MANIFOLDS OF SECTIONS OF FIBER BUNDLES
AND THE CALCULUS OF VARIATIONS

Richard S. Palais!

Let M be a compact, n-dimensional, ¢ manifold, possibly with boundary.
Denote by FB(M) the category of (' fiber bundles over M. A morphism f: £ — F
of FB(M)isa C'” map such that f, = f| E,maps E, into F, for each 2 € M, where
B, is the fiber of ¥ at . 1f £ and F are C* vector bundles and each f.is linear we
call f a vector bundle morphism. We denote by VB(M) the category of O vector
bundles over M and vector bundle morphisms and by FVB(M) the mongrel
category of O™ vector bundles over M and fiber bundle morphisms.

Our goals in this talk are the following:

(1) To describe the Sobolev Functors LY (k > n/p) from FB(M) to the category
of C* Banach manifolds and ' maps. (As a set LP(E) is a certain subset of the
continuous sections of K, roughly speaking those which in local coordinates and
local trivializations have derivatives of order <k which are pth power summable.
If f:E — F is a morphism then LY(f): LY(E) — L2(F) is given by k> fos.)

(2) To interpret the Calculus of Variations as the study of the critical points of
a certain type of differentiable real valued functions on the manifolds LXE).

(3) To describe how using the latter point of view the strong global existence
theorems provided by Morse Theory and Lusternik-Schnirelman theory, as well as
certain classical smoothness theorems, extend naturally from one independent
variable problems to certain problems with several independent variables in the
calculus of variations.

A considerably more detailed account of the ideas and results presented here
will be found in the authors Foundations of global non-linear analysis published
by W. A. Benjamin Inc. (1968) and in the doctoral dissertation of Mrs. Karen
Uhlenbeck (Brandeis, 1968).

1. The L7 spaces of a vector bundle. Let & be a O vector bundle over M and
1L <p < co. Given a strictly positive smooth measure 4 on M and a Riemannian
structure ( , ) for £ define L?(£) to be the Banach space of measurable sections s of
& such that Islgr = | (s(z), s(x))P2 du(z) is finite. If we change u or the Rie-
mannian structure we get the same topological vector space with an equivalent
norm, ie., L?(§) is a well-defined topological vector space independent of any

1 Research supported in part by Sloan Foundation Fellowship and Air Force Grant No.
AFOSR-68-1403.
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particular choice of por { y. Let J#(£) denote the k-jet bundle of & and ji:C (&) —
0= (JH(E)) the k-jet extension map. We denote by L4(§) (ka nonnegative integer)
the completion of ¢®(£) under the topology induced from the injection

07 (§) 2y CFIHE) £, LPIHED-

We note that we have a continuous inclusion L2 (§) € Lx(&) which by Rellich’s
theorem is even completely continuous. This allows us to define L2(£) for non-
integral positive k by using the “complex method of interpolation” between the
integral values. &= is a vector bundle morphisn OVer M then st>f°S$
defines a continuous linear map Li( 1) La(&) — LEm)- This establishes each L7 as
a functor from V B(M) to the category of Banach spaces and continuous linear
maps. ;

IffE—1 is a fiber bundle morphism of vector bundles (i.e. morphism of
FV B(M)) then for pk >, 8¢ fos still defines a contipuous (but of course
nponlinear) map Le(f) (L2(E) — Lr(n) and it follows easily that () must indeed
be C* (if pk =m0 then in generalf » s will not even be in L2(n) for all s € L2()-
Thus we have

TagorEM. For pk > 1, L extends to a functor from F V B(M) to the category of
Banach spaces and CF maps.

The above is & fundamental result for our approach to nonlinear analysis in
general and the calculus of variations in particular and we sketch the basic reasons
for it.

Tirst of all we have the classical results:

QopoLEV EMBEDDINCG Tagorems. If k— njp =1 — njg and k=1 then
2 < Li(n) and the inclusion map is continuous (and even completely continuous
if the inequalities are strict). Also if k— njp=1+% 0 < o < 1 then g <
o (€) and the inclusion i cONtINUOUS.

