' homecomorphically onto /i and satisties the other
conditions for attaching a handle onto f * is another straightforward but some-
what messy computation which is carried out in §11 of [7]. Q.ED.

The following corollary is the homology version of what happens when we pass
a nondegencrate critical level.

Figure 2
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COROLLARY. For each nonnegative integer k let m,(c) denote the number of critical
points of index k on the level ¢. Then the homology group in dimension k of the pair
(fP. 14 with coefficients in G is H(f". %) ~ G™,

PrOOF. It follows by the homotopy and excision axioms that

s

H,(f*.f4) = Hy({J(D* x DY), [ J(Sk~ ! x Dl
i=1 i=1
where the unions are disjoint. Since (D*, S* 7 ') is a strong deformation retract of
(D* x D" S*~' x DY it follows that H,(f* ) is the direct sum of the groups
H,(D*:S* 'y and the latter of course is equal to G if k = k; and is otherwise the
trivial group. Q.E.D.

“MORSE INEQUALITIES” THEOREM. Let 2 M — R be a Morse function and let
M, = M () denote the total number of critical points of f having index k and
Ry = dim H (M. F) the kth Betti number of M relative to some coefficient field F.
Then

k

k
Z(__ lk mM Z _ l)k‘mRm

and

dim M k

Y= ML) = 3 (= "R, = z(M).

m=0 m=0
COROLLARY. M (f) > R,k =0,1,...,dim M.

Proor. The corollary follows from the theorem by adding two adjacent in-
equalities. To prove the theorem let ¢, ....¢, be the critical values of f and let
g < ¢y <dy <c¢y <...<a, ,; <c <a, Define integer valued functions of
pairs of spaces (X, Y) of the homotopy type of finite C-W complexes by

R(X.Y) = dim H(X, Y),
SUX.Y)= Y (= D" "R (X, Y),

m<k

AX. Y) = Z( "R, (X.Y).
m=0
By the above Corollary to the theorem on passing a nondegenerate critical level
we have R(f“.f“ '}y = m(c,) so that
S f e f ey =Y (= 1 mey).
I<k
dim M

ALy =) (= Dimgey.

=0

hence
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YOSy = Y (= DM,

i=1 1<k
and
r dim M
Yoy =Y (= 1M,
i=1 =0

On the other hand,
S f4) = SUM. &) = Y (= 1Ry,

I<k
dim M

AL S =M D) = Y (= DR,

=0

Thus the theorem will follow once it is shown that S, is “‘subadditive™ and y
“additive™ in the sense that for X 2 Y2 Z

SUX.Z) < SUX.Y) + SuX.Z).  #X.Z) = 7X.Y)+ 7X.2).

Now from the exact homology sequence for the triple (X, Y, Z)

- H (Y. Z) '—"‘» H (X, Z)L’" H, (X, )‘)Q” H,_ (Y,Z)-
we have the three short exact sequences
0—-im(¢,,,) > HY.Z)—- m(,) -0
0 — im(i,) - H,(X.Z) - im(j,) — 0
0 — im(j,) - H,(X,Y)—>im(,) =0
from which follows
R (Y. Z} = dimim((,,, ) + dimim(i,),
R, (X.Z)=dimim(i,) + dim im(,,),
R,(X.Y) = dimim(j,) + dimim(,):
hence
R (X.Z)—- R (X.Y)— R (Y.Z)= — (dimim(C,) + dimim(C,,, ;).

If we multiply by (— 1) ™ (respectively (— 1)") and sum over 0 < m < k (respec-
tively 0 < m < dim M), then we get respectively

SUX.Z) — SUX.Y) = SuY.Z) = (— D" M dimim(¢y) — dim im(¢, . )

(which is negative since dim im(¢,) = 0) and #(X.Z) — (X, Y) — #(Y. Z) = Q.
Q.E.D.
This completes our survey of critical point theory for C* real valued functions
on compact mantfolds. In the remainder of the paper we will be concerned with
generalizing the results obtained above to the case of " functions on infinite-
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dimensional Banach manifolds. The key step is to generalize the technique of
“steepest descent”” which after all gave the deformations that are at the heart of
the proofs of the two basic theorems. the “Deformation Theorem™ and the
“Theorem on passing a nondegenerate critical level.”” For Hilbert manifolds one
can define the gradient vector field of a function (relative to a Riemannian metric)
Just as in finite dimensions. For arbitrary Banach manifolds there is no real
gradient field: however, one can define ““pseudo-gradient™ fields which have all
the essential properties of a gradient field. The real problem in both cases lies in
the fact that since the manifold is no longer compact. the flow generated by a
vector field is no longer a global flow (i.e.. a one parameter group) and it is only
by making certain completencss assumptions on the manifold and a kind of
compactness assumption relative to the function (Condition (C)) that one can
show that flow generated by the pscudo-gradient field really ““descends to the
critical point set™ in a strong enough sense to carry out the proofs of the above
theorems.

Not only do these conditions seem to be met in some important calculus of
variations problems. but indeed they have recently played the role of suggesting
what calculus of variations problems would be interesting to study from a geo-
metrical and topological point of view. The reader can find a discussion of these
applications in the author's Foundations of global nonlinear analysis. Benjamin.
New York. 1968.

