


Annals of Mathematics Studies

R Number 46




10.
11.
15.
16.
17.
19.
20.
21.
22.
24.

26.
27.
28.

30.
31.
32.
33.

34.

36.
37.
38.
39.

ANNALS OF MATHEMATICS STUDIES
Edited by Robert C. Gunning, John C. Moore, and Marston Morse

Algebraic Theory of Numbers, by HERMANN WEYL

Consistency of the Continuum Hypothesis, by Kurt GOpEL

The Calculi of Lambda-Conversion, by Aronzo CHURCH

Topics in Topology, by SoLOMON LEFSCHETZ

Introduction to Nonlinear Mechanics, by N. KryLorr and N. BoGoLIUBOFF

Topological Methods in the Theory of Functions of a Complex Variable, by MarsToN Morsg
Transcendental Numbers, by CarL Lupwic SIEGEL

Probléme Général de la Stabilité du Mouvement, by M. A. LIAPOUNOFF

Fourier Transforms, by S. BocuNer and K. CHANDRASEKHARAN

Contributions to the Theory of Nonlinear Oscillations, Vol, f, edited by S. LEFSCHETZ
Functional Operators, Vol. I, by Jonx voN NEUMANN '
Functional Operators, Vol. I1, by Jou~ voN NEUMANN

Contributions to the Theory of Games, Vol. I, edited by H. W. Kunn and A. W. Tucker

Contributions to Fourier Analysis, edited by A. Zycmunp, W. TraNsug, M, Morsg, A, P. Car-
DERON, and S. BOCHNER

A Theory of Cross-Spaces, by ROBERT SCHATTEN

Isoperimetric Inequalities in Mathematical Physics, by G. PoLva and G. Szeco
Contributions to the Theory of Games, Vol. 11, edited by H. W. Kunn and A. W. Tvcker
Contributions to the Theory of Nonlinear Oscillations, Vol. II, edited by S. LEFscHETZ
Contributions to the Theory of Riemann Surfaces, edited by L. AHLFORs et al.
Order-Preserving Maps and Integration Processes, by Epwarp J. McSnaxz

Curvature and Betti Numbers, by K. YaNo and S. BocHNER

Contributions to the Theory of Partial Differential Equations. edw-2 o0 _ z:x - = .o
and F. Joun

Automata Studies, edited by C. E. SHaNNox and |. McCazt

Surface Area, by LAMBERTO CESARI

Contributions to the Theory of Nonlinear Os.:llzzzze W0 0 LE e
Lectures on the Theory of Games. by Har 1o W0 3w

Linear Inequalities and Related Svsteme vz om0 =0 0 v oo T

Contributions to the Thecrw & G- U " LR . . TR el
P. WoLFE

Contributions tc the Treirn 1 o s z S ‘ p— <=
Contributions =7 ime Tre - s . R QA ] T [

Lectures on & omer 1702

R N Ut

RarmaiZozo-

N- e - - El



SEMINAR ON
TRANSFORMATION
GROUPS

BY

Armand Borel

WITH CONTRIBUTIONS BY

G. Bredon
E. E. Floyd
D. Montgomery

R. Palais

PRINCETON, NEW JERSEY
PRINCETON UNIVERSITY PRESS
1960



Copyright © 1960, by Princeton Universizr fri::

A1l Rights Reservec
L. C. Card 60-12225

Printed in the Unitec Ztatss -7 Lozricl



INTRODUCTION

TABLE OF CONTENTS

CHAPTER I: COHOMOLOGY MANIFOLDS, by A. Borel

§1.
52,
§3,
§ho
§5.

Preliminaries

Local Betti Numbers Around a Point

The Notlon of Cohomology Manifold

Some Properties of Cohomology Manifolds
Appendix on Cohomological Dimension

CHAPTER II: HOMOLOGY AND DUALITY IN GENERALIZED MANIFOLDS

by A. Borel

§1. Homology Groups for Locally Compact
Spaces

§2. Duality in Generalized Manifolds

§3. Existence of Pundamental Sheaves for
Homology

§4. Closed Subsets of Euclidean Spaces

§5. Complements

CHAPTER III: PERTIODIC MAPS VIA SMITH THEORY, by E. E. Floyd

§1. The Leray Spectral Sequence

§2. Transfer Homomorphism

§3. An Huler Characteristic Formula

§4. The Smith Sequences

§5. Orbit Spaces of Finite Groups

CHAPTER IV: THE ACTION OF Z_ OR 7! GLOBAL THEOREMS,

by A. Borel

§1. Transformation Groups

§2. Some Remarks on the Cohomology of BG

§3. The Space XG

§4. The Fixed Point Set of a Prime Period
Map in a Cohomology Sphere

§5. The Action of the Circle Group

§6. The Quotlent of a Cohomology Sphere

by Zp or T!

CHAPTER V: THE ACTION OF OR T': LOCAL THEOREMS, by

A.
§1.

§2.

§3.

§h.

Borel

Conservation of Cohomological Local
Connectedness

The Fixed Point Set of a Prime Period
Map in a Cohomology Manifold

The Fixed Point Set of a Toral Group
in a Cohomology Manifold

Remarks on Local Groups of the Quotilent
Space

Page

® O WV ~ U

23

23
25

a7
30
31

35
35
37
39
Lo
L3

L9

ko
50
52

55
60

63

67
67
h
80

83



INTRODUCTION

TABLE OF CONTENTS

CHAPTER TI: COHOMOLOGY MANIFOLDS, by A. Borel

§1.
§2.
§3.
§ho
§5.

Preliminaries

Local Bettl Numbers Around a Point

The Notion of Cohomology Manifold

Some Properties of Cohomology Manifolds
Appendix on Cohomologlcal Dimension

CHAPTER II: HOMOLOGY AND DUALITY IN GENERALIZED MANIFOLDS

by A. Borel

§1. Homology Groups for Locally Compact
Spaces
§2. Duality in Generalized Manifolds
§3. Existence of Fundamental Sheaves for
Homology
§4. Closed Subsets of Euclidean Spaces
§5. Complements
CHAPTER III: PERIODIC MAPS VIA SMITH THEORY, by E. E. Floyd
§1. The Leray Spectral Sequence
§2. Transfer Homomorphlsm
§3. An FEuler Characterilstic Formula
§4. The Smith Sequences
§5. Orbit Spaces of Finite Groups
CHAPTER IV: THE ACTION OF Z _  OR 7. GLOBAL THEOREMS,
by A. Borel
§1. Transformation Groups
§2. Some Remarks on the Cohomology of BG
§3. The Space Xg
§4. The Fixed Point Set of a Prime Period
Map in a Cohomology Sphere
§5. The Action of the Circle Group
§6. The Quotient of a Cohomology Sphere
by zp or T!
CHAPTER V: THE ACTION OF OR T': LOCAL THEOREMS, by
A. Borel
§1. Conservation of Cohomological Local
Connectedness
§2. The Fixed Point Set of a Prime Period
Map in a Cohomology Manifold
§3. The Fixed Polnt Set of a Toral Group
in a Cohomology Manifold
§4. Remarks on Local Groups of the Quotient