Given vector pundles &y, - - g, m over M tet L&y .- oo .M denote the
bundle of r-linear maps of &, ® @& into n. Given section T of the latter
and sections §; of &, we get @ section T'(s1, - - - ,s) of 7 whose value at @ is
T (x)(8:(%) - - - , 8p(1))- The following is an easy generalization (and consequence)
of Holder’s inequality.

Taporem. The function (T, 815 -+ > sy T80 - ,s,) defines @ continuous
multilinear map of L&y -+ oo E:m) @ Log) ® 9@ Ler(&,) nto La(y) pro-
vided 1] = 2t 1/g;-

Putting the latter together with the Sobolev embedding theorem we obtain the
following basic result.

MULTIPLICATION TugoreM. The function (T, 81+« > sy T80 - ,8,) 180
continuous gultilinear map of COLM(Ers - - > M) @ L) @ @ Ly(&,) into
L‘}(n)provided nlqg — 1= Diea (nfp; — k,), where A isthe set of indicest = 1,2y -+ o>
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rsuch that nfp, — k, > 0 and where the inequality must be strict if, for some i, n/p, =
k,.

]
It is from the latter result that one derives, rather straightforwardly, that for
Pk > n a fiber bundle morphism f: & -> 5 defines a ('* map gk> fos of L2(£) to

L2(n). The details will be found in §9 of Foundations of global non-linear analysis.

2. Vector bundle neighborhoods and the differentiable structure of L?(EK). If
E and F are C fiber bundles over M, the F is called a sub-bundle of E if FckEkE
and the inclusion map is a fiber bundle morphism. Ifin addition F is open (closed)
in E it is called an open (closed) sub-bundle of £. By a vector bundle neighborhood
(VBN) in E we shall mean a vector bundle & over M which, considered as a ('®
fiber bundle, is an open sub-bundle of £. We have the following fundamental
existence theorem, whose proof is analogous to that of the tubular neighborhood
theorem.

Ex1sTENCE THEOREM FOR I BN. If B is a C7 fiber bundle over M, s e Co(&),
and O any neighborhood of s(M) in E then there exists a VBN &in E withs(M) <
§ < O (and in particular s e C%E)). If s € C(E) we can choose & so that s is the
zero section of &.

Now let E be a C* fiber bundle over M, seCYE), and £a VBN of s in E
(i.e.a VBN in F such that s ("(£)), the existence of which is assured by the above
theorem. If pk > n we say ~ € L2(E) if s € L3(&). It is easily seen that this
condition is independent of the choice of the VBN of s, l.e. that if s € L7(£) then
s € L(n) for every VBN nofsin E. Thus L2(E) is the union of the L2(£) over all
VBN & of E. Moreover the theorem of the §1. that L2 is a functor from FVB(M)
to Banach manifolds and C* maps leads easily to the following

L7 MANTFOLD STRUCTURE THEOREM. [ f vk > n then for each C™ fiber bundle
E over M there is a unique C* Banach manifold structure for LY(E) such that, for each
VBN & of E, L2(&) is an open submanifold of L*(E). Moreover if fi1E— FisaC®
Jiber bundle morphism then st fo s defines a C%° map Lyf): LY E) —~ L2(F). This
establishes L as a functor from FB(M) to the category of C* Banach manifolds and
C” maps.

Derivtrron.  Let E be a ('™ fiber bundle over M, pk>mnandge L2(H). We
define a subset L2(E),, of L2(E), called the Dirichlet subspace of L2(E) defined by
o. Namely L?(E),, is the closure in LY(E) of the set of s € L2(E) which agree with
¢ in some neighborhood U (depending on s) of d.M.

TaEOREM. Ifpk > nand E isaC® fiber bundle over M then for each ¢ & LY(E),
L2(E),, 1s a closed O submanifold of L2(E).

Remark.  Of course if 0 — & then Li(B),s = L2(E).

3. The calculus of variations. In what follows we suppose that there is given a
strietly positive smooth measure won M and we let E denote a C'* fiber bundle over
M. The space of k-jets of local sections of B, regarded as a ¢ fiber bundle over E,
will be denoted by J§(E). It can also be regarded as a C® fiber bundle over £ in
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which case we denote it by J*(E). As usual j,:C*(E) — O*(J*(E)) denotes ti -
k-jet extension map.

