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1. Intreduction. Let (7 be a Lie group and 3/ a ditferentiable (i.e. ") mani-
fold. An action of G on I ix a homomorphism ¢ : g — ¢, of ¢ into the group of
diffeomorphizms (i.c. non-singular, differentiable homeomorphisms) of 3/ with
itself such that the map ®: (g, 2) — ¢,() of G X M into I is continuous (it then
follows from a theorem of Bociiver & Moxtaoyery [1] that @ is automatically
differentiable). A triple ((7, M, ¢) of such objects as those above we shall call
a differentinble G-transformation group. If O Is an open submanifold of 3 in-
variant under each ¢, then ¢ — ¢, 0 15 an action of ¢ on O and we will denote
by (G, O, ¢) the corresponding differentiable G-transformation group. If (G, M/, ¢)
and (G, V., ¢) arc two differentiable G-transformation groups then an imbedding
of (G, M, ¢)in (G, N, ¢) is an imbedding f of M into N such that f o, = ¢,o f
forall g ¢ (7.

A particular class of differentiable G-transformation groups consists of the
finite dimensional orthogonal representations of G, i.e. triples (G, 3, ¢) where
V" is a finite dimensional real Hilbert space and each ¢, is an orthogonal trans-
formation of 1". We shall prove the following theorem, and in fact something
slightly more general.

Theorem. A differcntiable G-transformation group (G, M, ¢) can be imbedded
n a finite dimensional orthogonal representation of G provided G and M are com-
pact.

*After this work was completed, the author was informed of a more general theorem of
G. D. Mosrow, in which differentiability and compactness of A/ are not assumed. While
Mosrtow's theorem is deeper and more difficult to prove, the simplicity gained by assuming
differentiability scems to justify the publication of this paper. (Added in proof: Mostow's
paper, which appeared under the title “Equivariant imbeddings in IEuclidean space” in the
May, 1957 issue of the Annals of Mathematics, contains a special proof for the differentiable
case which, though very different from ours, is quite short.)
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In [2], page 215, E. Carrax has proved this for the case that A7 is a compact,
irreducible, symmetric Riemannian manifold and & acts transitively and isomet-
rically on M.

2. The fundamental imbedding theorem. Let 3! be a Riemannian manifold,
M, the tangent space to M at p e 3, and T (M) = \U,.xr M, the tangent bundle
of M with its usual manifold structure. Let D be the set of v € T'(3/) such that
if v & M, then the geodesic starting from p 'n the direction v can be extended
to have length !lr|| and let exp (¢) be the point on this geodesic cutting off a
length [|v!/]. Then, as is well known, D is an open submanifold of 7'(M) con-
taining the zero vector field and exp is a differentiable map of D into M. If ¢
is an isometry of M then clearly ¢g(D) = D and, for each v e D, g(expv) = exp 5g(v),
where g denotes the differential of g.

Let = be a submanifold of 3/, =, the tangent space to T at p ¢ &, and 37 the
orthogonal complement of X, in 3/, . Then N(Z) = U..: =t , the normal bundle
of =, is a submanifold of 7'(}) of the same dimension as M. If p ¢ £ and 0, is the
zero vector at p then the restriction of exp to N(Z) M D is easily seen to have
a non-zero differential at 0, , and so by the implicit function theorem exp maps
a neighborhood of 0, in N(¥) diffeomorphically into . If X is compact even
more is true, well known, and rather easily demonstrated, namely Lemma 1
below.

Definition. If Z is a submanifold of the Riemannian manifold A then we let
NE, 0 = ve N o] < e
and
S(Z,0 = {pe M :plp, ) < ¢
where p is the Riemannian metric function.

Lemma 1. 1If T is a compact submanifold of the Riemannian manifold M then
for some € = 0 exp maps N(Z. €) diffeomorphically onto S(Z, €).

Now let G be a compact Lie group and let ¢ be an action of G on M such that
each ¢, is an isometry of 3. Let = be an orbit of 3/ under G, i.e. = is of the form
G(p) = {e,(p) :g € G} for some p e M. Then, as is well known, T is a compact
differentiable manifold, and in fact if G, = {g e G 1 o,(p) = p} is the isotropy
group at p then ¢@, — ¢,(p) is a differentiable imbedding of G/G, into M and
onto =. The mapping ¢ — (8¢,), is an orthogonal representation of G, in MM, .
Clearly T, is an invariant subspace of A/, under this representation, hence so
also 1s 37, .

Definition. We denote by (72" the representation of (, in =% defined by
U0 = dg,(v).