2. Finsler manifolds. Let E be a Banach space bundle over a space X and let
| | be a continuous real valued function on E such that the restriction to each
fiber E is an admissible norm. - | . for that fiber. If we trivialize E in a neighbor-
hood of x,. using E as the standard fiber. then for each x near xo. | |, becomes
anormon E_ . If for each such trivialization in an atlas defining the bundle struc-
ture of E and each k > 1 we have (1'h)| < | | . <k |, provided x is
sufficiently near x,. then we sayv that | | is a Finsler structure for the bundle E.
We note that the dual bundle of E has a natural “dual™ Finsler structure, also
denoted by || |, characterized of course by
g

11" = Sup {|le)

eio=1
for le EX

A Finsler manifold is a regular C' Banach manifold M together with a Finsler
structure on T(M). As just remarked T*(M) has a natural Finsler structure. so
thatif /1M — Risa C' real valued function then [df |, x = [df.|. is a well-defined
nonnegative continuous real-valued function on M.

If M is a regular C* Hilbert manifold and ¢ . > is a C° Riemannian structure
for M (i.e.. for T(M)) then [¢| = (e.e)' ? defines a Finsler structure for M. and
of course the natural C° isomorphism of T(M) with T*(M). given by the Rie-
mannian structure, is isometric from this Finsler structure to the dual Finsler
structure. In particular if /'is a ' real valued function on M and we define a C°
vector field Vfon M by the condition that it be duel to df (i.e., dfde) = (e, V>,
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for ee T(M),) then Idf| = |Vf|. As usual V/ is called the gradient of { and
satisfies V/(f) = df(Vf) = |Vf] % so thatif o: |a.b] — is a C' path which is an
integral curve of — Vf (ie. o'(t) = Vi for all rela b]) then df(a(1)di
= - vaam‘u

Let M be a Finsler manifold and o:{a,h] - M a C! path in M. We define the
length of o to be the nonnegative real number fola')lidi. For a C' path :(a, b)
— M defined on an open interval we define the length of ¢ to be

lim  f2a'(0)]|dt
x=a:ff—=h

which of course may be infinite. If p and ¢ are points in the same component of
M. then we define the distance p(p, ¢) from p to ¢ to be the infimum of the lengths of
all C* paths from p to ¢. It is a triviality that p is symmetric and that p satisfies the
triangle inequality. It is often also incorrectly asserted to be a triviality that
pIp.q) > Ofor p = ¢ (so p is a metric) and that the topology induced by p coincides
with the manifold topology. Since I have been guilty of glossing over the difficulty
myself* and indeed since there seems to be no published complete proof I shall
give one here.

THEOREM. Let M be a regular Banach manifold and ¢:¢ — V a chart for M.
Let (||| be a norm for Vand given x, € and a positive real number r define:

B(xg.r) = (xe(|p(x) — ¢ix,)| < rl.
B(xo.r) = {xel|lp(x) — Pix,)]| < rl,
S(xg. 1) = {xel] [p(x) — Pl = rl.

Then if r is sufficiently small B(x,.r) is a closed neighborhood of x, in M. B(x, 1)
is its interior relative to M and S(x,.r) is its frontier relative 1o M. For such r
S(xg. r) separates B(x,, 1) from M — B(x . r) and in particular if o [a. bl > Misua
continuous path in M with ola) = x, and im(a) & B(x,. r) then there is a ¢ € [a.b]
such that a(c) € S(xy, r) and o([a. ) = B(x. ).

PROOF. Since M is regular we can choose a closed neighborhood G of Xo In M
with G < (. Since ¢ maps ¢ homeomorphically onto an open set ¢(¢) of V. if r
is sufficiently small then F = {re VI e — ¢(x,) < rlis a closed neighborhood
of ¢(x,) in ¥V which is included in P(G). Then B(x,.r) = ¢~ (F)is a closed neigh-
borhood of x; in ¢ and since ¢~ '(F) < G and G is closed in M. B(xq.r)1s a closed
neighborhood of x;, in M. Since ¢ is a homeomorphism it is clear that Blx, 1) is
the interior of B(x,.r) relative to ¢ : hence relative to M since ¢ is open in M.
The frontier of a closed set is its frontier relative to any open set which includes it.
so the frontier of B(x,.r) relative to M is its frontier relative to ¢ which, again
since ¢ is a homeomorphism, is clearly S(x,.r). Since B(xg,r) and M — B(x,.r)
are disjoint open sets whose complement is S(x,. r), they are separated by S(xg.r)
(L.e.. any connected subset of M — S(x4,r) is included in either B(x,, r) or

? Melvyn Huff pointed out to me that my proof of the above facts in [8] used without proof a non-
obvious fuct, namely the conclusions of the theorem proved below.
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M — Bl(x,. r)). Finally given ¢ as in the statement of the theorem ¢~ UM — S(x.1)
is an open subset of [«. b] which is therefore the disjoint union of open intervals,
whose frontier points are contained in the complementary subset of [a. b] namely
7~ 1(S(xo. 7). In particular if [a.¢] is the interval which contains «. then in par-
ticular a(c) € S(x,.7) and ([ a. ¢)). being a connected subset of M — S(x. ) which
contains a{a) = x, € B(xg. r). is catirely included in B(x, r). Q.E.D.