If Fis a ¢ real valued function on J*(E) then for each s € (”(E) we get a ¢
real valued function L(s) on M by L(s)(x) = F(j,{s),). Such a function L:C*(E: —-
C*(R,;) (where R,; = M x R is the product line bundle over M) is called a #-..
order Lagrangian for £. The set of all kth order Lagrangians for E is a vector spa. -
Lgn, (E). _

DEerixrrroN.  If pk > n then we shall call an element L ¢ Lgn, (£) L?-smoot
it L:C%(E)— C%(R,,) extends to a €' map (clearly unique) L:L2(E) — LYR,
Since the linear mayp f> | f(x) du(x) of LY(R;;) — R is continuous it follows tha-
such a Lagrangian defines a ('* map J* = J:L(E) — R by J(s) = | L(s)(x) dyi
and then by restriction we have a € function J : L2(E),, — R on each Dirichl:
subspace of L2(E).

Roughly speaking the “Dirichlet Problem™ associated to a given LP-smooti.
Lagrangian L and “boundary conditions” ¢ € L2(E) is to describe the critical locus
of J:L2(E),, — R. In particular one wants to find criteria for the following:

(3) LUSTERNIK-SCHNIRELMAN EXISTENCE TuHEOREM. This means that on
each component of LY(K),, there should be at least as many critical points as th:
Lusternik-Schnirelman category of that component (i.e. the smallest number ot
closed sets, each contractible in the component, needed to cover the component .

(b) MorstE EXISTENCE THEOREMS (in case p = 2), This means the critical
points should all be nondegcnerate and of finite index and the type numbers
should satisfy the Morse relations.

(c) SmooruNEss THEOREMS. This means that certain smoothness hypotheses
on ¢ should imply corresponding smoothness conclusions for critical points (e.g.
if o€ Ly, (£)) we would like all critical points to be in L, (E) so in particular if
0M = ¢ or o € C*(£) then we should have the generalized “Weyl Lemma,” that

all critical points are automatically ¢'”.

Before going on to see what can be said in this respect we first consider the
basic question of finding criteria for when a Lagrangian is L? smooth. 1t turns
out that the Lagrangians that occur naturally in geometric and physical appli-
cations have a certain polynomial-like character which we shall now explain, and
that the degree (or rather the ““weight”’) of this polynomial determines the p for
which the Lagrangian is L?-smooth. Thus the nature of the Lagrangian itself
picks out for us the manifolds LY(K) on which it is natural to consider the corre-
sponding Dirichlet problem.

Consider first the case when M is the n-disc D" and E is the product vector
bundle £ = D" x V. Then J*E) = (D" x V) x @ =F V, the sum being over
all n-multi-indices o = (o, . . ., a,) with |ocI =0y + 4o, <k IfseC”E)
then s is given by a €' map x +> (z, ¢(x)) of D™ into D" X V and its k-jet at x is
given by

Jxls)e = (@, 6(x)), Do ()
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where D* — 8:”/833;‘1 ©oe0xin Let ((w, py), p7) denote the natural “ecoordinate
projections” of J¥E). A C” function F(z, Po, P*) on JHE) will be called a
“monomial function of weight <w’ if it is of the form

111(‘}3’ Po: pa) = L(vao)(])zl? B plj,)
where Lis a (' map of D" x ¥ into the vector space L/(V; R) of j-linear maps of
V into R and ‘alf + {oc].| < w. A finite sum of monomials of weight < o

will be called a polynomial function of welght < .

Let L e Lgn, (E) be a kth order Lagrangian for B, sayv L(s)(x) — F(5.(8),)-
Then L will be said to be polynomial of weight < o if Fis a polynomial funection
of weight < . The polynomial kth order Lagrangians of weight < ¢ clearly form
a vector subspace of the vector space of all % order Lagrangians for £ which we
denote by Lgn® (E). Now at first glance the space Lgn? (E) seems to depend on ‘
the choice of coordinates in D" and, even more, on the vector space structure of T,
so the following may be a little surprising. :

THREOREM ON INVARIANCE OF POLYNOMIAL LAGRANGIANS. et q: D" — D" be
a CF map and let f: E — E be a O Jiber bundle morphism (i.e. a ¢'* map (r, r) —
(2, h(z, v)) of D™ x V into D" x V), and define T':C'*(E) — C*(E) as Jollows; if
s1x = (x, 0(x)) is in O (E) then Ts(x) = (x, Mg (@), s(q¢ (). Then if L e Lgny (£)
soalso is Lo T.

