## Imbedding of Compact, Differentiable Transformation Groups in Orthogonal Representations

RICHARD S. PALAIS

Offprint from

JOURNAL OF MATHEMATICS AND MECHANICS

Vol. 6, No. 5, September, 1957, pp. 673-678

# Imbedding of Compact, Differentiable Transformation Groups in Orthogonal Representations

### RICHARD S. PALAIS

Communicated by S. S. Chern\*

1. Introduction. Let G be a Lie group and M a differentiable (i.e.  $C^{\infty}$ ) manifold. An action of G on M is a homomorphism  $\varphi:g\to\varphi_{\pi}$  of G into the group of diffeomorphisms (i.e. non-singular, differentiable homeomorphisms) of M with itself such that the map  $\Phi:(g,x)\to\varphi_{\sigma}(x)$  of  $G\times M$  into M is continuous (it then follows from a theorem of Bochner & Montgomery [1] that  $\Phi$  is automatically differentiable). A triple  $(G,M,\varphi)$  of such objects as those above we shall call a differentiable G-transformation group. If G is an open submanifold of G invariant under each  $\varphi_{\sigma}$  then  $g\to\varphi_{\sigma} O$  is an action of G on G and we will denote by  $(G,G,\varphi)$  the corresponding differentiable G-transformation group. If  $(G,M,\varphi)$  and  $(G,N,\psi)$  are two differentiable G-transformation groups then an imbedding of  $(G,M,\varphi)$  in  $(G,N,\psi)$  is an imbedding f of G into G such that  $G \circ G = G$  for all  $G \circ G = G$ .

A particular class of differentiable G-transformation groups consists of the finite dimensional orthogonal representations of G, i.e. triples  $(G, M, \varphi)$  where V is a finite dimensional real Hilbert space and each  $\varphi_g$  is an orthogonal transformation of V. We shall prove the following theorem, and in fact something slightly more general.

**Theorem.** A differentiable G-transformation group  $(G, M, \varphi)$  can be imbedded in a finite dimensional orthogonal representation of G provided G and M are compact.

<sup>\*</sup>After this work was completed, the author was informed of a more general theorem of G. D. Mostow, in which differentiability and compactness of M are not assumed. While Mostow's theorem is deeper and more difficult to prove, the simplicity gained by assuming differentiability seems to justify the publication of this paper. (Added in proof: Mostow's paper, which appeared under the title "Equivariant imbeddings in Euclidean space" in the May, 1957 issue of the Annals of Mathematics, contains a special proof for the differentiable case which, though very different from ours, is quite short.)

In [2], page 215, E. Cartan has proved this for the case that M is a compact, irreducible, symmetric Riemannian manifold and G acts transitively and isometrically on M.

2. The fundamental imbedding theorem. Let M be a Riemannian manifold,  $M_p$  the tangent space to M at  $p \in M$ , and  $T(M) = \bigcup_{v \in M} M_v$  the tangent bundle of M with its usual manifold structure. Let D be the set of  $v \in T(M)$  such that if  $v \in M_p$  then the geodesic starting from p. In the direction v can be extended to have length ||v|| and let  $\exp(v)$  be the point on this geodesic cutting off a length ||v||. Then, as is well known, D is an open submanifold of T(M) containing the zero vector field and  $\exp$  is a differentiable map of D into M. If g is an isometry of M then clearly  $\delta g(D) = D$  and, for each  $v \in D, g(\exp v) = \exp \delta g(v)$ , where  $\delta g$  denotes the differential of g.

Let  $\Sigma$  be a submanifold of M,  $\Sigma_p$  the tangent space to  $\Sigma$  at  $p \in \Sigma$ , and  $\Sigma_p^{\perp}$  the orthogonal complement of  $\Sigma_p$  in  $M_p$ . Then  $N(\Sigma) = \bigcup_{p \in \Sigma} \Sigma_p^{\perp}$ , the normal bundle of  $\Sigma$ , is a submanifold of T(M) of the same dimension as M. If  $p \in \Sigma$  and  $0_p$  is the zero vector at p then the restriction of exp to  $N(\Sigma) \cap D$  is easily seen to have a non-zero differential at  $0_p$ , and so by the implicit function theorem exp maps a neighborhood of  $0_p$  in  $N(\Sigma)$  diffeomorphically into M. If  $\Sigma$  is compact even more is true, well known, and rather easily demonstrated, namely Lemma 1 below.

