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REDUCTION OF VARIABLES FOR MINIMAL SUBMANIFOLDS 

RICHARD S. PALAIS AND CHUU-LIAN TERNG 

ABSTRACT. If G is a compact Lie group and M a Riemannian G manifold, 
then the orbit map H: M -- M/G is a stratified Riemannian submersion and 
the well-known "cohomogeneity method" pioneered by Hsiang and Lawson 
[HL] reduces the problem of finding codimension k minimal submanifolds of 
M to a related problem in M/G. We show that this reduction of variables 
technique depends only on a certain natural Riemannian geometric property 
of the map II which we call h-projectability and which is shared by certain 
other naturally occurring and important classes of Riemannian submersions. 

Suppose LU is a manifold of smooth maps of a compact m-dimensional manifold 
M into an n-dimensional manifold N, and J: LU --- R is a Lagrangian calculus of 
variations functional on M, i.e. J('p) = f L(Wp) d,a, where ti is a smooth measure on 
M and L is a differential operator associating a real-valued function L(Wp) to each 'p 

in LU. If x, ... , xm are local coordinates in M and yl, . .. , yn are local coordinates 
in N, then the Euler-Lagrange equations corresponding to &J = 0 are a formally 
determined system of n partial differential equations in the m independent variables 
X1, ... , Xm for the n unknown functions Yi = yi o p. Finding solutions to such a 
problem is usually a difficult problem, and in fact the degree of difficulty is roughly 
measured by m. For example, if m = 0 (i.e. M is a point) we are really just 
looking for extremals of a real-valued function on N, and if m = 1 we only have 
to solve a system of n ordinary differential equations. It is therefore natural to 
attempt somehow to reduce the number of "effective" variables x1, ... ,xm. One 
of the most successful techniques for accomplishing this goal has been to exploit 
some symmetry of the functional J. Suppose G is a compact Lie group acting as 
a group of diffeomorphisms both of M and of N. Then G acts on the space of 
maps p: M -, N by (g . 'p)(x) = g('p(g-' x)) and we suppose that if 'p is in LU 
then so is g. 'p. Let us also suppose that J is G-invariant, i.e. J(g .') = J('p). In 
these circumstances (which obtain frequently in important geometric problems) it is 
natural to look for solutions 'p of SJ = 0 which do not "break the symmetry" of the 
problem, i.e. those 'p belonging to the set MJlG = {'p E MIg . 'p = 'p for all g C G}. 
Looking back to the definition we see that these are just the G-equivariant maps 
p: M -, N. 

Now it is a general fact (see [P]) that 9flG is a smooth submanifold of 9? and 
that if 'p is in 9J?G then 'p is a critical point of J if and only if it is a critical point 
of JI9)?G. What makes this important is that (somewhat imprecisely) 9JrG can be 
identified with maps of the orbit space M/G into N, so that if M/G has dimension k 
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(i.e. the maximum dimension orbits of M have codimension k) and we are interested 
in equivariant solutions of our extremal problem, then we have effectively reduced 
the number of independent variables in our Euler-Lagrange equations from m to k. 
This reduction of variables technique is usually referred to as the "cohomogeneity- 
k" method or, when k = 0 (so M is a single G-orbit), as the "orbit method". 
Perhaps the most classical example of this method (for k = 1) is the derivation 
of an easily solved ordinary differential equation for radially symmetric harmonic 
functions on Rm (here M is the m-disk, N = R, L(p) - JVp02, and G = SO(m)). 
A more sophisticated application of the cohomogeneity-1 method is H. Weyl's enor- 
mous simplification of the derivation of the Schwartzchild solution of the Einstein 
gravitational field equations [W]. 

In [HL] Hsiang and Lawson developed the cohomogeneity method for the mini- 
mal submanifold problem, and Hsiang and his students (cf. [H2] for further refer- 
ences) have made many striking applications, particularly of the cohomogeneity-1 
method. Recently Ferus and Karcher [FK] extended the Hsiang-Lawson technique 
in an interesting way: they showed that the orbit foliations coming from orthogonal 
representations, used by Hsiang, could be replaced by foliations of Euclidean space 
by isoparametric hypersurfaces of spheres, thereby divorcing the cohomogeneity 
method from the symmetry group G. Based on this observation and the recent 
generalization of isoparametric theory to arbitrary codimensions [CW, T], we have 
noted that there is a still more general (and natural) setting for reducing variables 
in the minimal submanifold problem. The main goal of this note is to explain 
this method. It turns outthat the essential property for reducing variables is the 
existence of "h-projectable Riemannian submersions", which we will define below. 