Space

Page

@ O WV = \w

s

23

23
25

27
30
31

35
35
37
39
40
L3

Lg

k9
50
52

55
60

63

67
67
T
80

83



monni i

TEIPTER X

CHAPTER XI:

CONTENTS

TSOTROPY SUBGROUPS OF TORAL GROUPS, Db
Y
E. E. Floyd

51. Introduction
§2. A Regular Convergence Theorem
2, Two Lemmas
§4. Proof of Theorem 1.2
PINITENESS OF NUMBER OF ORBIT TYPES, by
G. E. Bredon
§1. Preliminary Remarks
§2. Statements of the Main Results
§3. Proof of the Main Theorem

T: SLICES AND EQUIVARTIANT IMBEDDINGS, by

R. S, Palals
§1. Notation and Preliminaries
§2., Orblt Types

§3. Slices
§k. Equivariant Tmbeddings in Eucllidean
Space

ORBITS OF HIGHEST DIMENSION, by D. Montgomery
§1. Introductlon

§2., The Set B

§3. The Set D

§4. The Set B N D

§5. Conditions Under Which dimZD ¢ n-=-2
§6. Remarks on the Differentiable Case

THE SPECTRAL SEQUENCE OF A BIFILTERED MODULE,

by A. Borel

§1. Spectral Sequences

§2. The Notion of Bifiltration

§3. The Terms Eo and E1

§4, Two Further Assumptions

§5. The Term E,

§6. Homomorphisms

§7. Remarks

THE SPECTRAL SEQUENCE OF FARY, by A. Borel
§1. Sheaves
§2. Continuous Maps
§3. The Spectral Sequence of Fary
§h. Locally Compact Spaces

Page

85
85
86
89
90

93
93
93
95

101
101
10k
105

117
117
17T
121
123
125
128

133
133
134
136
139
Th
142
Thi

145
145
146
149
152



CHAPTER VI:

CHAPTER VII:

CHAPTER VIITI:

CHAPTER IX:

CHAPTER X:

CHAPTER XI:

CONTENTS

TSOTROPY SUBGROUPS OF TORAL GROUPS, by
E. E. Floyd

§1. Introduction
§2. A Regular Convergence Theorem
§3. Two Lemmas
§h. Proof of Theorem 1.2

FINTTENESS OF NUMBER OF ORBIT TYPES, by
G. BE. Bredon
§1. Preliminary Remarks
§2. Statements of the Maln Results
§3. Proof of the Maln Theorem

S, TCES AND EQUIVARIANT IMBEDDINGS, by
R. S. Palais
§1. Notation and Preliminaries
§2. Orblt Types

§3. Slices
§4. Equivariant Imbeddings in Fuclidean
Space

ORBITS OF HIGHEST DIMENSION, by D. Montgomery
§1. Introduction

§2. The Set B

§3, The det D

§4. The Set BN D

§5. Conditions Under Which dim,D ¢ n - 2
§6. Remarks on the Differentiable Case

THE SPECTRAL SEQUENCE OF A BIFILTERED MODULE,

by A. Borel

§1. Spectral Seguences

§2. The Notion of Bifiltration

§3. The Terms EO and E1

§4. Two Further Assumptions

§5. The Term E2

§6. Homomorphisms

§7. Remarks

THE SPECTRAL SEQUENCE OF FARY, bty A. Bore.
§1. Sheaves
§2. Continuous Maps
§3. The Spectral Sequence of Fary
§k. Locally Compact Spaces

93
93
93
95

101
101
10k
105

1T
M7
117
121
123
125
128

133
133
134
136
139
141
The
Thk
145
145
146
149
152



CONTENTS

CHAPTER XII: FIXED POINT THEOREMS FOR ELEMENTARY
COMMUTATIVE GROUPS I, by A. Borel

§1. Some Fiberings
§2. The Topolegy of the Leray Sheaf
§3. Fixed Polnt Theorems
§4. Applications to Projective Spaces
§5. Applications to Compact Lie Groups
§6. Applications to Homologically Kahlerian
Manifolds
CHAPTER XIII: FIXED POINT THEOREMS FOR ELEMENTARY
COMMUTATIVE GROUPS II, by A. Borel
§1. Notation
§2. Cohomology Spheres
§3. Some Local Concepts
§4. Cohomology Manifolds

CHAPTER XIV: ONE OR TWO CLASSES OF ORBITS, by A. Borel
§1. One Class of Orblts on Spheres

§2. A Sufficient Condition for the Existence
of Fixed Points on RN

§3. Two Classes of Orbits on Euclidean Space
CHAPTER XV: FIXED POINT SETS AND ORBITS OF COMPLEMENTARY

DIMENSION, by G. E. Bredon

§1. Introduction

§2. Preliminary Results

§3. A Theorem on Cross-Sectlons

§4. Case I. rank (G) = rank (H)

§5. Case II. rank (H) < rank (G)

§6. Rank One Case

§7. A Local Cross-Section for the Orbits
of G Near F

§8. Conclusion of the Proof of Theorem 1.4

CHAPTER XVI: REMARKS ON THE SPECTRAL SEQUENCE OF A MAP,
by A. Borel

§1. Cohomology with Compact Supports

§2. The General Case

§3. Inductive Limits

§4. On the Leray Sheaf

§5. A Case of Validity for the Kunneth Rule

Page

157
157
160
162
167
169

170

173
173
175
180
181

185
185

188
190

195
195
198
207
211
21k
215

223
230

233
233
235
239
241
243






SEMINAR ON TRANSFORMATION GROUPS







INTRODUCTION

In this book, a transformation group is a compact Lie group G
acting on a topological, usually locally compact, space X. Transforma-
tion groups are discussed mainly from the point of view of algebralc
topology, and the problems most often center around relstions between
topological properties of G, X, the fixed point set, the orbits, and
the space of orblts X/G. A typical topic along these lines, and chrono-
logically one of the first ones, is P. A. Smith's theory of prime period
maps of homology spheres.