We now come to the fundamental imbedding theorem.
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Theorem 1. Let M and N be Riemannian manifolds, G a compact group, and
let o and  be actions of G on M and N respectively such that each o, and each +,
s an isomelry. Suppose p e M and g e N are such that G, = G, and U“" {s equiv-
alent to a subrepresentation of U***'. Then, letting X be the orbit of p in M under
G and I the orbit of qin \7 under G, there is an e > 0 such that (G, S(Z, €), o)
can be tmbedded in (G, S(Z, €), ¥).

Proof.  Note that since each ¢, is an isometry and T is invariant under each
¢, it follows that S(Z, ) is invariant under each ¢, forany e > 0,50 (@, S(Z, €), ¢)
makes sense.

We define a map F of N(Z) into N(Z) which we will show to have the following
two properties: (1) F' o o, = &, o F for all g ¢ (¢ and (2) F is a differentiable
imbedding of N(2) in N(Z). Let T set up an equivalence of L'“”"" \\ ith a sub-
representation of %" 7.¢. T is an isometric linear map of *into =% such that

T = (v(\ﬁ.tnT('(f;D)

for all g ¢ G. We define ¥ on X%, to be the one-to-one linear map into =,
given by 6¢, Tép,-: . If ,(p) = ¢.(p) then h = ¢ 'j e G, = G, s0

YT 605 = 8, UV PTU Y bg,-0 = 8¢, T,

so that /7 is well defined. Since F is a one-to-one map from =, to fjm) and
since ¢, (q) = ¢,(¢) if and only if ¢,(p) = ¢,(p) (because G, = G ), it follows that F
is one-to-one on all of N(Z). Since 8¢, maps X3,,, onto =5,,,, it follows that

Foden = (8¢1,T00ms )80y = 8¢ o F

which proves (1). It remains to show that F is differentiable and non-singular
and therefore (since it is one-to-one) an imbedding. By the homogeneity prop-
erty (1) it suffices to show that F is non-singular and differentiable on a set of
the form N(U) = U,y =% where U is a neighborhood of p in Z. Since G acts
transitively on T the map ¢ — ¢,(p) of G onto = is a fiber map, equivalent in
fact to the natural map of G onto G/G, ; hence we can find a non-singular, dif-
ferentiable, local cross-section ¢ defined on a neighborhood U of p in =. Now
K @ (u, v} — 8¢, (v) is clearly a diffeomorphism of U X =% with N(U) and
Fo(u r)— ¢ (Tv) is readily seen to be a differentiable, non-singular map of
U X =% into N(Z). Since clearly F' = F o K™' on N(U) we have the desired
result.

Now using Lemma 1 choose e so small that exp maps N(EL ¢) diffeomor-
phically on S(Z, ¢ and N(S, ¢ diffeomorphically on S(Z, € and let
f=exp=F cexp ' where exp™'is the inverse of the restriction of exp to N(Z, ).
Then clearly f is an imbedding of S(Z, €) in S(Z, €. Moreover using property
(1) of F and the fact that exp o ép, = ¢, © exp and exp o 6¢, = ¥, © exp we get
eaxily that f o ¢, = ¢, o f so that f is an imbedding of (G, S(Z, €), ¢)
in (G, S(Z, €, ¥) as was to be proved.
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3. Imbedding in orthogonal representations.

Lemma a. Let G be a compact Lie group and 11 a closed subgroup of (. There
is a finite dimensional orthogonal representation 0 of Goin a space Woand w e W
such that

I = {geG:0,(w) =wl.

Proof.  Let R be the real regular representation of ¢ and let Fbe a continuous
real function of G/II which takes on the value 1 only at . Define f on G hy
f(g) = T(gIT). Then it ix trivial to verify that /I = {ge G:R,(f) = f}. Let L*(G) =
@71, be the decomposition of LF(G) into finite dimensional invariant subspaces
irreducible under R and let f. be the projection of f on 17, and

I = igeGR,([) = .}

Clearly H, is a closed subgroup of (7 including 77 and M/ = [1. Now the closed
suberoups of a compact Lic group satisfy the descending chain condition (at
each step in a descending chain either the dimension or number of components
niust drop) so we ean find ¢, , -+, 7, such that /I = M, Then let )17 =
w = =.1;,, and let 8 be the restriction of R to 1

o 1T
PV

Lemma b. Lot G be a compact group, I a closed sihgroup of G, ond o a finile
dimensional unitary represewtation of I Then there is a finite dimensional wnitary
representation 7 of ((whose restriction to I contains o as @ subrepresentation.

