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(Received January 5, 1960; presented by L. NACHBIN)

INTRODUCTION

If an affine connexien si given over a manifold it determines a “spray’’
of geodesics emanting from each point. This spray enables one to single out
certain second order tangent vectors to be called of ““pure second order”, this
notion dependinag on the spray; we call this a ‘“‘dissection’” of the second order
tangent vectors. The object of this paper is to prove, conversely, that every
dissection of second order tangent vectors arises in this way from the spray
of geodesics of an affine connexion and that the spray is uniquely determined
by the dissection. We also consider conditions under which two affine
connexions have the same spray of geodesics.

1. HIGHER ORDER CONTACT ELEMENTS

We give here a brief discussion of higher order tangent vectors and
differentials from the standroint that will be used thruout this paper.

M will always denote a C* manifold. If me M we let F,','\' denote
the “system” of all those real valued C” functions whose domain is an open
subset of M containing m. If f and g are in F, then so are f + g and fg (their
domains being the intersection of the domains of f and of g) and so is cf for
c ¢ R(R will always denote the real numbers); but this “system’” is not an algebra
(it is not even a group under addition, due to troubles about domains of the
functions). Nevertheless we use the usual terminology of algebra: ideal, linear
subspace, quotient space, etc., in the usual way. Let F§, be the elements of
F,}‘: that are constant on some neighborhood of m (the neighborhood varying
with the function) and F,, the elements of F,, which vanish at m. Then
every element fe F: can be expressed, essentially uniquely, as f = f,+f, where

*) The research in this paper was supported in part by the National Science
Foundation and the U. S. Air Force Office of Scientific Research.




164 W. AMBROSE, R. S. PALAIS AND I. M. SINGER

fo ¢ Fy and f, ¢ F;, (the cnly non-uniqueness is in the domains of f, and f°

and this is irrelevant for us).

We define a k-th order tangent vector at m to be a real linear map
t of F;f —» R which vanishes on F5, and F5LT! (F5X*! = all sums of products
of k+ 1 elements in F,,). If k = 1 one verifies easily that this is the same as
saying that t is a real linear derivation of F,j: into R, so our first order tangent
vectors are tangent vectors in the usual sense. The k-th order tangent vectors
form a linear space over R in the usual way, which we denote by MY ; we
write M,, for M,ln. .

We define the space of k-th order differentials at m to be F,,[F5*
this is a linear space over R and we denote it by ka. If fe F,f: we define
its k-th order differential at m, dkf, to be the element of ka defined by:
if f = f, + f, as above then d“f = the natural projection of f, into F,/FE+1 g
We can make df into a linear function on Mf{,, by defining

1.1) (@“f) (t) = tf for all t e ME.

This formula establishes a duality between MY, and M., (because every
element of “M,, is of the form d“f and if d“f=d" g then there is an h ¢ Fo
for which f—g+heF Kt 1); we shall frequently refer to this duality below

We now wish to obtain the usual coordinate expression for a second- 7
order tangent vector; the corresponding result for k-th order tangent vectors
is also true but we shall only consider the case k=2 (to keep the notation
simple, — for it is the only case we shall need). First we need: If x;,...,x4
is any coordinate system at m with all x;(m) =0 and fe F,\ then there is a
ge an such that, on some neighborhood of m,

O f
- (m) x x5+ g 5
)

af
1.2) f—f(m)—l—Za—Xi(m)xi—i—éj —a—x—,-é—x_

Proof: We use the well known theorem from advanced calculus that there
exist g; & F;: such that, on some neighborhood of m, f = X g; x;. It is then

.. af .
trivial that g;(m) = Ty (m). For the moment we write a; = g; (m) and apply
i
the same theorem to the g; — a; to get the existence of g ¢ F:: such that on
some neighborhood of m, g — aj = X gj; x;. Let a; = g;;(m) and write
a) f=f(m)+Zaixi-l—zaijxixj—l—Z(g,-j-aij)xixj.
Differentiating this gives
& f
aXi an

——a

(m) = a;; + aj;

Substituting this and the value of the a; in «) gives (1.2) since the last sum
in @) is clearly in F5,.
Using this we see that if t is any second order tangent vector at m

and x;, ..., x4 any coordinate system at m then -
Pe

1.3 t=X g m) Z a; —— (m

1.3) e @ ey g

An. da Acad. Brasileira de Ciéncias.