Apart from some modifications and additions, this book consists
of the Notes of a Seminar held at the Institute for Advanced Study in
1958-59. Familiarity with the basic notlons in the theory of transforma-
tion groups and with algebralc topology is assumed. As to the latter, the
results concerning sheaves, spectral sequences and fibre bundles, for which
references to the expositions of Cartan, Godement, Steenrod or the under-
signed can be made, are usually taken for granted. However, certain topics
for which this is not possible are given an independent discussion. As a
result, five chapters (I, II, X, XI, XVI) are concerned with questions of
algebraic topology and make no mention of transformation groups. We first
briefly summarize those.

Chapter I is devoted to cohomology manifolds. These are spaces
which have the local cohomological properties of manifolds. The definition
adopted here is equivalent to that of a locally orientable generalized
manifold in the sense of Wilder. Chapter II introduces a homology theory
for locally compact spaces and uses it in order to derive a Poincaréd
duality theorem for cohomology manifolds. Chapter X is purely algebraic,
and 1is concerned with the spectral sequences attached to a differential
module endowed with two filtrations. The discussion is carried only as
far as is needed to supply a convenient algebraic framework for the dis-
cussion of Fary's modification of the spectral sequence of a map (XI). It
1s obtained by combining Leray's filtration with a filtration Stemming
from a decreasing sequence of closed subspaces. To Chapter XVI we have
relegated some remarks about the spectral sequence of a map, including a
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prief summary of its definition, 2 procedure for pa
structure over the cohomology of the base, & discus

supports, & sufficient condition under which the s%
in a fibre pundle 1s the cohomology ©f the fibre, ard =L srriicati
the cohomology of certain products.

As to Chapters 1 and II, the undersigned wouls Life 1T point
out that cohomology manifolds are emphasized for TeCnTLITEL ~-nvenience
pather than for the sake of generality. When it comes T- ~enif21AS,

genuine ones are of the course the mosb important °nes; Ehetol s:erepentiable
tpansformation groups already form a very interesting gpecizl Case. How-
ever, if one does not wish to assumne that all group acTicnE ‘+-ciuding
those on the one point compactification of a euclidean

entiable, then assumptions of a cohomological character 2re w0 Hore

18

tractable with the methods used in this sewlnar and have & =°T nereditary"

[

character (¢.g., Theorem p.10 (b) of I, or 3.2 of V are fa’s >y mani-

folds).

The discussion of transformation groups starts with Chapter 117,
where Floyd gives a sheaf -theoretic interpretation of Smith's theory of
prime periocd maps and applies the transfer homomorphis: ©o the discussion
of the orbit space of a finite group-

prime periocd maps are also studied in Chapters IV and V, to-
gether with the action of the circle group T], from a
view. It consists of & systematic ygse of the twisted product X =
X XGEG of X with & universal pundle for G- This space On One nand 1is ¢
Fipre bundle OVer the classifying space Bg of G, with fivre X, and

gifferent point of

on the other hand it has & projection n, on X/G, such that the inverse
image of a point Yy of X/G can be identified with the classifying space
of the stabllity group of any point in this orbit. It allows us to tie
together the cohomology groups of X, %x/G, and the fixed point set T,
with those of the classifying spaces of the stabllity groups and of G-
After a fevw general remarks about XG’ Chapter IV proves various, nostly
known, results apout prime period maps on homology spheres and thelr
analogues for the circle group: Chapter V is devoted O the local theorer
for these two Ccases, stating mainly that F and X/G are cohomologicall}
locally comnected if X is, and that F is a cohomology manifold if

X 1is.

The discussion of elementary apellan p-groups (by which we mean
direct products of cyclic groups Zp of order P if p 1is prime, of
¢circle groups if p = o) 1is resumed in Chapters XII, XI1I, with the hell
of Fary's spectral sequence. In Chapter XII, it is shown that 1f X 1is
totally non-~homologous to zero in XG’ then G has fixed polnts. In
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Chapter XIII a relation 1s obtained between the dimensions of X, F, and
the fixed point sets of the subgroups of index p if p is prime, or of
the closed connected subgroups of codimension 1 4if p = 0, when X 1is
a cohomology sphere or a cohomology manifold. In contrast with the re-
sults of Chapters IV, V, those of Chapters XII, XIII do not seem to follow
by induction from the case G = Zp, Tl

Chapters V to IX are devoted to some known basic theorems: the
local finiteness of the number of orbit types in a cohomology manifold,
first when G 1s a torus (VI), and then in the general case (VII); the
existence of equivariant embeddings in euclidean spaces and of a slice
(VIII); various results concerning the orblts of the highest dimension
in a cohomology manifold (IX).

In Chapter XIV it is shown that if a compact Lle group G acts '
effectively on a sphere with one class of orbits and is not transitive,
then G = T1, SU(2) and G acts freely, and that if G acts on
euclidean space with two classes of orbits, then 1t has a fixed point.

Chapter XV presents new results of Bredon pertaining to the
actlion of a compact Lie group acting on a cohomology n-manifold when the
fixed point set F has the greatest possible dimension allowed by the
results of Chapter IX, namely n - k¥ - 1 where k 1is the highest
dimension of the orbits. The highest dimensional orbits are then in-
tegral cohomology spheres, the orblt Space around a fixed point x 1s a
cohomology manifold with boundary F and there i1s a local crogs-section
around x for the orbits.

In short, these Notes give an exposition of some basic theorems
and of results obtained by cohomological methods in the theory of compact
Lie groups of transformations. They make no claim at completeness, al-
though 1t has been tried to give a fairly comprehensive discussion of the
topics chosen, and do not cover all aspects of the theory of transforma-
tlon groups. It should also be pointed out that purely cohomological
methods, while forming a major part of the subject at present, have their
limitations, as 1s shown by well known counter examples; and that in view
of this, 1t would certainly be very desirable to make more effective use
of differentiability assumptions than has been possible so far.

As to references, each chapter carries its own bibliography.
The numbering of lemmas, theorems, remarks, etc. in each chapter is
cunmulative. For example 2.1 means Section 2.1 in the same chapter;
(IV, 2.1) means Section 2.1 in Chapter IV; 3.2(1) refers to formula (1) or
assertion (1) in 3.2, as the case may be.

Finally, I would like to thank G. Bredon for his help in checking
the final verslon of these Notes.

The Institute for Advanced Study Armand Borel




VIII: SLICES AND EQUIVARIANT IMBEDDINGS
R. 3. Palais

§1. Notation and Preliminaries

G will always denote a compact Lie group. Unless otherwlse
stated, the dimension of a separable metric space 1s the classical
coverlng dimension.

1.1. DEFINITION. A G-space 1s a completely regular space X
together with an action of G on X. We denote by X/G the orbit space
of X and by Ny the natural map of X on X/G.

We recall that the topology for X/G 1s the strongest making
Ny continuous, i.e., S{ X/G 1s open (closed) if and only if Hi1(S)
1s open (closed).