Proof.  We can clearly assume that o is irreducible, in which case the lemma
i< an immediate consequence of the Frobenius reciprocity theorem tor induced
representations of compact groups. See the italicized remark at the hottom of
page 83 of [3].

Lemma c. Let G be a compact group, 11 a closed subgronp of G,oand U a finide
dimensional orthogonal representation of 1. Then there ds a findle dimensional
orihogonal representation & of (Cwhose restriction to I contains U ax a sulrepresenta-
tion.

Proof.  Let T be the complexification of {7 When the space of [ ix regarded
as a real veetor space, U hecomes an orthogonal representation eantaining U.
By Lemma b we ean find a finite dimensional unitary representation = of G

whose restriction to II coninins C. Let 6 be the orthogonal representation of
G that = becomes when the <pace of 7 iz regarded as a real vector space.

Lemma d. Let G be a compact Lic group, I a closed subgroup of (. and U a
finite dimensional orthogonal representation of I Then there is a findte dimensional
orthogonal representation § of G in a space Voand a vector v e V- osuch that

I Go= 1geCG ) =0l

R [ . . . -
and { contains a subrepresentation equivalent to U,
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Proof.  Let 8 be the representation of Lemma o and § the representation of
Lemma e, and let ¢ = 8 @ 6 =0 that 17 = W & Space of 6. Then if we take

= (. 0} the conclusions are readily verified.

Theorem II.  Let G be a compact Lie group, (G, M, &) a differentiable G-trans-
fm'm(l’z'un group, and = any orbit in M. Then there 0s an ineariant neighborhood

O of = in M and a findte dimensional orthogonal repre se ;zm/zwz Y of G in a space V
for whieh ihere exisis an imbedding | of (G, O, ¢) in (G, V).

LProof. Since G is compact we can {ind a Riemannian structure for 3/ relative
to which cach ¢, 12 an sometry. Let p e 2 and choose ¢ by Lemma d where
=6, mal = l 27 By Theorem 1 for <ome € > 0 we can find an imbedding
fof (N2, el o) in (G S(S, o, ) where T is the orbit of . Now O = S(X, €)
is an nvariant ne wnbmhood of Xin M and [ ixa fortiors an imbedding of (G, 0, ¢)

(G, 17 ¢,

Theorem III.  Lct (G be a compact Lic group and 10t (G M, ) be a differentiable
G-transtormation group. If O s any relatively compact, open, zmmz(m/ submani-
fold of M then there is a differentdable mapping f of M into the space Vool a finide
diniensional orthogonal representation  of G which is cquivariant (l.e. satisfics
¢, o[ =, < fforallgeG)and is such that [ O is an imbedding of (G, O, ¢) in
G, v

Proof. Let O, -+ 0, be a covering of O by« finite number of invariant
open submanifolds of A7 and f, : O, — 17, an imbedding of (¢, O, , ¢) in a finite
dimensicnal orthogonal representation (7, 17, , ¢;1 of . The existence of such
followx from Theorem II and the compactness of (. Let Wy, -+ ) 1, be an
open covering of O with 13, C 0, . We can assume that each 1, is invariant,
otherwize replace 1 by e, (w) 1 g e G, w e 1)L Let g, be a differentiable real
valued function on 37 which is identically unity on 117, and identically zero on
M — O, . We can assume that each g, is invariant under the action ¢ of G on A/
(otherwize replace g;(x) by [« g.(e,(x)) du(g) where p is the normalized Haar
measure). Let 17, = R7 and let ¢, be the identity lopm\onhtlon of Gon T, .
Define f, : M — V., by Ju(2) = (g.(0), -, g.(x)), and define f, : M — V, by
Ty = g.of, (z') for v e O; and f;(x) = the zero veetor of V7, for v e M — O
TetT =1, .--- DT, ,¢ = \bo @D - @Dy, and define f: M — T by f(x) =
(Jolx), -, I )) Clearly fis (11ﬂ010nt13blc and equivariant, and since f; is an
imbodding <)f 0. it follows that J; is non-singular on ", and hence that f is non-
singulur on the union of the W, and so on O. If v, y ¢ O and f(x) = f(y) then for
some ¢ e 1 s0g. () = 1, henee, since fy(x) = fo(i). 9.(y) = g.(x) =1s0y¢e0;
Thus .« Am(l // both belong to O, , where f; is onc-to-one. Moreover f,(v) =
g. (o). L) = 5.G) = g:nf.(y = 1.0 and it follows that z = y, so f
is on(}—to-oho on (.

We note that the theorem of the introduetion ix « special ense of Theorem T11L
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