It is now relatively easy to complete the proof that p is a metric for M whose
topology is consistent with the manifold topology. Given x,€ M choose a chart
¢:( > T(M),, at x, and r > 0 satisfying the above theorem. We can assume that
M) = re TIM), ||| < 2r} and also (by definition of a Finsler structure) that
using the identification of T(M), with T(M), given by d¢,. for some k > 1 we
have for all x e

X0

mf =0 =kl e

Ifo:[a,b] — ¢ is C' then we have length of ¢

= 0]t = (R0

oAt = (URIfhe(ndt ., = (1/k)|6(h) — d(a)]

where 6 = ¢ 0. If 6:[a,h] = M is C' with a(a) = x, and im(c) £ (. then
choosing ¢ € [a, h] as in the above theorem the above inequality gives length of
o = length of a|[a.c¢] = (1/k)[6(¢c)| = r’k. In particular if ¢ is in the same
component of M as x, then p(x,. ¢) = r k. If g€ ¢ then the length of any path ¢
from x, to ¢ is = r'k if im(o) & ¢ and is > (1/’1\')H</)(q)i,\.“ if im(g) < (. hence
p(Xo. ¢) = (1K) min(r. |pl(g)|) which is positive if ¢ # x,. Finally we prove that
the topology induced by p coincides with the manifold topology of M. First if
plg,. xo) — 0 then eventually plg,. xo) < r/k so ¢,e(. Moreover we then have
[ptgn| «, < kplg,. xo) so ¢lg,) — 0 in T(M), : hence ¢, — x, in (. hence in M.
Conversely if ¢, — x, in M then cventually ¢, € ¢. Define ¢,:[0, 1] — (. a C' path
joining x, to ¢, by &,0) = Plo,1) = tdlg,). Then p(x,. q,) < length of o,
= JLlaunlde = S g pmdt < KI5 Gla) ]« dt = k[ ¢(g,)]. But ¢g,) — O (since
g, — xo) and hence p(x,. ¢,) = 0 and we are done.

Doubtless some readers will feel that I have put too much stress on what are
mere details. Unfortunately much of the foundational literature of infinite-
dimensional manifolds has minor but disconcerting errors caused by ignoring
precisely these and related details. In order to put the reader on guard against
some of the subtle traps that lic in wait for the unwary I have added an appendix
to this section with a couple of amusing counterexamples.

Appendix *032. There are two well-known “facts™ concerning infinite-dimen-
sional manifolds that have frequently been used without proof and often without
even explicit mention.

“FacT" 1. A second countable, Hausdorfl. Banach manifold is paracompact.

“FAcT™ 2. Let M be a paracompact Banach manifold and ¢ a chart for M
mapping an open set ¢ of M homeomorphically onto a Banach space V. If B is
a closed ball in V then ¢~ '(B) is closed in M.
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Sad to say both of these ““facts™ are false. It is casy to give a counterexample to
“Fact™ 2. By a well-known theorem of Bessaga [1] if H denotes a scparable
Hilbert space there is a € diffeomorphism ¢ of H — {0} onto H such that
¢(x) = xif [x} > 1. Taking M = Hand ¢ = H — {0! gives our counterexample.
Indeed. using the notation of the theorem of §2 (i.e., B(0.r) = v e H| |po)] < r|
ete) it is clear that letting r > 1, B(0.r) = {re H|0 < [¢|| < r! which is not
closed in M. To see some interesting pathology that this gives rise to. let {x,! be a
sequence 1n B(0. r) which converges to 0¢ (. Since ¢ is the identity on S(0, r) we
can assume x, € B(0,r). Let o,:[1 — 12", 1 — 1 2*" '] > B(0.r) be a continuous
path from x, 1o x, . and define 6:[0.1] > M by o|[1 — 12,1 — 12" '] = ¢4,
and ¢(1) = 0. Then o is a continuous path in M starting in B(0, r) and ending up
outside the domain ¢ of the chart ¢ but never intersecting S(0.r)! Most people
are willing to bet this cannot happen, and 1 belicve it justifics the care taken in
stating and proving the theorem of §2.

“Fact™ | was first pointed out to me by Douady. After thinking about it I pub-
lished a “*proof ™ of a more general incorrect result (Theorem 2 of Homotopy theory
of infinite-dimensional manifolds, Topology. 5 (1966). 1-16) and restated Fact 1 as a
corollary. I am indebted to E. Michael for pointing out both that it is incorrect
and also that, using a joint result of his with H. H. Corson, it becomes correct if
we replace “Hausdorfl™ by “regular™ in its statement. We now construct a
second countable C* Hilbert manifold M which is Hausdorff but not regular.
The construction is based on the same result of Bessaga used above, however in
a slightly different equivalent form. Namely if ¥ denotes the unit sphere m a
Hilbert space H. X = {re H| |¢| = 1}, then there is a diffecomorphism of T onto
H. Let ¢, denote a unit vector of H (the “north pole™ of X), H' the closed half
space {re€ H|[{v,eq> > 0!, H" its interior v e H|{r e > 0}, and CH its boun-
dary {re H|[(t.eq) = 0). Asa set we put M = H " U S where S is some countable
dense subset of ¢H "

LemMa. There is a homeomorphism h of H O [0} onto H which restricts to a
C7 diffeomorphism of H* onto H — 0.