Let 7r: E -, B be a submersion of Riemannian manifolds, V the vertical distri- 
bution, defined by V(x) = ker(d7rx), and Si the horizontal distribution defined by 
S5(x) = the orthogonal complement of V(x) in TEE. Then any fiber F = 7r-'(b) 
is a submanifold of E, V(x) = TFs, and S5(x) = v(F)z. A vector field X of E 
is called horizontal if X(x) for all x in E, and X is called projectable if there is a 
vector field ( on B such that d7r(X) = (, i.e. d7r(X(x)) = ~(ir(x)) for all x in E. 
Horizontal, projectable vector fields are also called basic. Clearly, given any smooth 
vector field ( on B there is a unique basic field (* on E with d7r((*) = ,. We call 
(* the horizontal lift of (. A curve a on E is called horizontal if a'(t) C S5(a(t)). 
Let a be a smooth curve on B with a(O) = b. Then given x c 7r`(b) there is a 
unique horizontal curve a* on E such that a**(0) = x and 7r(a*) = a. This a* is 
called the horizontal lift of a through x. 

A submanifold N of E will be called projectable if N = 7r-'(M) for some sub- 
manifold M of B. A deformation Ft of N is called projectable if each Ft (N) is pro- 
jectable, and Ft is called horizontal if each curve Ft(x) is horizontal, or equivalently 
if the deformation vector field of Ft is horizontal. Ft is a 7r-invariant deformations 
of N if it is both projectable and horizontal. Clearly if ft: M -> B is a deformation 
of M then there is a unique 7r-invariant lifting Ft: N -- E of ft; namely, for each x 
in N, Ft (x) is the horizontal lift of the curve ft(7r(x)) through x, and the deforma- 
tion field of Ft is the horizontal lift of the deformation field of ft. Thus there is a 
bijective correspondence between the 7r-invariant deformations of N = 7r-'(M) in 
E and deformation of M in B. 

Let 7r: E -- B be a Riemannian submersion [0], i.e. we assume d7rx maps S5(x) 
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isometrically onto TB,(z) for all x in E. We define a horizontal vector field h on 
E, called the fiber mean curvature vector field, as follows: if x c F = 7r-'(b) then 
h(x) is the mean curvature vector of F in E at x. The following proposition follows 
by a straightforward calculation. 

1. PROPOSITION. Let 7r: E -> B be a Riemannian submersion, M a submani- 
fold of B, and N = 7r-'(M). Let H denote the mean curvature of M in B, H the 
mean curvature of N in E, H* the horizontal lifting of H to N, and h the fiber 
mean curvature vector field in E. Then H = P(h) + H*, where P; is the orthogonal 
projection of TE; onto v(N)z. 

We note that if F = 7r-'(b) is any fiber of E then we have a canonical global 
parallelism, the 7r-parallelism, in its normal bundle v(F) = i IF; namely, a section 
( of v(F) is 7r-parallel if it is projectable, i.e. if d7r(((x)) is independent of x in 
F. Clearly, each e C TBb defines a unique 7r-parallel field e*, and in particular an 
orthonormal frame ei for TBb gives an orthonormal framing of v(F) by 7r-parallel 
fields e . Recall that by definition the fiber mean curvature field h is given along 
F by h(x) = Ztr(Ai(x))e (x), where Ai(x) is the shape operator for F at x in the 
direction e (x). 

2. DEFINITION. A Riemannian submersion 7r: E -- B is called h-projectable 
if the fiber mean curvature vector field h is projectable. We call 7r: E -- B quasi- 
homogeneous if the eigenvalues of the shape operator of any fiber F = 7r-l (b) with 
respect to any 7r-parallel field ( are constant (depending only on d7r((), not on x 
in F). 

It is immediate from the above formula defining h that a quasi-homogeneous 
Riemannian submersion is h-projectable. We now state our main theorem. 

3. THEOREM. Let 7r: E -> B be an h-projectable Riemannian submersion, and 
M a submanifold of B. Then a submanifold N = 7r- '(M) of E is minimal in E if 
and only if N is a stationary point of the area functional A with respect to all the 
7r-invariant deformations of N in E. 

PROOF. We have H = P(h) + H* by Proposition 1. Since h is projectable and 
d7r,(v(N)z) = v(M),(z), P(h) and therefore H is projectable. Let ( denote the 
normal field d7r(H) of M in B. Then ft(x) = exp,(t((x)) defines a deformation of 
M in B with ( as deformation field. Let ft* be the induced 7r-invariant deformation 
of N in E as in Proposition 1. Then the deformation field of ft* is H. Let A(t) = 
the area of ft* (N), then 

A'(O) = H dv. 