**Definition.** If  $\Sigma$  is a submanifold of the Riemannian manifold M then we let

$$N(\Sigma, \epsilon) = \{ v \in N(\Sigma) : ||v|| < \epsilon \}$$

and

$$S(\Sigma, \epsilon) = \{ p \in M : \rho(p, \Sigma) < \epsilon \}$$

where  $\rho$  is the Riemannian metric function.

**Lemma 1.** If  $\Sigma$  is a compact submanifold of the Riemannian manifold M then for some  $\epsilon \geq 0$  exp maps  $N(\Sigma, \epsilon)$  diffeomorphically onto  $S(\Sigma, \epsilon)$ .

Now let G be a compact Lie group and let  $\varphi$  be an action of G on M such that each  $\varphi_{\mathfrak{p}}$  is an isometry of M. Let  $\Sigma$  be an orbit of M under G, i.e.  $\Sigma$  is of the form  $G(p) = \{\varphi_{\mathfrak{p}}(p) : g \in G\}$  for some  $p \in M$ . Then, as is well known,  $\Sigma$  is a compact differentiable manifold, and in fact if  $G_{\mathfrak{p}} = \{g \in G : \varphi_{\mathfrak{p}}(p) = p\}$  is the isotropy group at p then  $gG_{\mathfrak{p}} \to \varphi_{\mathfrak{p}}(p)$  is a differentiable imbedding of  $G/G_{\mathfrak{p}}$  into M and onto  $\Sigma$ . The mapping  $g \to (\delta \varphi_{\mathfrak{p}})_{\mathfrak{p}}$  is an orthogonal representation of  $G_{\mathfrak{p}}$  in  $M_{\mathfrak{p}}$ . Clearly  $\Sigma_{\mathfrak{p}}$  is an invariant subspace of  $M_{\mathfrak{p}}$  under this representation, hence so also is  $\Sigma_{\mathfrak{p}}^{\perp}$ .

**Definition.** We denote by  $U^{(\varphi,p)}$  the representation of  $G_p$  in  $\Sigma_p^{\perp}$  defined by  $U_q^{(\varphi,p)}v = \delta\varphi_q(v)$ .

We now come to the fundamental imbedding theorem.

**Theorem I.** Let M and N be Riemannian manifolds, G a compact group, and let  $\varphi$  and  $\psi$  be actions of G on M and N respectively such that each  $\varphi_{\sigma}$  and each  $\psi_{\sigma}$  is an isometry. Suppose  $p \in M$  and  $q \in N$  are such that  $G_p = G_q$  and  $U^{(\varphi,p)}$  is equivalent to a subrepresentation of  $U^{(\varphi,q)}$ . Then, letting  $\Sigma$  be the orbit of p in M under G and  $\tilde{\Sigma}$  the orbit of q in N under G, there is an  $\epsilon > 0$  such that  $(G, S(\Sigma, \epsilon), \varphi)$  can be imbedded in  $(G, S(\tilde{\Sigma}, \epsilon), \psi)$ .

*Proof.* Note that since each  $\varphi_{\sigma}$  is an isometry and  $\Sigma$  is invariant under each  $\varphi_{\sigma}$  it follows that  $S(\Sigma, \epsilon)$  is invariant under each  $\varphi_{\sigma}$  for any  $\epsilon > 0$ , so  $(G, S(\Sigma, \epsilon), \varphi)$  makes sense.