PROOF. Since ¢H " is linearly isomorphic to H there is by Bessaga a C* diffeo-
morphism of X with CcH". Now ¢H " is diffeomorphic to D = {recH | ¢ < 1]
(say by r = A1 + [¢]|*)e where /:[1,2] - [1. ¥ ] is a diffeomorphism which is
the identity near 1) and stereographic projection from — ¢, maps D diffeomorphic-
ally onto ¥~ H". Hence there is a diffeomorphism ¢:Z ~ £~ H*. Define
h:H ~ H™ v 0] by h(x) = |x[g(x.x|) for x = 0 and h(0) = 0. Then h (v
= | xlig " Hx/|[x]) for x # O and h™(0) = 0. Clearly h and h~ ' are continuous and
since x = ||x| is a C* map of H — {0} onto R it follows that h maps H — !0
diffeomorphically onto H ™. Q.E.D.

THEOREM. M admits the structure of a connected, second countable, C* Hilbert
manifold which is Hausdorff but not reqular. H* is a dense open submanifold of M
having its usual C* structure (i.e., as an open submanifold of H) and for each s € S.
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H ™ U s} with its usual topology (i.e. as a subspace of H) is an open submanifold of
M diffeomorphic to H.

Proor. For cach se S we define a chart ¢,:H™ U s} x H by ¢ (x) = hix — s),
where i: H* w {0} =~ H is the homeomorphism of the lemma. Given s, and s,
in S the intersection of the domains of ¢, and ¢, is H* and the map ¢, ¢’
of H -0} =¢, (H") onto H — {0} = (/)“(H is given by h T h™' where
T-H™ — H  is the ¢’ diffeomorphism x = x + s, — s,. It follows from the
lemma that ¢, ¢, ' is C’. ic that ¢ and ¢,, are C” related charts for M.
Hence (¢}, sisa C’ atlas for M and dehncs M asa C* Hilbert manifold. which
is second countable since S is countable. That each H™ U {s} is an open sub-
manifold of M diffeomorphic to H follows from the fact that each ¢, is a chart.
Moreover by the lemma ¢, maps H o {s} with its usual topology homeomorphic-
ally onto H. so its usual topology agrees with the topology induced by the manifold
topology of M. It follows that cach point of S is adherent to H™ in the topology
of M. ie. that H' is a dense open submanifold of M (that H " has its usual C”*
structure as imbedded in M follows from the fact that h maps H ™ diffeomorphically
onto H — {0] hence so do the charts ¢,). Since H" is connected it follows that M
is connected. The sets S, H ™ v s}, H  are open Hausdorff subspaces of M (S is
even discrete) and any pair of points of M is contained in one of them, so M is
Hausdorfl. To see that M is not regular we shall show that points of S do not have
arbitrarily small closed ncighborhoods. and in fact that if se S and Vis any M
neighborhood of s in H~ u |5} then we can find 5€ S, distinct from s, (hence not
in 1) in the M-closure of V. Indeed since the open set H' U !s! has its usual
topology there is a & > 0 such that V= {xe H+| |x —s| < &} = V. while since
S is densc in ¢H " there exist §€ S such that 0 < \s — s/l < 0. Now similarly any
M-neighborhood of s includes a set of the form {xe H | H\ — 5|, < ¢} for some
¢ > 0. which meets ' (and in fact meets 1), proving that 3 is in the M-closure of
V. This completes the proof of the Theorem. Q.E.D.

We note that unlike points of S. points of H™ do have arbitrarily small M-
neighborhoods which are closed in M. for if ¢ € H " has distance o from ¢H *. then
the closed balls of radius « < o about ¢ are neighborhoods of ¢ which are closed
bothin H* and in each H™ U {s]. hence in M. It follows that no homeomorphism
of M can map a point of S onto a point of H ™. Thus M is an example of a connected
Hausdorff Hilbert manifold which is not topologically homogeneous (it 1s easy to
see that connected. regular Hilbert manifold must be topologically homogeneous).

3. Pseudogradient vector fields. Let M be a "' Finsler manifold » > | and let
/"M — R be a C' function on M. By definition of I|df,|. the Sup of Xf = df(X)
as X ranges over the sphere of radius [[df,| in T(M), is |df, * In case M is Rie-
mannian this Sup is attained at a unique point, namely V/ & by the Schwartz
inequality. If the model Banach space for M is reflexive the Sup will be attained
(by the weak compactness of closed balls) although not generally at a unique point
unless ||, is uniformly convex. Finally if the model space is not reflexive then
in general the Sup will not be attained at all. If one examines the deformations
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provided by gradient flows one sees that to carry out the proofs of critical point
theory it is fortunately not really essential that the flow curves be paths of steepest
descent as long as they are paths of “steep enough™ descent. If one looks at this
in enough detail one sees that it is possible to get along with flows defined by
“pseudogradient” vector fields for f.