Of course the proof is just a simple inductive application of the “chain rule.” :
The above theorem justifies the following definition.

DErixtrioN. Let £ be a ('™ fiber bundle over 3 and L € Lgn, (E). We say
L € Lgn? (E) if given any chart g:D* -~ M, any VBN & of ‘ ¢(D") and any :
trivialization f: D" x V & ¢*£ the map L*:(C"" (D" ¥V)— R defined by L*(s)(x) =
L(fosoqg™) % (¢(x)), is in Lgng (D" x V). Equivalently it suffices that given
any e € K the latter hold for at least one such choice of ¢, & and f with e & &,

The importance of the classes Lgn? (E) for the calculus of variations, aside
from the fact that they include the usnal geometric and physically interesting :
examples, lies in the following:

SMOOTHNESS THEOREMS FOR POLYNOMIAL LAGRANGIANS. Letl < p < oo, and
pk > n. Then Le Leny (E) is Lb-smooth provided w < pk. In particular, for p
integral, all L e Lgni* (E) are LP-smooth.

Now for some examples. Let W be a (' * manifold and let & denote the product
bundle M x W over M. We identify C'"(E) with the ¢'* maps of M into W. If
s € "(E) then ds, is a linear map T'(M), -~ T(W),,,. Now suppose both M and W
are Riemannian. Then the space of linear maps of T(M), into T(W),,, has a
natural quadratic “Hilbert-Schmidt” norm (given by | T2 = trT*T) so in par-

ticular we can form |ds,||? for 1 < P < %, and if p is an even integer then it is
easily checked that L:C0"(E) — ¢'* (M, R) defined by L(s)(x) = ||ds,|? belongs to
Lgn? (E). We therefore have a natural ¢'* real valued function J on LI(E), called
the energy function of degree P, defined by J(s) = | ||ds,|? du(r) where for u we
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take the natural Riemannian measure on M. If n» = 1, so that M is (up to isom-
etry) either the interval [0, [] or the circle of length /, then we can take p = 2
(so that L?(H) is a Hilbert manifold) and we get for J the classical energy function
J:L¥E)— R, given by J(s) = [} ||s'(t)||*dt. The generalized Dirichlet problem
mentioned above reduces in thls case to the classical theory of geodesics of W
(with given end points or closed depending on whether M is an interval or a circle)
and in particular the classical smoothness theorems and Lusternik-Schnirelman
and Morse existence theorems for geodesics become special cases of the more
general theorems of this sort for the Dirichlet Problems associated to Lagrangians
of the “coercive linearly-embedded” type which we consider in the next section.

We now give a very general method for constructing polynomial Lagrangians
(which in particular includes the above example). We assume our bundle E is
embedded as a closed sub-bundle of a C® vector bundle & over M. This in itself is
no restriction; for example we can find a proper C'* embedding f of E, considered
as a ¢'” manifold, into a vector space V and then if 7:E — M is the projection,
et (w(e), f(e)) is a C'” proper fiber bundle isomorphism of E onto a closed C*
sub-bundle of the product vector bundle M x V. We note that LY(E) (pk > n) is
a (' submanifold of the Banach space L2(§). If L: O°°(§) C*(M, R) is an ele-
ment of Lgn? (£) then it is easily checked that L ’ C*(E):C*(E) - C*(M, R)is an
element of Lgny (£). From this we see easily the follovx ing.

LixearLy EMBEDDED LAcRANGIAN THEOREM. Let the C™ fiber bundle E over M
be a closed sub-bundle of a C* vector bundle & Let n, . .., n, be C” vector bundles
over M and let A,:C"(&) — C*(n,;) be C* linear differential operators of order
k, <k Let T bea C” section of the bundle L"(n,, . . ., n,; R;;) of r-linear functionals
onn @ @n, Then L:C*(E)— C*(M, R) defined by L(s)(w) = T(x)(A4s5(x),

, A s(z)) is an element of Lgn? (E) where = ky + -+ + k,. In particular if
I I, is @ C7 Riemannian structure for v, and p is an even positive integer then
L:C*(E) — C®(M, R) defined by Ls(x) = >7_, || A;s(x)|? is in LgnZ* (E).