1.2. PROPOSITION. X/G is completely regular.

PROOF. Given X e X/G and a closed subset ¥ of X/G not
contalning X, F = Hi1(ﬁ) is a closed invariant subset of X disjoint
from the compact set ¥ and by Urysohn's lemma (applied to X and the
closure of F 1n the Cech compactification of X) there exists
f:X—>71 with £ ] %20 and £ | F=1. let f (x)= [,f(gx)g
and f =1 o ng'. Then f: X/G-—> T and F(X) =0, F | ¥F=1. g.e.d.

1+3. PROPOSITION. Iy is open.

PROOF. If O 4is open in X then Iy (13(0)) = GO = UgeqB0 1s
open, hence HX(O) 1s open.

Since X/G can clearly have only one topology making Ty both
continuous and open:

1ek. COROLLARY. The topology of X/G 1s uniquely
determined by the conditlons that Iy be open and
continuous.

101
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1.5. PROPOSITION. If X 1is a wetrizeable G-space
there is a metric p for ¥ pelative to which each
operation of G is isometric. If we define

3%, ¥) = Inf lo(x, ¥) | x ¢ %, y € ¥} then > is
a mebric for X/G. If X 18 separable so 18 X/G.

PROOF. If o 1s any metric for X then 1t 1s easily checke:
that p(x, ¥) = pr(gx, gy)dg is a metrlic for X and plegx, gy) = o(x, -
by the invariance of Haar measurec. It is clear that Iy is distance de-
creasing and hence continuous relative to o and p. Moreover HX mazr:
the p e-ball about X onto the § e-ball about HX(X) and hence 1s
open relatlve to p and p 80, by 1.k, ©  induces the correct topolcg.
If X 1is separable it is Lindel®f, hence X/G = HX(X) ig Lindelof *and,
being metrizeable, separable.

1.6. PROPOSITION. Iy 1s & closed mapping.

PROOF. Let F be closed in X and let X be adherent to
Hi](HX(F)) = GF. Choose nets ({(g,} 1in G and (f,] on F so that
gafa —> x. Since G 1s compact we can suppose g, —> & Then
£, —> g'1x S0 g_1X e P and X e GF. Hence Hi1(HX(F)) is closed

SO HX(F) is closed.

1.7. PROPOSITION. Ty is a proper mapplng.

PROOF. It i1s a general fact that a map of a Hausdorff space
into a Hausdorff space is proper if 1t is closed and the pre-image of

every point is compact.

1.8, PROPOSITION. If J is an invarlant subset of

the G-space X then every neighborhocd of J in-
cludes an invariant neighborhood of Js

PROOF. If V is an open set including J then
0=X - ni‘(nx(x - v)) is clearly invariant and included in V. It 1s

open by 1.6 and JC 0 follows easily from the invariance of J.

1.9, DEFINITION. A G-space X is:

(1) Euclidean: if X is g finite dimensional real vector ST=:-
with an orthogonal structure and the action of G on X is an orthogcr:.
representatlion.

(2) Riemannian: 1f X 1s a Riemannian manifold and each orsl.-

tion of G 1s an isometry.
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(3) Differentiable: if X 1is a differentlable (= C*) mani-
fold and each operation of G is differentiable (it then follows by a

theorem of Bochner and Montgonery [1] that the natural map of G X X —> X

1ls differentiable ).

REMARK. Since an isometry of a Riemannian manifold is differ-
entlable (see e.go, [2]) a Riemannian G-space 1s differentiable. Con-
versely given a differentiable G-space, X, by averagling any Riemannian
tensor for X relative to Haar measure in an obvious way we get a
Riemannian tensor for X which 1s invariant under the operations of G,
so g differentiable G-space can always be considered Riemannian.

14170, DEFINITION. Let X and Y be G-spaces. A mapping

£f: X —>7Y is equivariant If f(gx) = gf(x) for all (g, x) e G x X.
If in addition f is one-to-one on each orbit of X we call £

isovariant.

1411, PROPOSITION. If f : X —> Y 1is equivariant
then Gy C Gf(x) for all x ¢ X and f is one-to-
one on G(x) if and only if equallty holds. Hence if

£ 1s isovariant GX = Gf(x) for all X e X.

PROOF. G, C Gprygy 1s trivial. If f is one-to-one on G(x)

then (f | (}(X))_1 is equivariant and we get the reverse inclusion. Con-

versely 1f Gy, = Gf(x) and f(gTX) = f(ggx) then g;1gif(x) = f(x) so

g£1g1x =X 80 g,Xx =gy X and [ 1s one-to-one on G(x).

1012, TIETZE-GLEASON LEMMA. If X 1s a compact
(respectively, closed) invariant subspace of the
G-space (respectively, normal G-space) X and if

f 1 K—>E 18 an equivariant map of K into

s Fuclidean G-space, then f admits an equilvariant
> E.

~
extension f : X

PROOF. By Tietze's extenslon theorem (applled, in the first
case, to the Cech compactification of X) we can find a continucus ex-
tension £ 1 X —> E. Let f(x) = ng—1f*(gX)dge For x & K

%(X) = g_1gf(x)dg = f(x) so f extends f. By the invariance of Hzar

measure

Il

Flox) = [ g7 (@yx)ag = [ vg7 e (gx)dg = 4F(x)

S0 % 1s equivarilant.




104 PATATS CHAPTER VIII

§2. Orbit types

If H 1s a closed subgroup of G we denote by (H) the set
of conjugate subgroups {gH’g_1 I g eGls We call sets of the form (H)
G-orbit types. If X 1is a G-space and Q e X/G an orbit in X, say
@ = G(x) then since G, = gig | it follows that (G, | @ e 2] = (G,)
is a G-orbit type which we call the orbit type of @ and denote by ([Q]
(note [G(x)] = (GX)). Two orbits, in perhaps different G-spaces are call:z:
equivalent if there exists an equivariant homeomorphism of one onto the

other.

2.1. PROPOSITION. Two orbits are equivalent if and
only if they are of the same type.

PROOF. If 0 and o' are equivalent then by 1.11 they are of
the same type. Conversely if o and @' are of the same type then we
can find w ¢ ¢ and o' e 2' with G, =G, « Then gw —> go' is
clearly a well defined, continuous, one-to-one equivariant map of o ont:
Q'. Since @ 1is compact this map is a homeomorphism.

If X 1is a G-space then those subsets of X which are unions
of all orblts of a fixed type form a partitioning of X into invariant
subsets. We call this partitioning of X (or equivalently of X/G),
each subset labeled by the oorresponding orbit type, the orbit structure
of X. We recall from Chapters VI and VII of Floyd and Bredon that if ¥
is a cohomology manifold the orbit structure is locally finite and hence,
if X 1is compact, finite (we shall give a very simple proof, based on
the existence of slices, when X 1s a differentiable G-space later). Tk:
significance of this is apparent from the following theorem of Mostow [37,
the proof of which is one of our main goals.