3.1 DEFINITION. A vector X € T(M), 1s called a pscudogradient vector for f at
pif [X' < 2ldf,| and df(X) > |df,|I*. A vector field is called a pseudogradient
vector field for f'if at each point of its domain it is a pscudogradient vector for f.

Let K = [peM|df, = 0] denote the closed sct of critical points of fand let
M* = M — K denote the set of regular points of f. Given pe M* we can find
Ye T(M), with | Y =1 such that df,(Y) is as close as we wish to [df [\ say
df(Y) > %\dfpf} Let X = ;\‘zllp]‘Y so that |[X = 13‘13(1./},\; < 2|ldf,| and df(X)
> df, ‘. Extend X to a (" vector field in a neighborhood of p (say by making it
“eonstant™ with respect to a chart at p). The set of points x where [ X | < 2/|df.|
and where df (X ) > df | is clearly open. This proves

3.2, LemMa. For each pe M* there is a CT pseudogradient vector field for f defined
in some open neighborhood of p.

It is immediate from the definition that the set of pseudogradient vectors for
Jatany point p is a convex subset of T(M),. It follows that if M* admits " parti-
tions of unity then we can get a " pseudogradient vector field for f in M* by
patching together the local €7 vector fields of the above lemma. Since we are
looking for greatest generality, and in particular since we would like our theorems
to be applicable to calculus of variations problems, for which the model space is
often L'(R") where even C' partitions of unity do not exist. we shall not make this
assumption. The only smoothness we really need in a pseudogradient vector field
is enough to insure that it generates a flow. and it is well known that essentially
the minimal hypothesis for this is that it be locally Lipschitz. Fortunately all
paracompact C' Banach manifolds admit locally Lipschitz partitions of unity. To
see this we first note that if ¢ is an open set in a Banach space V then there is a
locally Lipschitz nonnegative real valued function g on V which is positive pre-
cisely on ( : for example g(r) = distance of r from the complement of ¢
Infl| v — wil|we(]. To see that ¢ is in fact globally Lipschitz, given v,. v, €
and & > 0 choose we ¢ so that | v, —w! < ¢(r,) + & Then g(r)) < v, — wi

A < I

Joy = oy + vy = wllh < Jvy — 0, 4 glry) + ¢ and hence since ¢ is arbitrary we
have g(r)) — ¢g(r,) < |jr; — r,l. Interchanging the roles of v, and r, gives
lg(ry) = glry)] < v, ~ v,]. Since €' coordinate changes preserve the property of
being locally Lipschitz it now follows that any sufficiently small open set in a
regular C' Banach manifold M is the set of points where a nonnegative locally
Lipschitz real valued function is positive. Here “sufficiently small™ means that the
closure is inside the domain of a chart.

Now given an open cover {U_} of a paracompact C' Banach manifold M choose
a locally finite open refinement ¢} such that (= {xeMlgyx) > 0} where
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gy:M — R” islocally Lipschitz. Putting g = Z,,gﬂ and hy = g,/g. 1g,) is a locally
finite. locally Lipschitz partition of unity subordinate to {U,;. We now have the
following result:

3.3. There exists a locally Lipschitz pseudogradient vector field for fin M*.

In what follows X will denote a fixed locally Lipschitz pseudogradient vector
field for f'in M* and ¢, will denote the maximal flow in M* generated by — X. For
each pe M* the map t = ¢,(p) 1s a C! map of an open interval (x(p), m(p)) con-
taining zero into M* such that ¢,(p) = p and whose tangent vector at any t € (x(p),
o(p) is — X, The maximality of ¢, is equivalent to the property that for each
pe M* either 2(p) = — » or else ¢(p) has no limit point in M* as t — x(p) and
similarly either «(p) = = or else ¢,(p) has no limit point in M* as t — w(p). The
set Dy = {(p.1)e R x M*|x(p) < t < w(p)} is open in R x M* and ¢ is a locally
Lipschitz map of D, into M* such that ¢(¢(p)) = ¢, (p) whenever the left side
is defined. In particular if we put D} = {pe M*|(t, p)e D}, then Dj is open in
M*_ ¢, is a locally Lipschitz homeomorphism of D} onto D, “and ¢ _, is its inverse.

Given pe M* and x(p) < 1, <!, < o(p) let [ (t,,t,) denote the length of the
C' curve t +> ¢,(p) between 1, and t,. Since the tangent vector to ( = ¢,(p) at 1 is
— X,,» We have by definition of length and distance in a Finsler manifold that

Pld, (P (ph) < (1. 15) = ‘ﬂ;Han(p)Hd[ = 2J‘:TH£U¢,(,),‘\(1T.

the latter inequality following from Definition 3.1. If g is any C' function on M*
then by definition of the tangent vector to a C' curve it follows that

d

d;y(d»(p)) = = Xyml9) = dg(— X )

and in particular by Definition 3.1 again
I, i :
- ;]*I,f(ﬁbr(l’)) = d.f()‘wdm) = Hdﬁp,'mé‘z

so that
Cldfy, g 2dt < f(d(p) = [, (p)).
Now by Schwartz’s inequality
52 d gyt < (0 = 1) 20 d g 2dD)" 2.
We have proved

3.4. THEOREM. Let pe M* and x(p) < t, < t, < wl(p). Then
(1) §d fy i 2dt < f(hy,(p) = [, (p)).
(2) pl (P (p) < Tfty 1) < 201, — t A (D)) — fl(p)' 2

The above two inequalities are as we shall see basic estimates for dealing with
pseudogradient vector fields. Note in particular the interpretation of the second
incquality: if in moving along an integral curve during a time interval of length
T we go a length or distance D. f must decrease by at least D*/4T.
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3.5. COROLLARY. If wip) < = and S@dp)) is bounded below then ¢ (p)! is
Cauchy as t - o(p).