Note that if W is a Riemannian manifold and we embed W isometrically in an
orthogonal vector space V (so £ = M X W isa closed sub-bundleof & = M x V)
then d:C®(&) — O (T*(M) = &)is a linear differential operator of order one so by
the above Ls(z) = ||ds,||” is an element of Lgn? (&), giving our previous example.

In the next section we will give some conditions on the linear operators 4; of
the above theorem that lead to Lusternik-Schnirelman, and Morse type existence
theorem and also smoothness theorems for the corresponding calculus of variations
problem.

4. Coercive, linearly embedded, Dirichlet problems. In this section £ is a C®
fiber bundle which is a closed sub-bundle of a €' vector bundle £ over M, pis a
strictly positive smooth measure on M, k is a positive integer, and p an even
integer with pk > n. Let o, € L2(E) and let X = Lﬂ(E)aG Let L € Lgn?* (E)
and define a ¢ function J: X — R by J(s) = { L(s)(x) du(x ). We shall describe
below conditions on L which guarantee that thls Dlrlchle‘o problem satisfies
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Lusternik-Schnirelman and Morse existence theorems ang also varioyugs SMoothnesg
theoremsg,

Let | IZ, be an admissible nopm for the Banacp Space L), Since Xisa
closed ('™ submanifold of L2(&) thig choice of norm induces o X the structure
of a complete Finsler manifold, Ip particular if s ¢ x then ||q.J, I = Sup {[dJs(v)“
Il =1, ¢ T(X),} is well defined. (

Drrinirroy, J satisfies condition (C) if for each subset of X such that J ig
bounded on g and [ dJ| is not bounded away from zero oy S, there existg a critica]
point of J adherent to g

The following theorem represents g combination of results due to the author
S. Smale, and J. T, Schwarty.

Tarormy. [ [ satisfies condition (C) and 45 bounded below, they, Jor each com,.
bonent X, of X there exists z, e Xy such that J(2y) = Inf () [ ze Xy} and moreoyper
J has at legs as many criticg] Pornts on X, qs cat (Xo) the Lusterni/c~Scknirelman
category of X,. Assummg J is not anywhere locally constant (q condition always
satisfied by “reasonable’ caleulus of variations problems) thepe exists X, e X Such
that J(2y) = Inf {J(x) I re X}, Finally assuming X g Riemanniay (le. p = 2)
and that the eritical points of J are nondegenemte, then the Morse inequalities are
satisfied.,

For fuly details on the above the reader jg referred to ¢he author’s Moy,
theory on Hilbert manifolds (Topology 2 (1963), 299—340), Lusterm’/c-Scbm’relman
theory on Banach manifolds (Topology 5 (1966), 115-132), g. Smale’s Morse theory

state theoremg to the effect that the functions J defined by sueh Lagrangians
satisfy condition (C) and are bounded hejoy and hence satisfy the conclusiong of
the above theorem, These definitjong and theoremsg Tepresent joing work by the
author and My, Karen Uhlenbeck.
Let oy, .., 7, be Riemannian vector bundles oyer M and Jet =@
“© 7, Let 4, O%(&) — C*(n,) denote kth order ¢» linear differentia] Operators
and let 4 — dieo-.g 4,:0°) C%Mm). We define explicit normg I s for

DeriNiTIoN. We say {4;}isan ample set of kth order lineqr differential operators
Jfor £ ir sl 7o + Z;"l 14:5)i 10 is an admissjble horm for the Space Lr(&) If

2, I4,5)l ;5 is an admissible nory, for L2(¢) then we shall say that {4} is a
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differential operators that {4} is ample if and only if it is “over determined elliptic”’
i.e. if and only if for each nonzero cotangent vector (v, ) of M the symbol of 4 at
(v, @), op(A) (v, @) £, — 1, 18 injective, and moreover that in this case A is strongly
ample if and only if in addition the equation du = 0 has only the zero solution in
L(&), = closure in L2(£) of (* sections of & with support disjoint from oM. Thus

TuEOREM. A necessary and sufficient condition that {4} be ample is that for
each nonzero cotangent vector (. ) of M the intersection of the kernels of the linear
maps ox(A) (@, £) & N be zero. If in addition there is no u € L2(&)q such that
Au=01=1,...,7 then {1} is strongly ample.