We define a map F of  $N(\Sigma)$  into  $N(\tilde{\Sigma})$  which we will show to have the following two properties: (1)  $F \circ \delta \varphi_{\sigma} = \delta \psi_{\sigma} \circ F$  for all  $g \in G$  and (2) F is a differentiable imbedding of  $N(\Sigma)$  in  $N(\tilde{\Sigma})$ . Let T set up an equivalence of  $U^{(\varphi,p)}$  with a sub-representation of  $U^{(\psi,p)}$ , i.e. T is an isometric linear map of  $\Sigma_p^{\perp}$  into  $\Sigma_q^{\perp}$  such that

$$T = U_q^{(\psi,q)} T U_{q-1}^{(\varphi,p)}$$

for all g  $\varepsilon$  G. We define F on  $\Sigma_{\varphi_{\sigma}(p)}^{\perp}$  to be the one-to-one linear map into  $\tilde{\Sigma}_{\psi_{\sigma}(p)}^{\perp}$  given by  $\delta\psi_{\tau}T\delta\varphi_{\sigma^{-1}}$ . If  $\varphi_{\sigma}(p)=\varphi_{\overline{\sigma}}(p)$  then  $h=g^{-1}\bar{g}$   $\varepsilon$   $G_p=G_q$  so

$$\delta \psi_{\bar{g}} T \delta \varphi_{\bar{g}^{-1}} = \delta \psi_{\bar{g}} U_{h}^{(\psi_{+}p)} T U_{h}^{(\varphi_{+}p)} \delta \varphi_{g^{-1}} = \delta \psi_{\bar{g}} T \delta \varphi_{\bar{g}}$$

so that F is well defined. Since F is a one-to-one map from  $\Sigma_{\varphi_{\sigma}(p)}^{\perp}$  to  $\widetilde{\Sigma}_{\psi_{\sigma}(q)}^{\perp}$  and since  $\psi_{\sigma}(q) = \psi_{\sigma}(q)$  if and only if  $\varphi_{\sigma}(p) = \varphi_{\sigma}(p)$  (because  $G_p = G_q$ ), it follows that F is one-to-one on all of  $N(\Sigma)$ . Since  $\delta\varphi_h$  maps  $\Sigma_{\varphi_{\sigma}(p)}^{\perp}$  onto  $\Sigma_{\varphi_{h\sigma}(p)}^{\perp}$  it follows that

$$F \circ \delta \varphi_h = (\delta \psi_{ha} T \delta \varphi_{(ha)^{-1}}) \delta \varphi_h = \delta \psi_h \circ F$$

which proves (1). It remains to show that F is differentiable and non-singular and therefore (since it is one-to-one) an imbedding. By the homogeneity property (1) it suffices to show that F is non-singular and differentiable on a set of the form  $N(U) = \bigcup_{u \in U} \Sigma_u^{\perp}$  where U is a neighborhood of p in  $\Sigma$ . Since G acts transitively on  $\Sigma$  the map  $g \to \varphi_p(p)$  of G onto  $\Sigma$  is a fiber map, equivalent in fact to the natural map of G onto  $G/G_p$ ; hence we can find a non-singular, differentiable, local cross-section t defined on a neighborhood U of p in  $\Sigma$ . Now  $K: (u, v) \to \delta \varphi_{t(u)}(v)$  is clearly a diffeomorphism of  $U \times \Sigma_p^{\perp}$  with N(U) and  $\widetilde{F}: (u, v) \to \delta \psi_{t(u)}(Tv)$  is readily seen to be a differentiable, non-singular map of  $U \times \Sigma_p^{\perp}$  into  $N(\Sigma)$ . Since clearly  $F = \widetilde{F} \circ K^{-1}$  on N(U) we have the desired result.

Now using Lemma 1 choose  $\epsilon$  so small that exp maps  $N(\Sigma, \epsilon)$  diffeomorphically on  $S(\Sigma, \epsilon)$  and  $N(\tilde{\Sigma}, \epsilon)$  diffeomorphically on  $S(\tilde{\Sigma}, \epsilon)$  and let  $f = \exp \circ F \circ \exp^{-1}$  where  $\exp^{-1}$  is the inverse of the restriction of exp to  $N(\Sigma, \epsilon)$ . Then clearly f is an imbedding of  $S(\Sigma, \epsilon)$  in  $S(\tilde{\Sigma}, \epsilon)$ . Moreover using property (1) of F and the fact that  $\exp \circ \delta \varphi_{\sigma} = \varphi_{\sigma} \circ \exp$  and  $\exp \circ \delta \psi_{\sigma} = \psi_{\sigma} \circ \exp$  we get easily that  $f \circ \varphi_{\sigma} = \psi_{\sigma} \circ f$  so that f is an imbedding of  $(G, S(\Sigma, \epsilon), \varphi)$  in  $(G, S(\tilde{\Sigma}, \epsilon), \psi)$  as was to be proved.