THEOREM. The following conditions are necessary and
sufficient for a G-space X to admit an equivarlant
imbedding in some Euclidean G-space:

(1) X 4is metrizeable, separable, and of finite
dimension.

(2) X has finite orbit structure.

The first step towards proving this is the fact, noted inde-
pendently by Mostow [3] and Palais (4], that a single orbit can always te
isovariantly imbedded in a Euclidean G-space.

2.2, PROPOSITION. If H 1s a closed subgroup of
G there exists a BEuclidean G-space E and a v ¢ E
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such that GV = H.

PROOF. ILet R be right regular representation of ¢ in the
real L%(G) and let f be a continuous real valued function on the left
coset space G/H which assumes the value 1 only at H. Define f ¢ LE(G)
by f(g) = £(gH). It is clear that H= (g ¢ G | R.f = £}, By Peter-
Weyl 12(G) :<:€=1Ei where the E; are finite dimensional subspaces in-
variant under R. et fi be the projection of f on Ei’ and
H = 1{gecG | Rgfi = fi}. Then the Hi are closed subgroups of G such
that H = ﬂiHi. Now the closed subgroups of a compact Lile group satisfy
the descending chain condition (at each step in a properly descending chain
either the dimension or number of components must drop), hence we can find
i], oo, in such that H = ﬂ?=1Hij. We put E =<§?;1Ei. and

J
V==5I: + sou + £, .
+ 1h

2.3. THEOREM. If X 4s a G-space and x ¢ X
there exists an equivariant wap of X dinto a
Euclidean G-space which is one-to-one on G(x).

PROOF. By 2.2 we can find a Buclidean G-space E and v ¢ E
with G = Gye Then G(v) and G(x) are Orbits of the same type so 2.1
they are equivalent, i.e., there exists an equivariant homeomorphism of
G(x) onto G(v). By 1.12 this can be extended to an equlvariant map
of X into E.

§3. Slices

3.1. DEFINITION. Tet H be a closed subgroup of G. A local
cross-section in G/H is g non-singular differentiable map X U —> G
such that U is an open neighborhood of H in G/H, x(H) = e, and
e X = identity where 1 : G —> G/H 1is canonical.

REMARK. The existence of local cross-sections follows easlily
f'rom Chevalley [5] pp. 109, 110,

3.2, DEFINITION. Let X be a G-space and H a closed sSub-
group of G. An H-slice in X is s Subset S of X such that

(1) 8 1is invariant under H.

(2) g3n 8340 =—> g ¢ H.

(3) If X : U—> ¢ 1is g local cross section in G/H then
the map F : Ux § —> X defined by F(u, s) = X(u)s is & homeomorphism
of Ux 8 onto an open set in X.

If X e X then g 8lice at x 18 g GX—slice in X which con-
tains x,.
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3.3, PROPOSITION. If S is an H-slice in X then
Ty | S 1s an open map of 3 into X/G and in par-
ticular HY(S) is open.

PROOF. Let V be open in 3. Using the notation of 3.2,
F(U x V) is open in X and hence HX(F(U x V)) is open in X/G. Cles:.
1. (F(U x V) C Ty(V) and since F(U x V) DF(H) x V) = X(H)V = eV = ¥

we in fact have equallty.

. PROPOSITION. If & 1s an H-slice in X then
C H for all s e 3.

PROOF. TImmediate from (2) of 3.2.

3.5. COROLLARY. If there exists a slice at x then
there 1s a neighborhood of x at each point of which
the isctropy group 1s conjugate to a subgroup of CGye

PROOF. Using the notation of 3.2 with GX = H, F(UxS) is :
neighborhood of x and Gy yg = x(u)GsX(u)—1 while Gy G, by 3.4.
We note that an H-slice & in X 4is an H-space. The next result says
that S/H can be naturally identified with G3/G.

3,6, PROPOSITION. If 3 18 an H-slice 1n X then
h: O3 —> Gs is a homeomorphism of S/H onto

I.(8) = GS/G.

X

PROOF. If Gs = Gs' with s,s' ¢ S then gs = s' for soms
g ¢ G and, by (2) of 3.2, g e H so Hs = Hs' and h 1s one-to-one.
Now g @ 8§ —> S/H 1is open and continuous and by 3.3 80 also 1s -
Since Iy | 8= h . ng 1t follows that h is continuous and open, her::
a homeomorphisme.

The following powerful and elegant result 1s essentially dus -
Mostow [3] although the basic idea goes back to Gleason [6]. While ezz_’-
patched up, Mostow's proof contalns several errors and in fact the stzz:-

ment of the theorem given in [3] 1s easily seen to be incorrect.

3.7. THEOREM. If S' 1s an H-slice in the G-space
Y and if f 1s an equivariant map of the G-space
X into ¥, then 8 = £ (S') is an H-slice in X.
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PROOF. S8ince f(H3) = HF(3) HS' = 8' it follows that
HSC £71(8') = 8 so S 1is invariant under H. Since
g3' N 8! Dgf(8) n £(s) = £(gs) n £(3) D f(g8 n 8) 1t follows that
83N S 40 ==>g3'N3"40 ==>gecH Thus & satisfies (1) and (2)
of 3.2 and 1t remains to verify (3). ILet X : U—> G be a local cross—
section in G/H and let F' : (u, s') —> %x(u)s' be the corresponding
homeomorphism of U x S onto an open set W' of VY. We will complete
the proof by showing that F : (u, s) —> x(u)s 1is a homeomorphism of
Ux$S onto £(W') = W.

(1) F 1is contlnuous. Obvious.

(2) F 1is onto W.

PROOF. Iet weW so f(w) = x(u)s'e Then s! = X(u)_1f(w) =
f(x(u)"1w) = f(s) where s = x(u)”™'w is in S because fs) = gt e o1,
Then w = xX{(u)s = F(u, s) ¢ F(U x 38), s0 W(C F(U x 5). Conversely
FE(U X 8)) = FI(UX£(8)) FUXS') =W so F(UxS8)C £ W) =W

(3) F 1is one-to-one and F ! 1is continuous.

PROOF. We prove both facts at once by showing that if

F(u,, s,) —> F(u, ) then u, —> u and s, —> s. In fact apply-
ing £ +to f(ua, Sa) ~—> F(u, s) we see that F'(ua, f(sa)) _—

F'(u, £(s)) and since F' 1s bicontinuous u, —> u. But then

X<ua>—1 —> %(u)”' which together with X(ua)sa = F(u,, 8g) —> F(u, s)

Xx{(u)s implies that 8, —> S. g.e.d.