ExaMpLE. Let £ be a product bundle M x V, u the bundle LT, & =
T*(M) @ & and d:C* (&) — (" (n) the usual differential. Then d is a first order
linear differential operator and oy(d)(v, x}e = v @ €, 80 clearly {d} is ample.
Moreover du = 0 if and only if w is constant on each component of M. Since
elements of L¥(&), vanish on oM it follows that ker (d ' L)) =0 (and hence d
is strongly ample) if and only if each component of M has a nonempty boundary.

Now let F:J¥(&) — R be a ('* real valued function. Then for each s € M,
F l JE(E), is a €7 real valued function on the vector space JE(E),, soif s € C7(§)
we can form the second differential of F ] JE(E), at ji(s),, a bilinear functional on
JE(E), which we denote by 02F; (8), Then if u € O (&) we get a (7 real valued
funetion (Sszk(s)(jk(u),jk(u)) on M whose value at x is 8 F (), (UrW) Julw),)-

Drrixtrioy.  Let L € Lgng® (£) be defined by Lis)(x) = F(ji(8)s) where F is
a O® function on J¥(§). We say that L is (strictly) p-coercive if there exists &
(strongly) ample family {4,} of kth order linear differential operators for & such
that given s, w € c”(§)

szjk(s)(jk(u')a.jk(zl)) = z | At \LAiuHZ.
=1

The following is easily verified.

TusoreM. If {4} is « (strongly) ample set of kth order linear differential
operators for & then L e Lgni* (&) defined by

<

Lw) = 3 [ Aul”

1

il

I3

is (strictly) p-coercive.

CoroLLARY. IfE=M > Visa product bundle and d: 0% (£) —CZ(T*(M) @ &
is the usual differential, then L e Lgn? (§) defined by L(s) = lds||? is p-coercive and s
strictly p-coercive provided each component of M has nonempty boundary.

There is a generalization of the above theorem in case p = 2, which reduces to
the preceding theorem if we take T = A*4.

TrarorEM. Let & bea Riemannian bundle with inner product { , g 0T &, and let
T:0% (&) — C7 (&) bea selfadjoint linear differential operator of order 2k on & which
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is strongly elliptic (i.e. ol TYw. @)1 &, — &, is positive definite for each nonzero
cotangent vector (v, x) of M). Then the function J 1 LYE)s;; — R defined by J(s) —
T (Ts(@), s(x)), du(x) for s € C(E) can be written in the Jorm J(s) = | L(s)(x) du(x)
where L & Lgn?F (&) is 2-coercive, und is strictly 2-coercive if T is strictly positive on

L3 (£)o.

An interesting application of the above theorem is obtained by taking & = M x V
and letting 7' be the kth power of the Laplace Beltrami operator for M (perhaps
adding a constant larger than the smallest eigenvalue on L2(&), s0 as to make it
positive). This gives rise to the kth order energy function J whose extremals are
called polyharmonic maps. See Fells and Sampson, Energie et déformations en
géométrie differentielle, Ann. Inst. Fourier 14 (1964), 61-69,

The following is our basic theorem in the direction of giving sufficient con-
ditions on a linearly embedded Lagrangian in order that the associated Dirichlot
problems should satisfy condition (C') and be bounded below, and hence satisfy the
conclusions of Lusternik-Schnirelman theory as stated in the first theorem of this
section.

TrarorEM.  Let L € Lgn?* (&) he p-coercive, and tf the fiber of the bundle K is not
compact assume L is even strictly p-coercive. Then J (LK) — R defined by
J(s) = | L(s)(x) du(z) is bounded below and satisfies condition (C).

The details of the proof of this theorem will be found in §19 of Foundations of
global non-linear analysis.

An interesting problem, which scems not to have been attacked in any general-
ity, is to find conditions in the case p = 2 that insure the nondegeneracy of the
critical points of a Dirichlet problem of the above type. Generalizing from a well-
known theorem of M. Morse in the geodesic case one would be led to conjecture
that for “almost all”” choices of Dirichlet boundary conditions ¢, (in some ap-
propriate sense) all the eritical points of J :L%(E)aa“ — R are nondegenerate.
Presumably this might follow from some transversality argument. If J(s) =
§ (Ts(x), s(x)), du(x) as above then S. Smale has given a beautiful generalization of
the Morse Index Theorem that allows one to compute the index of a nondegenerate?
critical point of J. (On the Morse index theorem, J. Math. Mech. 14 (1965), 1049-
1055 and Corrigenda 16 (1967), 1069-1070).