SPRAYS 165

where the a; and a;; are unique and are given by

t(Xin)ifi #J

a; = tXi, a;; = R
’ ¥ [t(x;)/z ifi=j

. 9 . .
(We use the notation P (m) for the tangent vector which assigns the number
i

at .
Tx (m) to f, and similarly for second order tangent vectors).

i
Proof: We may assume all x;(m)=0. Applying t to (1.2) shows that (1.3)
holds with the particular choice of a; and a; indicated above. To show this
is the only choice for which it holds one applies (1 .3) to an x;, an x?, or an X x;,

and finds the a; and a;; are necessarily those given above.

We remark that we could equally well have taken as a canonical
representation of a second order tangent vector expression
2

d
t=2bi'—a_£(m)+zbjj (m)

6xi aXJ
with the assumption that the matrix b;; be symmetric. In this case the b
and b;; are given by

bi = tx;, bij = t(Xi Xj)/z.

If & is any C* mapping of M into N (where N is also a C” manifold)
then we have a d“® carrying Mﬁg——} N‘; (where n= @(m)), defined, as in the
first order case, so we shall not elaborate on it. We also have its dual, carrying
ka<——kNm. And if ® is a diffeomorphism of a neigborhood of m onto a
neighborhood of n then this differential is an isomorphism onto, etc.

We now point out that 2Mm = Fm/F‘?n contains a distinguished sub-
space, H,, = F;",I/Ff;1 and that this H,, is naturally isomorphic to the space of
symmetric bilinear functions on M,, X M,,; for this reason we call H,, the
space of Hessians at m. If HeH,, we define H(s,t) for s,t e M, by:H=Xf, g;+
+ Fi, where the f; and g; are in F,; then H(s,t) = Z(sf) (tg) + I (tf;) (sgy).
This is easily proved independent of the f; » & used in the representation of H.
Conversely, if a symmetric bilinear function B is given on M,, X M, it gives
rise to an He H,, as follows. Let xq,..., X4 be any coordinate system at m
and let h; = B(g%-(—i (m), 36;{: (m)) . Let f= X h;x;x;, so fe F.. Then H = the
image of f in F./F? will have H(s,t)=B(s,t) for all s,t. These mappings
establish a real linear isomorphism between F,‘O,)/Fi1 and the symmetric bilinear
functions on M, X M,,.

If fe Fl and df = 0 at m (.e.d'f=0 at m, in the above notation)
one ordinarily defines the Hessian of f at m; in these terms the definition is
the following. Let f = f, + f, as above. The statement that df = 0 says exactly

2

thatf, e F,Zn » 80 f, has a natural projection H in H = Fm/F,gn; this H, considered

¢ v, 32 mno 2, 30 de junho de 1960.



166 W. AMBROSE, R. S. PALAIS AND I. M. SINGER

as a bilinear function on M,, X M,,, is the Hessian of f. Then the Hessian
matrix of f relative to a coordinate system x;, ...,dy is defined by h; =

—H (-ai’; (), ).

In *M,, we have the distinguished subspace H,, of Hessians; in M;,
we have the distinguished subspace of first order tangent vectors; and these
subspaces are annihilators of each other under the duality between “M,, and
M:,. In neither of these does the distinguished subspace have a natural
complement. In terms of coordinates the trouble can be expressed by noting
that a second order tangent vector whose first order components are 0 in terms
of one coordinate system may have non-zero first order components in another.
So “pure second order” tangent vectors are not defined in M;, and “pure
first order differentials’’ are not defined in sz (the first order differentials

can be identified wirh *M,/H,,).