PROOF. If B = Inff(¢,(p) and we put C = 2(f(p) — B)' % then inequality (2)
of Theorem 3.4 gives p(¢p, (p). ¢,(p) < Clty — 1,]"? from which the corollary
follows. Q.ED.

We will be interested in asymptotic properties of ¢ (p) as { — (p). The follow-
ing is our first result in this direction.

3.6. THEOREM. Let g € M and suppose that for cach sufficiently small & > 0 there
is - positive ¢ such that [df.|| > & if 6 < plq.x) < 20. Then for pe M* ecither
m, ., @dp) = g (in which case g is an isolated critical point of [) or else ¢,(p)
does not have 4 as a limit point as t — o(p).

Suppose ¢ is a limit point of ¢,(p) as t — w(p). Since f(¢,(p)) is monotone
nonincreasing it follows that lim,_ ., f($4p) = f(g) and in particular f(¢,(p)) is
bounded below.

Cast 1. w(p) < «. In this case by Corollary 3.5 ¢,(p) is Cauchy as 1 — o(p) so
lim,_,,,#(p) = ¢. Since in this case the maximality of ¢, precludes even a limit
point of ¢(p) in M* as ¢ - w(p) we have ye M — M* = K and the assumption
of the theorem clearly implies no other critical points of f are near .

CASE 2. m(p) = ». Let 1, » % with ¢, (p) = ¢g. For small 6 > 0 it will suffice
to show p(g. ¢,(p)) < 20 for all large ¢ (and we can suppose plg. ¢, (p)) < 9). If not
there is a sequence s, - » so that p(q. ¢, (P) = 20 and passing to subsequences
We can suppose 1, < s, <t,, . We shall derive a contradiction by showing that
Hb(p) = [, . (p) = e/2 for all n. which implies that S (p)— — =,
contrary to what we observed above. Recalling from (1) of Theorem 3.4 that

F @) = G () = [ dfy

it will suffice to find 1, <, < f5, < 1, so that [/ |df . plI7 = 3€0. By continuity
of p(g. ¢(p)) as a function of ¢ there is a largest ¢ in the interval [1,.5,] with
Mg, dAp)) < oz we call it v,. Then there is a smallest 7 in the interval [\, 5,] such
that plg. ¢(p) = 20: we call it f§, and note that p(e, (p), ¢g,(p)) = 0. Then
30 < 3P, (D) ¢y (p) < A8 | X, ) de < [ ldf, ., ldt. On the other hand for
tev,. f,] we have d < plq. ¢,(p)) < 26 so that df .| = ¢ and hence 1o <
e L lidt o llde < §%df, | 2de as was 1o be shown. It remains to show that in

Case 2, g must be a critical point of f. If not. that is if g€ M*, then

d)x(q) = (f)s(limtﬁ x (/)l(p)) = limrﬂ z (b\((/)t(p)) = lirn(H ¥ ¢s+r(p) = t]
for all s which implies — X, = 0, and since [df,? < df,(X,) it follows that df, =0,
SO ¢ 1s a critical point of f. Q.E.D.

3.7. COROLLARY. If'q is a limit point of ¢,(p) as t — aip), then q is a critical point

of f.
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Proor. If q¢ K then df, =0 so [df,| > ¢ >0 and for ¢ sufficiently small
|df > eif p(g, x) < 0. Q.E.D.

4. Condition (C) and its Consequences. We will maintain the standing assump-
tions and notations of the preceding section and in addition we make the following
three assumptions.

AsSUMPTION 1. f is bounded below. and we put B = Inf { f(x)[xe M.

AssUMPTION 2. For each ce R/ =/ '(— =.c]) is complete in the Finsler
metric for M.

AssuMPTION 3. f'satisfies Condition (C). 1.e.. given a sequence {p,} in M such that
f(p,) is bounded and such that ldf, | — 0. a subsequence of {p,} converges
(automatically. by the continuity of df|. to a critical point of f).

4.1. THEOREM. Giren pe M* [($p)) converges monotonically to a limit « > B
ast = o(p). If okp) < = then ¢ (p) converges to an element of K, while if (ip) = =
then ¢ (p) has at least one limit point g as t — >. Any such ¢ belongs to K, and if 4
is an isolated point of K. then in fact ¢pp) = q as t = > . In particular a is abvays a
critical level of . As t = ap) either {{p,(p) diverges monotonically to ~ or else it
converges monotonically to a finite limit b, In the latter case if ap) > — » then
),p) converges to a point of K, as t — a(p) while if 2(p) = — = then ¢,(p) has at
least one limit point § ust —» — £ any such qe Ky, and ¢(p) - qast - — = if g
is an isolated point of K. In particular b is a critical value of .