We now comment briefly on smoothness theorems for critical points in the
present context. We first consider the case p — 2 and J LK), — R defined by
J(s) = § (T's(x), s(x)) du(r) where T:C7(&§) — C”(&) is a selfadjoint strongly
elliptic linear differential operator of order 2k. Tn this case Mrs. Karen Uhlenbeck
has proved in her thesis that if ¢ ¢ L2 (E) then every critical point of J is in
L7 (E), so in particular we have the generalized Weyl Lemma, that if 9M — &
orif o € C*(E) then all critical points of J are (. The proof will be found in §19
of Foundations of global analysis for the case that 7 is “quasi scalar” i.e. where
ool T)(v, ) 1 &, — &, is always multiplication by a scalar (e.g. where 7' is the kth
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power of the Laplace Beltrami operator on M, in which case oo {T) (v, ) is multi-
plication by [|v||2*). In this generality the theorem was first proved by Dr. John
Saber in his thesis (Brandeis 1965). Saber also proved that condition (C) was
satisfled in this case.

In her thesis Karen Uhlenbeck has obtained interesting smoothness theorems
for the case p > 2. For simplicity we state them in something less than their full
generality We assume 0M = @ and that J:L?(E) — R is of the form J(s) =
Il 4s(x)|” du(x) where A is an elliptic kth order linear differential operator
A:0* (&) - C*(£) having scalar symbol. Then every critical point of J lies in the
Holder space %% E) where o = 1/p — 1. In particular this covers the interesting
geometric case where M is Riemannian, £ = M x W, &=M x W (V an orthog-
onal vector space) and 4 is a power of the Laplace-Beltrami operator of M.

5. Beyond the linearly embedded case. The problems we have been considering
are of a basically nonlinear character, and it is somewhat less than satisfying to
have to treat them by the “linear embedding” technique (i.e. embedding £ in a
vector bundle & and describing admissible Lagrangians on K in terms of linear
differential operators on £).

The situation is in many ways parallel to that which obtains in the study of
Riemannian geometry. One can develop the whole theory of Riemannian mani-
folds either intrinsically, or alternatively one can consider Riemannian manifolds
M isometrically embedded in an orthogonal vector space V (by Nash’s embedding
theorem this is no loss of generality) and use the linear structure of V' to define such
concepts as curvature, parallel translation etc. in M. There are even certain
technical advantages in this second approach, in that one can avoid developing
all the complicated machinery of connections in principal bundles etc. that usually
go along with the intrinsic approach. Yet there seems to be virtually unanimous
agreement that both for aesthetic reasons and in order to get a deeper understand-
ing of what is going on, the intrinsic approach is preferable and indeed that the
technical machinery that one develops in the intrinsic approach is worth studying
for its own sake.

In the present approach to global nonlinear analysis and the calculus of varia-
tions we appear to be in a stage of development analogous to that of Riemannian
geometry just before E. Cartan. We can formulate the foundations of the theory
and the questions we would like to attack intrinsically, but we simply do not have
the machinery necessary to carry out the details of the theory intrinsically, so to
prove theorems we are forced to fall back on embedding our problems in a linear
situation.

Needless to say the next and most exciting stage of the theory lies before us;
gaining the insights, the techniques, and the machinery necessary to handle global
nonlinear problems intrinsically. It is already becoming clear that this will involve
a study of the intrinsic Finsler geometry of the manifolds L7(H) that are induced
by certain differential-geometric structures on £ that come from Lagrangians on
JEE).
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Both W. Klingenberg and H. Eliasson, for example, have handled the geodesic
problem intrinsically from this point of view. And in her thesis Karen Uhlenbeck
has made considerable progress in handling quite general classes of caloulus of
variations problems in several independent variables intrinsically. As one would
hope, there are definite indications that the machinery involved ig independently
interesting and suggests new and interesting global questions in nonlinear analysis.
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