REMARK. If x e X and & 1s a slice of x then define
£: 063 —>06x by f(gs) =gx; geG, s e¢3. It is easily checked that
f 1s a well-defined equivariant retraction of GS onto Gx. What is
more it can be shown that the triple (G3, Gx’ f) has the structure of g
fibre bundle, the fibre being S, the structural group GX/K (where
K = ﬂSeSGS) and the assoclated principal bundle being G/K.

Conversely it follows from 3.7 that if 0 is an open invariant
nelghborhood of Gx and f 1is an equivariant retraction of 0 onto Gx
then f_w(x) is a slice at x (for clearly (x} is a G,-slice in Gx)
and we recover f from this slice by the abcve process. In other words
there 1s a natural one-to-one correspondence between slices at x and
equivariant retractions of open invariant neighborhoods of Gx onto Gx.

The following result 1s due to Koszul [6]. A shorter proof
using Bochner's theorem on linearity at stationary points (which, by the
way, 1s a consequence of the theorem) will be found in Mostow [3] page
bk,
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3.8. THEOREM. If X 1s a differentiable G-space
and x € X then there exlsts a slice S at x.
Moreover S can be so chosen that, 1n a sultable
coordinate system about x, G, act linearly and
3 1s an open disc with center x 1in an invariant

subspace.

PROOF. As noted in the remark following 1.9 we can suppose that
X 1s a Riemannian G-space, in which case it follows that if v 1s a
tangent vector to X for which Exp(v) 1s defined then Exp(sg(v)) is
defined and equals gFxp(v) for all g ¢ G (here &g 1s the differentia’
of g when g 1s considered a diffeomorphism of X). Let = = G(x) and
let N(=) Dbe the normal bundle of £ in X. 3ince = 13 a compact: sub-
manifold of X 1t is well know that for e sufficiently small Exp maps
N(z, e) = {v ¢ N(z) | ||vll < €} diffeomorphically onto B(Z, e) =
(x' e X | o(x', =)< e)e Now zp(e) = {veszy| |vii<el is an open disc
in Z; and 2; 1ls invariant under &g for g e Gx’ hence because
Exp 8g = g Exp 1t follows that in any Riemannian normal coordinate system
about x G, acts linearly (in fact orthogonally) and S = Exp(zg(a)) 1s
an open disc centered at x 1in an invariant subspace. We now verify the
three conditions of (3.2) that will show that S5 1s a Gx—slice.

(1) G8 = 8. Already proved.
(2) g3n 340 ==>gc¢cGye

PROOF. Suppose g(Exp v) = Exp o with v, w ¢ Z;(a). Then
Exp(sg(v)) = Exp(w) and 5g(v) e N(Z, e). S8lnce Exp 1is a diffeomorphisz
on N(z, &) it follows that 8g(v) = w. But o e z; and 8g(v) ¢ Zé(x)
and sc we must have g(x) = x.

(3) let x : U—> G be a local cross-section in G/GX and
define K : (u, v) —> & (u)v on U x z;(e). Then K 1s a diffeomorphis-
of U x E;(E) onto an open set W 1n N(z, e), its inverse in fact 1s
W ——> SX(h-1H(w))-1w where T 1is the fibre projection of N(£) —> =
End h 1s the diffeomorphism gG, —> gx of G/GX onto =. Then
F =FExp o K 1is a diffeomorphism of U X z;(e) onto an open set
V = Exp(W) in X and since Exp(éx(u)v) = x(u) Exp(v), F : (u, 8) —>
Xx(u) s 1s a diffeomorphism of U x 3 onto V.

3.9. THEOREM (Mostow [3]). If X 1s a G-space
and x € X there exlsts a slice at X.

PROOF. By 2.3 there is an equlvariant map £ of X onto a
Fuclidean G-space E which i1s one-to-one on G(x). By 3.8 there exlsts
a Gf(X)—slice 3' in E containing x. By 3.7 8 = £71(s1) 1is a
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Gf(x)-slice In X contalning x. But by 1.11 Gf(x) = Gx 80 S is a
slice at x.

3+10. COROLLARY (Montgomery-Zippin [71). If X

is a G-space and x € X there is a neighborhood W
of X such that G, 1s conjugate to a Subgroup of
Gy for all w e W.

PROOF. 3.5 and 3.9.

3.11. PROPOSITION. ILet X be g G-space and (5,3
a collection of H-slices in X such that the sets
{G8,) are pairwise disjoint. Then § = U, 1s
an H slice in X.

PROCOF. Clearly & 1s invariant under H. If gx, = XB with
Xy € Sa and XB € SB then since GSG n GSB = % we must have o = B8 ang
hence g e H. Thus gSN S 4o => g e H Now by 3.3 GS,, = n;(nx(sa))
is open in X hence S, =810 GSa is open in 3. If X : U—> G is
a local cross-section in G/H then F : (u, s) —> x(u)s wmaps each
U x 3y homeomorphically onto an open set W, of X. sSince the U x Sa
form a disjoint open covering of U x S and the Wd a disjoint open
covering of W = an, f maps U x S homeomorphically onto W.

The following metatheorem will have several important applica-
tions 1n the sequel.

3+12. METATHEOREM. Let S be a statement valued
function defined for all compact Lie groups. If the
truth of S(H) for every proper closed subgroup of
an arbiltrary compact Lie group G entails the truth
of 3(G), then 8(G) 1is true for every compact Lie
group G.

PROOF. Assume S(@) 1s false for some compact Lie group G
and let n be the least integer which is the dimension of a compact Lie
group G for which 38(G) 1s false. Among all compact Lie groups of
dimension n for which 3(G) 1s false choose one with fewest connected
components and note that S(H) 1s true for all proper closed subgroups
of G.

As a first application we Prove a speclal case of the result
proved earliesr in the book by Floyd and Bredon.



110 PATATS CHAPTER VZIZ:

3.13. THEOREM. A differentiable G-space has
locally finite orbit structure.

PROOF. By 3.12 we can assume that the theorem holds for all
proper closed subgroups H of G. If dim X = 0 the theorem is obvious
and we can therefore also assume that the theorem holds for differentiabls
G-spaces of dimension less than dim X. ILet X ¢ X. If x 1s not a fixs:
point et S be a slice at x, which by 3.8 can be chosen to be a
differentiable Gx—space. Since Gx is a proper closed subgroup of G W
can find a neighborhood V of x in S in which only a finite number c:
Gx-orbit types occur. Then for v ¢ V’GV is conjugate in Gy to one of
a finite number of subgroups of G. Then by 3.3 GV 1s a nelghborhood c¢f
x and clearly only a finite number of orbit types occur in GV.

oD

If x is a fixed point then by Bochner's theorem (or by 3.8
which generallzes Bochner's theorem) we can find a coordinate system abouz
% 1in which the action of G 1is linear and in fact orthogonal. Then if
S 1is a sphere with center x 1un the coordinate system 3 1is a differ-
entiable G-space of dimension less than dim X so 3 has locally finite
orbit structure and, being compact, actually has flnite orbit structure.
Since the isotropy group of a point is clearly constant on open rays only
a finite number of orbit types occur within the coordinate system. Thus
for any x in X we can find a nelghborhood in which only & finlte numbs:

of orbit types occur.