## 3. Imbedding in orthogonal representations.

**Lemma a.** Let G be a compact Lie group and H a closed subgroup of G. There is a finite dimensional orthogonal representation  $\theta$  of G in a space W and w  $\varepsilon$  W such that

$$H = \{g \in G : \theta_g(w) = w\}.$$

*Proof.* Let R be the real regular representation of G and let  $\bar{f}$  be a continuous real function of G/H which takes on the value 1 only at H. Define f on G by  $f(g) = \bar{f}(gH)$ . Then it is trivial to verify that  $H = \{g \in G : R_g(f) = f\}$ . Let  $L^2(G) = \bigoplus V_i$  be the decomposition of  $L^2(G)$  into finite dimensional invariant subspaces irreducible under R and let f, be the projection of f on  $V_i$  and

$$H_{\perp} = \{ g \in G: R_g(f_i) = f_i \}.$$

Clearly  $H_i$  is a closed subgroup of G including H and  $\bigcap H_i = H$ . Now the closed subgroups of a compact Lie group satisfy the descending chain condition (at each step in a descending chain either the dimension or number of components must drop) so we can find  $i_1, \dots, i_n$  such that  $H = \bigcap_i H_{ij}$ . Then let  $W = \bigoplus_i V_{ij}$ ,  $w = \sum_i f_{ij}$ , and let  $\theta$  be the restriction of R to W.

**Lemma b.** Let G be a compact group, H a closed subgroup of G, and  $\sigma$  a finite dimensional unitary representation of H. Then there is a finite dimensional unitary representation  $\pi$  of G whose restriction to H contains  $\sigma$  as a subrepresentation.

*Proof.* We can clearly assume that  $\sigma$  is irreducible, in which case the lemma is an immediate consequence of the Frobenius reciprocity theorem for induced representations of compact groups. See the italicized remark at the bottom of page 83 of [3].

**Lemma c.** Let G be a compact group, H a closed subgroup of G, and U a finite dimensional orthogonal representation of H. Then there is a finite dimensional orthogonal representation  $\delta$  of G whose restriction to H contains U as a subrepresentation.

*Proof.* Let  $\overline{U}$  be the complexification of U. When the space of  $\overline{U}$  is regarded as a real vector space,  $\overline{U}$  becomes an orthogonal representation containing U. By Lemma b we can find a finite dimensional unitary representation  $\pi$  of G whose restriction to H contains  $\overline{U}$ . Let  $\delta$  be the orthogonal representation of G that  $\pi$  becomes when the space of  $\pi$  is regarded as a real vector space.

**Lemma d.** Let G be a compact Lie group, H a closed subgroup of G, and U a finite dimensional orthogonal representation of H. Then there is a finite dimensional orthogonal representation  $\psi$  of G in a space V and a vector  $v \in V$  such that

$$H = G_{\varepsilon} = \{g \in G : \psi_{g}(v) = v\}$$

and  $U^{\Psi,\phi}$  contains a subrepresentation equivalent to U.

*Proof.* Let  $\theta$  be the representation of Lemma a and  $\delta$  the representation of Lemma c, and let  $\psi = \theta \oplus \delta$  so that  $V = W \oplus \text{Space of } \delta$ . Then if we take v = (w, 0) the conclusions are readily verified.

**Theorem II.** Let G be a compact Lie group,  $(G, M, \varphi)$  a differentiable G-transformation group, and  $\Sigma$  any orbit in M. Then there is an invariant neighborhood O of  $\Sigma$  in M and a finite dimensional orthogonal representation  $\psi$  of G in a space V for which there exists an imbedding f of  $(G, O, \varphi)$  in  $(G, V, \psi)$ .