If N is a critical point of A with respect to all 7r-invariant deformations, then 
A'(O) = O, hence H = O. O 

Let 7r: En+k Bk be an h-projectable Riemannian submersion. Then the 
above theorem implies that the minimal equation for finding (n + r)-dimensional 
7r-invariant minimal submanifolds in E is reduced to an equation in r independent 
variables. To be more specific, if the fiber of 7r is compact we define v: B -- R by 
v(b) = the volume of 7r-'(b). Then the volume of 7r-'(M) is the integral of the 
positive function v with respect to the induced metric on M. Hence we have 
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4. THEOREM. Suppose 7r: (E, 9E) -* (B, g) is an h-projectable Riemannian 
submersion. Then r- l(Mr) is minimal in E if and only if Mr is minimal in 
(B, gr), where gr = (V2/r)g and v(b) = the volume of 7r-'(b). 

5. REMARK. If 7r is h-projectable, then the vector equation H = P(h) + H* 
in Proposition 1 is equivalent to the equation d7r(H) = d7r(P(h)) + H. Hence one 
can reduce the problem of finding 7r-invariant minimal submanifolds N = 7r-l(M) 
of E to the problem of finding a submanifold M of B with the prescribed mean 
curvataure vector H = -d7r(P(h)). We can also reduce the problem of finding 
constant mean curvature hypersurfaces N in E to the problem of finding a hyper- 
surface M of B with the prescribed mean curvature H = - dir(P(h)) I + c, for some 
constant c. 

For many applications we need to consider stratified submersions. 
6. DEFINITION. Suppose E is a complete Riemannian manifold, and B = 

U, B, is a stratified set such that each B, is a Riemannian manifold. A continuous 
map 7r: E -> B is called a stratified submersion if E, = 7r'-(B,) is a stratification 
of E, and 7ra = 7rlE,: E, -) B, is a submersion for each a. Then 7r is called a 
stratified Riemannian submersion if each 7r, is a Riemannian submersion, and 7r 
is called h-projectable (resp. quasi-homogeneous) if the mean curvature vector of 
7r1(b) in Eo, is the mean curvature vector of 7r '(b) in E for all a and b in BO, 
and each 7r, is h-projectable (resp. quasi-homogeneous). 

7. DEFINITION. M is a stratified subset of a stratified set B if M n B, is 
a submanifold of BO, for each stratum BO. A deformation ft: M -- B is strata 
preserving if ft(M n BO) is contained in B, for each a. A submanifold N of 
E is ir-invariant if N is of the form r-'(M) for some stratified subset M of B. 
Given a strata preserving deformation ft of M into B, then there is a unique 
horizontal strata preserving lifting Ft of ft. We call such a deformation of N a 
7r-invariant strata preserving deformation. Then the following is a straightforward 
generalization of Theorem 4 above. 

8. THEOREM. Let 7r: E -+ B be a stratified h-projectable Riemannian submer- 
sion. Then a 7r-invariant submanifold N of E is minimal in E if and only if N 
is a critical point of the area functional with respect to all the 7r-invariant strata 
preserving deformations of N in E. 

9. EXAMPLES. We will give two classes of quasi-homogeneous stratified Rie- 
mannian submersions. 

(i) Let G be a compact Lie group acting isometrically on a complete Riemannian 
manifold E. The mean curvature vector field H of an orbit Gx in E is clearly a 
G-equivariant normal field, and hence H(x) lies in the fixed point set of the isotropy 
representation at x. But this fixed point set is the tangent space of the union of 
the orbits of type (Gm). Then the orbit space E/G is naturally stratified by the 
orbit types, and each stratum has a natural metric such that the projection map 
ir: E -- E/G is a quasi-homogeneous Riemannian submersion. Theorems 3, 4, and 8 
for this case were proved in [HL]. 

(ii) A compact submanifold Mn C Rn+k is called isoparametric [T] if v(M) is flat 
and the principal curvatures of M with respect to any local parallel normal field are 
constant. Then there is a Weyl group W associated to M acting on Rk = V(M)x", 
and multiplicities mi. Let B be the flat simplicial cone defined by the closure of a 
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Weyl chamber of W in Rk with the natural simplicial stratification. It turns out 
that v(M) has no holonomy, so given v in B there is a unique parallel normal field v* 
on M. Moreover, the parallel set MV = {x + v* (x) x c M} is always a submanifold 
of Sn+k-1 for v in BnSk+-. The parallel foliation {MvIv in BnSk l } is a singular 
foliation of Sn+k-1. Moreover, BnSk-l = Sk-l/W and r: Sn+k- I_Sk-l/W is a 
quasi-homogeneous Riemannian submersion, where 7r(x) = v for x C Mv. For k = 3, 
the minimal equation of 7r-invariant Nn in Sn+' depends only on S2/W and the 
multiplicities mi. Hence the construction of cohomogeneity-1 minimal hyperspheres 
in Sn+1 given in [H2] automatically produces more minimal hyperspheres in Sn+', 
which may not be of cohomogeneity one. 
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