3,14, PROPOSITION. If X 1s a G-space with (locally)
finite orbit structure and if H 1s a closed subgroup
of @ then X has (locally) finlte orbit structure
when considered as an H-space.

PROOF. It clearly suffices to show that if = 1s an orbit of
type (K) then £ has finite orbit structure as an H-space. Bub since
s 1s equivalent to G/K we see that = 1s a compact differentiable
H-space and the proposition follows from 3.13.

3.15. COROLLARY. If X is a G-space with (locally)
finite orbit structure then any H-slice has (locally)
finite orbit structure as an H-space.

We now make a second application of 3.12.

3.16. THEOREM. If X 1s a separable metric G-space
of dimension n then dim X/G < n.

\
i
i
‘
<
|
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PROOF. We recall that by 1.5 X/G 1is separable metric. let
F be the set of statlonary points of X. Then I 1s a closed subspace
of X/G of dimension <n.e Let U=X/G~-F. Since U is open and
hence an F, 1t follows from the sum theorem that it suffices to prove
that X/G has dimension <N at points of U. ILet ¥ ¢ U ard let 3
be a slice at a point x of ¥. We can Suppose by 3.12 that the theorem
holds for the proper closed subgroup Gy ©of G and hence that
dim S/GX < dim 3 < n. By 3.6 dinm n.(8) = dim GS/G = dim S/GX < n and
since by 3.7 HX(S) 1s a neighborhood of X, U has dimension <n at Z.

REMARK. The formal properties of dim used 1n the above proof
include only topological invariance, the sum and monotonicity theorems,
and the fact that dim X < 0 provided each point x of X has a neigh-
borhood with dim U ¢ n. Thus if we have a G-space X with such a
dimension function defined for X and X/G, then dim X/G < dim X. In
Darticular 1f I is g principal ideal domain and dimL is the cohomologi-
cal dimension of H. Cohen, defined for locally compact spaces (cf. referp~
ence in I), then if X is a locally compact G-space, dimLX/G < dimLX.

The following 1s apparently due to Milnor, at least in its
present form. It replaces the much more complicated Theorsm k.i of
Mostow [3].

3.6. THEOREM. Iet X be a paracompact space with
covering dimension n and let (U,) be an open
covering of X. Then there is an open covering of

X refining {Ua}, {GiB}BeB. i=0, .ose, n such
i

N Gygr =0 1if B 4 B',

that Gi Bt

B
PROOF. By making an initial refinement of tU,) we can suppose

that the order of {Ud} is at most n, i.e., no x ¢ X 1is contained in

more than n + 1Ua. Let [@a} be a locally finite partition of unity

with support @a<; Uy» Given 1 = 0, «.o, n let By = the set of un-

ordered 1+1-tuples from the indexing set of the {Ua]. Given

g = (ao, oo, ai) € By we set Gip = (x e X | Py (X)) > 0 and

Q¢ B = @a(x) < @a_(x) J =0, ««., 1). Since in a neighborhood of any

J
point of X only a finite number of ®, &are not identically zero each

Gy 1s open. Clearly Gig " Gygr=® 1f B 4 8' and Gig € Nyep

support o, C ﬁaeBUd S0 [GiB] refines {Ua}' It remains to show that

{Gis] covers X. Given x € X 1let (ao, ey am) be the indices such

that @a(x) > 0. Since x e N. support o n U,, m<n. We can
o

in which case

1=0
suppose 9, (x) = ... = o, (x) > Py 1(X) > .. o
1 1+ m

o g- i=0
2

clearly x e G, .
1(ao.o.ai)
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3.17. DEFINITION. ILet X be a G-space and H a closed sub-
group of G. A subset of X/G is called H-liftable if it is the image
under Ty of an H-slice in X.

3,18. LEMMA. An open subset of an H-liftable set
is H-liftable.

PROOF, If 8 1is an H-slice and V 1s open in HX(S) then =
is immediate from the definition that S n 1 (V) 1s an H-slice.

The following is one of the crucilal steps in getting equivarie::
imbeddings in Euclidean space.

3.19. THECREM. Let X be a separable metric
G-space of dimension h, H a closed subgroup of
G and X(H) the union of all orbits in X of
type (H). Then there exlst n + 1 H-slices in X
Sy +ees S, such that Xy GS; U «.. UGS,

PROOF. Let X(g) = W(X(y)). We must show that %<H> 1s in-
cluded 1n the union of n + 1 H-1iftable sets. Iet {Ua] be the
collection of all H-liftable subsets of X/G and let ¥ = U U . By 3.9
i(HJ ( Y. 8ince Y 1s metrizeable (and hence paracompact) by 1.5 and ol
dimension < n by 3.15 and since the U, are open by 3.3 it follows fr:o-
3.16 that we can find an open covering of Y refining (U], [GiB}BEB
1=0, «oo, n such that Gig n Giﬁ' =¢ 1if NB + B'. By 3.18 each Gy,
is H-1iftable and it follows from 3.11 that S.l = UBeB.GiB is also

H-1iftable. Clearly Y = §O Uoeo U gn and since i(H)(; Y we are thro.:

§4. EBquilvariant lmbeddings in Fuclidean space

Le1. LEMMA. If a G-space admits an equivariant
imbedding in a Euclidean G-space then 1t admits an
equivariant lmbedding in the unit sphere of a
Fuclldean G-spaces

PROOF. Let f1 be an equivariant imbedding of X 1in a
Fuclidean G-space V, W a one-dimensional Tuclidean G-space on which G
acts trivially, w a non-zero vector in W and deflne f, : X —> V=
by folx) = (f,(x), w). Then £(x) = fg(X)/er(X)H defines an equivariz -

imbedding of X 1n the unit sphere of VOW.

L.p. THEOREM (Mostow [3]). Let X De a metrizeable
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G-space and F a closed lnvariant subspace of X.
If both F and X - F admlt equivariant imbeddings
in Fuclidean G-spaces so does X.