ProOOF. That f{¢,(p)) is monotonically decreasing we have already secen. and
since it i bounded below by B it converges to a finite limit ¢« > B as t — «(p) and
a finite limit h or + x as t — x(p). In particular ¢,(p) is in the complete set [©
(¢ =f(p)yfor0 <t < mp)and (if b = «) in the complete set /7 for x(p) < 1 < 0.
If m(p) < » then it is immediate from Corollary 3.5 that ¢,(p) > ¢ as t — w(p)
and of course f(¢g) = lim,.,,, f{¢(p)) = a.so by Corollary 3.7. g€ K. If cx(p) = =
then in (1) of Theorem 3.5 take 1, = 0 and we get for any r, > 0 that

§5bd g 2dt < f(p) = (¢, (p) < f(p) — B

and letting 1, — % gives 4 df, 7 < % from which it follows that [df, |
cannot be bounded away from zero for 0 <t < ». By Condition (C) ¢,(p) has a
critical point as a limit point as t — » and in fact by Corollary 3.7 each limit
point ¢ of ¢(p) as t — x is a critical point of f and. since f(¢) = lim,_, f($,(p)
= ua, g€ K, If ¢ is an isolated critical point of f we can choose ¢ > 0 so small that
J1s bounded and has no other critical points in the closed ball of radius 20 about
g. If S = {xe M|o < p(x.q) < 20}, then it follows from Condition (C) that for
some ¢ > 0. df,. > ¢ forall xe S and by Theorem 3.6 we have ¢ = lim,. , ¢,(p).
The arguments for t — «(p) are cssentially identical. Q.E.D.

4.2, THEOREM. Let g be a locally Lipschitz real valued function on M with
0 < g < 1 and suppose g vanishes for all x with f(x) larger than some ¢ and also
in a neighborhood of K. Define a locally Lipschitz vector field Yon M by Y, =0

Jor xe K and Y, = — g(x)X for x e M* Then the maximal flow 1, general?d hy
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Yis a one parameter group of locally Lipschitz homeomorphisms of M, i.e. for each
pe M.y p)isdefined for — x <t < %,

Proor. We will show that ,(p) is defined for 0 < r < = the proof for — » <1
< 0 being similar. If Y, = 0 then of course i(p) = p for all te R.1[ Y, = 0 then
since Yis proportional to X with proportionality factor between zero and one it
follows that there is @ monotone map 2:[0, @(p)) = [0, w(p)] such that A1) <t
and ,(p) = ¢, ,(p). If @p) < x then ¥ (p) could not have a limit point in M as
= O(p), 1.e.. ¢ p) could not have a limit point in M as t — lim, ., /(t) < w(p).
But this contradicts Theorem 4.1 so that m(p) = ~. Q.E.D.

There is an interesting elementary consequence of Condition (C) which we
shall need.

4.3. THEOREM. [|K is proper. That is. given — = <a <b < %, K f "[a.b])
is compact. In particular for each ce R, K. = K ~f (¢} is compact.

ProOF. Since “df | is identically zero on K it follows from Condition (C) that
any sequence {p,} in K nf " "([a. b]) has a convergent subsequence. Q.E.D.

REMARK. It is worth mentioning that if fitself is proper (in particular if M is
compact), then Condition (C) is automatically satisfied relative to any Finsler
structure for M and. given Assumption 1, so is Assumption 2. But note that if f
is proper then M is locally compact hence finitc dimensional, while Condition
(C) holds in many interesting infinite-dimensional cases.

4.4, COROLLARY. The set f(K) of critical values of fis closed and hence the set
of regular values of f is open.

4.5. COROLLARY. [f U is any neighborhood of K, in M there is a & > 0 such
that {xe M|p(x. K,) < 20} < U. If ¢ is an isolated critical value of f. then we can
assume that for all sufficiently small positive & and for all x with & < p(x. K) < 20
df] > e

we have

PrOOF. The first remark is trivial from the compactness of K, from which it also
follows that if 2 > 0 then we will have | f(x) — ('} < /4 for p(x, K,) < 20 provided
o is small enough. If ¢ 1s a regular value or an 1solated critical value of fand we
choose 7 > 0 so that there are no other critical values of fin [¢ — 4. ¢ + 2], then
there are no critical points of f in the closed set /' [¢ — 4, ¢ + 2]) n {x e M|
p(x.K.) > 9] and hence by Condition (C) we must have |[df,| > ¢ > 0 in this
set and a fortiori in {x e M|o < p(x. K,) < 26]. Q.E.D.

We now come to our main result, an analogue of the Deformation Theorem
of §1. The assumption that ¢ is an isolated critical value of f'is not really necessary.
it merely simplifies the proof (rather drastically). The proof in the general case
can be found in [8]. The argument given there is a modification of a proof given
by J. T. Schwartz [ 11] that works in the Riemannian case.

4.6. DEFORMATION THEOREM. Let ¢ be a regular value of f or an isolated critical
value of {11 U is any neighborhood of K, in M there is a one parameter group ,

B

of Lipschitz homeomorphisms of M and an & > O such that y (f*7" = U)yc [0
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Proor. Using Corollary 4.5 choose d > 0 so that p(x, K,) < 20 = xe U. and
then choose ¢ > 0 so that

(a) ¢ is the only critical value of fin (¢ — 3e. ¢ + 3¢).