*Proof.* Since G is compact we can find a Riemannian structure for M relative to which each  $\varphi_{\varepsilon}$  is an isometry. Let  $p \in \Sigma$  and choose  $\psi$  by Lemma d where  $H = G_{\varepsilon}$  and  $U = U^{(\xi, \varphi)}$ . By Theorem I for some  $\epsilon > 0$  we can find an imbedding f of  $(G, S(\Sigma, \epsilon), \varphi)$  in  $(G, S(\widetilde{\Sigma}, \epsilon), \psi)$  where  $\widetilde{\Sigma}$  is the orbit of r. Now  $O = S(\Sigma, \epsilon)$  is an invariant neighborhood of  $\Sigma$  in M and f is a fortiori an imbedding of  $(G, O, \varphi)$  in  $(G, V, \psi)$ .

**Theorem III.** Let G be a compact Lie group and let  $(G, M, \varphi)$  be a differentiable G-transformation group. If O is any relatively compact, open, invariant submanifold of M then there is a differentiable mapping f of M into the space V of a finite dimensional orthogonal representation  $\psi$  of G which is equivariant (i.e. satisfies  $\varphi_s \circ f = \psi_g \circ f$  for all  $g \in G$ ) and is such that f O is an imbedding of  $(G, O, \varphi)$  in  $(G, V, \psi)$ .

*Proof.* Let  $O_1$ , ...,  $O_n$  be a covering of  $\overline{O}$  by a finite number of invariant open submanifolds of M and  $f_i: O_i \to V_i$  an imbedding of  $(G, O_i, \varphi)$  in a finite dimensional orthogonal representation  $(G, V_i, \psi_i)$  of G. The existence of such follows from Theorem II and the compactness of O. Let  $W_1, \dots, W_n$  be an open covering of O with  $\overline{W}_i \subset O_i$ . We can assume that each  $W_i$  is invariant, otherwise replace  $W_i$  by  $\{\varphi_q(w): g \in G, w \in W_i\}$ . Let  $g_i$  be a differentiable real valued function on M which is identically unity on  $W_i$  and identically zero on  $M=O_i$ . We can assume that each  $g_i$  is invariant under the action  $\varphi$  of G on M (otherwise replace  $g_i(x)$  by  $\int_{\mathcal{G}} g_i(\varphi_i(x)) d\mu(g)$  where  $\mu$  is the normalized Haar measure). Let  $V_0 = R^n$  and let  $\psi_0$  be the identity representation of G on  $V_0$ . Define  $f_0: M \to V_0$  by  $\bar{f}_0(x) = (g_1(x), \dots, g_n(x))$ , and define  $\bar{f}_i: M \to V_i$  by  $\bar{f}_i(x) = g_i(x)f_i(x)$  for  $x \in O_i$  and  $\bar{f}_i(x) = \text{the zero vector of } V_i$  for  $x \in M - O_i$ . Let  $V = V_0 \oplus \cdots \oplus V_n$ ,  $\psi = \psi_0 \oplus \cdots \oplus \psi_n$  and define  $f: M \to V$  by f(x) = $(\bar{f}_0(x), \dots, \bar{f}_n(x))$ . Clearly f is differentiable and equivariant, and since  $f_i$  is an imbedding of  $O_i$  it follows that  $\bar{f}_i$  is non-singular on  $W_i$  and hence that f is nonsingular on the union of the  $W_i$  and so on O. If  $x, y \in O$  and f(x) = f(y) then for some  $i x \in W_i$  so  $g_i(x) = 1$ , hence, since  $\bar{f}_0(x) = \bar{f}_0(y)$ ,  $g_i(y) = g_i(x) = 1$  so  $y \in O_i$ . Thus x and y both belong to  $O_i$ , where  $f_i$  is one-to-one. Moreover  $f_i(x) =$  $g_i(x)f_i(x) = \tilde{f}_i(x) = \tilde{f}_i(y) = g_i(y)f_i(y) = f_i(y)$  and it follows that x = y, so f is one-to-one on O.

We note that the theorem of the introduction is a special case of Theorem III.

### REFERENCES

- [1] S. Bochner & D. Montgomery, Groups of differentiable and real or complex analytic transformations. *Ann. of Math.* **46** (1945), pp. 685-694.
- [2] E. Cartan, Sur la détermination d'un système orthogonal complet dans un espace de Riemann symetrique clos, Rend. Pal. 54 (1929).
- [3] A. Weil, L'Integration dans les Groups Topologiques et ses Applications, Hermann et Cie., Paris (1938).

University of Chicago Chicago, Illinois