PROOF. 1let f1 be an equivariant imbedding of F in a
Euclidean G-space V, extended by 1.12 to an equivarlant map of X into
V. Let p be an invariant metric for X (see 1.5) and define
h(x}) = Inf {(p(x, z) + Hf1(x) - f1(z)H | 2 e F}. Then h is contimuous
on X, positive on X -~ F, invariant under the action of G, and
Xy —> X ¢ F ==> h(x,) —> 0.

Now let f, be an equivariant imbedding of X - F in a
Euclidean G-space W' which, by 4.1, we can suppose satlsfies Hf (x)| = 1.

Define f, (x) = h(x)f (x). That f, 1s contimuous, one-to-one and equil-
variant 1s clear. If £,(xp) > f (x) then hix)) = er(xn)ﬂ —_—
£, (x) = h(x) so £, (x —> £, (X) and hence x_  —> x, 80 £, is

an imbedding. Moreover we can extend f2 to a continuous equivariant map
of X into W by defining f(x) = 0 for x e F. We now define

F 1 X—> VEW by £(x) = (£, (x), f,(x)). Tt is clear that f 1s con-
tinuous, equivariant and a homeomorphism on each of F and X - F. BSince
f(x) =0x eF and fo(x) £ 0x e X -F it follows that f 1s one-to-
one. Now suppose f(xn) —> f(x). The proof will be complete if we can
show that x, —> x. If X ¢ X ~ F then r,(x) 4+ 0 hence f,(xy) 4 0
for large n, hence X, € X - F for large n and, since f 1s a homeo-

morphism on X - F, Xp, —> X. Now suppose X ¢ F. Then by definition
of h we can choose z, e F s0 that olxps 2.) < 2h(x,) and

£y ) - £ (20))) < ah(x). Since hixy) = o (k) —> e, (x)) = 0 1t
follows that 1im f,(z.) = lim £o(x,) = £, (x), and since £, 1s a homeo-

morphism on F z, —> x. But then since p(Xn, z,) = eh(x, ) —> o,
X, —> X+ dee.d.

Le3. COROLLARY. Iet X be a separable, metric,
finlte dimensional G-space and F the set of
stationary points of X. If X - F admits an
equivarliant imbedding in a Buclidean G-space then
so does X.

PROOF. F 1s closed in X and being a finite dimensional
separable metric space admits an imbedding in a Euclidean space V which
is automatically equivariant if we let G act trivially on V.

Lelo COROCLLARY. Let X be a metrizeable,
separable G-space and U1’ seay Un a covering of




114 PALATS CHAPTER VIIZ

X by open invariant subsets. If each Ui ad-
mits an equivariant imbedding in a Euclidean
G-space then so does X.

PROOF., If n = 1 the theorem is trivial so we can assume 1in-
ductively that U; U ..o U U, , admits an equivariant imbedding In a
Euclidean G-space. Then F = X - U, C U, U oo UU _, admits an equi-
variant imbedding in a Fuclidean G-space, and since X - F = Un does als:
so does X by L.o2.

4,5, THEOREM. Iet X Dbe a G-gspace and S an
H-slice in X. If S admits an H-equivariant im-
badding in e Euclidean H-space then GS admits a
G-equivariant imbedding in a Euclidean G-space.

PROOF. Let f1 be an H-equivariant lwbedding of S in a
Euclidean H-space V. It 1s Immediate from the Frobenius reciprocity
theorem that there is a Fuclidean G-space W whilch considered as an
H-space contains V as an invarlant linear subspace (see [8], ltallclzel
remark bottom of page &3). ILet U be a Euclidean G-space with a vector
u e U such that G, = H (see 2.2). Define f : GS —> W®U by
flgs) = (gf1(s), gu). We note first that f 1is well defined, for 1f
g5, = 8,8, then g_1g1s1 = s, and by (2) of 3.2 g51g1 e H.o Since f.
is H-equivariant gj g,f,(s;) = £,(s,) so g f(s;) = g,f(s,) and since
G, = Hgu = gyu. It 1s clear that f 1s continuous and equivariant so
it remains to show that £ 1s one-to-one and that £ is continuous.
We can kill both birds with one stone by showing that f(gnsn) —_> f(gs
implies g s ——> gs. Now f(gnsn) —> f(gs) gilves gu —> gu and :_ax
Gu = H it follows that g, = 7nhn where hn e H and ry —> & But
f(g,s,) —> f(gs) also gives g f (s ) —> gf,(s) or o f (hys, ) =
7nhnf1(sn) —> gf,(s) and since 7, —> g we get f1(hnsn) —> £, (s
Since T is a homeomorphism on S we see that hnsn_———> s and hence

1
g5, = 7 hs —> gs. g.e.d.

nnn
4,6, THEOREM [Mostow]. If G 1is a compact Lie
group and X 1s a separable, metrizeable G-space of
finite dimenslon and with finite orbit structure
then S admits an equivariant imbedding in a
Fuclidean G-space.

PROOF. By 3.12 we can assume that the theorem holds If 1n the
statement we replace G by any of 1ts proper closed subgroups, and by -.
we can suppose that X has no stationary polnts. Let (H1), eee, (H )
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be the orbit types occurring in X and note that each' Hi 1ls a proper
closed subgroup of G. By 3.19 we can find subsets Sgi = 1, eoey, kK j = 0,
+es; M X, of X such that S} 1s an Hj-slice in ¥ and X - THe
Now by 3.15 each S? has finlte orbit structure as an Hi—space and of
course each S% 1s separable, metric, and of finite dimension. Thus
each S% admits an Hi—equivariant imbedding in a Euclidean Hi—space. By
5.4 each GS% admits a G-equivariant imbedding in a Fuclidean G-space.
Since each GS% 1s open in X (3.3) and X = UGS? 1t follows by k.b

that X admits an equivariant imbedding in a Euclidean G-space. gq.e.d.

%.7. COROLLARY. If in %.6 we assume in addition that
X 1is locally compact, then the equlvariant imbedding
of the conclusion can be chosen so a3 to be g proper

map.

PROCF. By 4.1 and 4.6 we can f£ind an equivariant Imbedding f
of X 1nto the unlt sphere in some Euclidean G~space V. Let ¢ be g
positive real valued invariant function on X which vanishes at infinity
(e.gey, o(x) = zne_nwn(nx(x)) where (v, 1s a locally finite partition
of unity for X/G with support ¥, compact) and define f*(x) = (1/o(x))
f{x). Tt is cleasr that f* is an equivariant imbedding of X in V
(cf. proof that f; is an imbedding in k.2). Let X be any compact sub-
set of V and put M = sup(|k| !k ¢ K}. Then £ ~'(K)( {x e X | e(x)
2 M)} which is a compact subset of X, hence f* 1s proper.
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