(b) HX,,H > (8e)' 1 if 0 < p(x. K,) < 20.

(c) ¢ < £3%
Using a locally Lipschitz partition of unity we can construct a locally Lipschitz
real valued function gy on M with 0 < g < | such that g(x) = 0 if p(x, K,) < 10
or if [f(x) — ¢| = 2¢ and g(x) = 1 if |f(x) — ¢/ < ¢ and p(x,K) > o. Let y, be
the one parameter group of locally Lipschitz homeomorphisms generated by
— gX = Y (Theorem 4.2). We note that if it should happen that 6 < p(y(p). K,)
and | f((p)) — o] <efor0 <1 <t, theny, (p) = ¢, (p).

Given pef“™" — U we must show that y,(p)ef“ " Suppose on the contrary
that f(y,(p)) > ¢ — ¢ so that, since f(y,(p)) is monotone nonincreasing,
[, (p) ~ ¢l <eand f(p) — fly(p) <2cfor0<t < 1.

CASE 1. p(y(p). K) > 0.0 <t < 1.

Then as remarked above ¢,(p) = y(p). 0 <t < 1. Moreover by (c) "\me
> (8)' 2 for 0 < ¢ < I and hence /,(0. 1) > (8¢)"* so by (2) of Theorem 3.4 (8:)" *
< 2(f(p) — flw,(p})"? and squaring both sides gives a contradiction. namely
Jp) = [ y(p) = 2e.

CAaSE 2. p(,(p). K,) < 0 for some 1 [0. 1].

Let 1, be the first such t. Then w (p) = ¢,(p). 0 <t < t,. Moreover p(p. K,) > 20
(because p ¢ U) and since p(p. K,) < 0. p(p. ¢, (p)) = 0 and using (2) of Theorem
3.4 once more o < 2 to(f(po) — flw, (p))'?. Squaring both sides and remember-
ing t, < 1 gives f(p) — [ (p)) = 167 and since §52 > ¢ we have the same con-

tradiction. Q.ED.

4.7. THEOREM (MINIMAX PRINCIPLE). Let . # be an ambient isotopy invariant
Jamily of subsets of M and assume fis bounded above on at least one F e .#. Then
Minimax ( f, . #) is a critical value of f.

PrROOF. The assumption that Minimax (f, #) is a regular value of f leads to a
contradiction exactly as in §1.

4.8. COROLLARY. f assumes its minimum on M and on each component M, of M.
If fis bounded above it assumes its maximum on M.

PrOOF. Take .7 to be respectively the families | {p}|pe M}, {{p}|pe My} and | M.
4.9. CoROLLARY. Giren an integer k with | < k < cat (M) define
¢ = Inf {ce R{3A < < with cat(4: M) > k| = Inf {c e R|cat (<. M) > k.

Then either ¢, = « or else ¢ is a critical value of f. Moreover if ¢ = ¢,., = ¢+,
= ... =¢,., < %, then either ¢ is an isolated critical value of f. in which case
has at least k critical points on the level ¢, or else for any ¢ > 0, f has an infinite
number of critical points p satisfying | f(p) — c| < .
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PROOF. As in the finite-dimensional case.

REMARK. As remarked preceding the proof of the Deformation Theorem
(Theorem 4.6) the assumption that ¢ is an isolated critical value of fin that theorem
can be dispensed with. Using this it follows that if ¢ = ¢,, | = ¢,., = ... = ¢, 44

% then in fact K, always contains at least k points. In fact with a little more care
something stronger can be shown, namely that cat (K., M) > k. This implies, for
example. that if M is connected dim K, > k — | (where dim means covering
dimension) so that. in this case, when k > 2. K_ is always infinite. For details we
refer to [8].

4.10. COROLLARY. If ¢, < o the f has at least k critical points in {7 for any
e > 0.

Note that we cannot immediately deduce that f has at least cat(M) critical
points because of the possibility that ¢, = x for some k < cat (M). However,
suppose [ had only finitely many critical points. Then for some ¢ € R all critical
values of fwould be less than ¢. In this case it is easy to see that M can be deformed
into ¢ so that if k < cat (M), then cat (f/“, M) > k and ¢, < c.

ProOOF. Let g be a locally Lipschitz function with 0 < ¢ < 1 and ¢g(x) = 1 for
fix)=cand g(x) =0forx < ¢ ., where ¢ — ¢ 1s greater than all critical values
of f. If ¥, 1s the maximal flow generdted by — gX then ¢,(p) is defined for all r > 0.
Moreover for each pe M f(i)(p)) is eventually less than ¢ (because ¢,(p) has a
limit point in K < /™) and the first , say Z(p), where ¥, (p) € f is easily seen to be
continuous. Then 5, dcﬁned by h(p) = ¥, ,{p) defines a deformation of M into
I

Thus cither all ¢, for k < cat(M) in which case Corollary 4.10 implies
J has at least cat (M) Cl‘ltl(,al points, or else f has infinitely many critical points.
In any case we have

4.11. THEOREM. fhas at least cat (M) critical points altogether.
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