We define a dissection of M> to be an assignment of a linear
complement that we denote by M;,, of M,,, in M;,; we call elements of M,
pure second order tangent vectors (relative to the given dissection). Thus
M2, is the direct sum of M, and M., and we have projections of M>, into
each of these. A dissection of Mi, gives rise to a dissection of *M,,, if we
define Hy, = the annihilator of M;, (in the duality previously considered between
M2 and 2Mm). Then we have projections defined of elements of “M,, into
H,, and H;,. And, conversely, a complement of Hj, defines, thru duality,
a complement M, to M,, in M.

If we have a dissection given at m then we have an assignment to
each fe F;,'{ of a Hessian H; at m by: If f = f, 4 f, (as above) then f, + F:fn is
an element of ®M,, and its projection into H,, (given by the dissection) will
be the Hessian H; of f. The mapping: f—>H; is: a) real linear, and b) if df=0
(at m) then H; is the usual Hessian of f. Conversely, an assignment to each
f & Fl of a Hessian H; with these two properties comes from a dissection of
Mil for from it we can define a projection of M7, into H,,, by: if pe "M, then
u=f+ F, and we define the projection of u into H,, to be the Hessian H;
of f. Because of a) and b) this is independent of the choice of f. We then
define H;, = those elements of “M,, whose projection into H,, is 0. Then
defines a dissection of “M,, which gives rise to the same Hessians as the assign-
ment with which we started.

Up to this point we have considered dissections at a fixed m ¢ M.
We define a dissection of M’ to be an assignment of a dissection at each point
which is C* in the following sense: for each C® function f and coordinate
system x;,...,x, the function (defined on the intersection of the domain of

the x; and the domain of f) H; (—aix- ) aix) is in C”.
i j

If N is a d-dimensional linear space over R and x,,. .., x, is any linear
coardinate system then we can define a dissection as follows. If t&N; then
62

9
t—zaiﬁ(n)+zaij m(n)

An. da Acad. Brasileira de Ciéncias.




SPRAYS 167

and we define N, = |:t eN;|allg = 0]. Since any two linear coordinate systems
are related by a linear transformation (with constant coefficients) this definition
of N, is independent of the choice of the linear coordinate system used, and
hence defines a dissection of N”, which depends only on the linear structure
of N. We remark that if H; is the Hessian of f obtained from this dissection

then
a ) o f
* H s =
® f<<3xi 6xi) dx; I x;

This is easily proved so we omit it,

2. THE DIFFERENCE OF TWO CONNEXIONS

We now consider two affine connexions over the same M and use
the following notation. B(M) is the bundle of bases over M, ¢ and o are the
1-forms of the connexions, K, and ib are the horizental subspaces assigned
at be BM) (we use K, instead of _the usual H, because we are using
H for Hessians), E;,..., E; and Ed ,...Ey, are the canonical horizontal vector
fields on B(M), w,,...,wy are the canonical 1-forms on B(M), and E;,...,Eyq
are the canonical vertical vector fields (the w, and E;; depend on no connexion
so there is only one set of theml. We shall use this kind of notation consistently,
the K going with the E;, the K going with the 1731. We use 7 for the projection
of B(M) —> M.

Another piece of notation is this: if a is a C” curve then a, (1) will
denote its tangent vector at a(u). We shall use D(s) for the tangent vector
at s ¢ R which assigns to each function its ordinary derivative. So, for fin C®
on part of M, «,(u)f=D(u) (feoa).

We call the l-form 7=p—¢ the difference form of these connexions.
Clearly r is horizontal (i.e. vanishes on'all vertical vectors), equivariant,, is C%,
and takes values in the Lie algebra of all d X d matrices. This 7 then gives
rise to a T, which assigns to each x in each M,, a linear transformation T,
of M, into itself. T,y is defined by: if b= (m,e,, ..., ;) is any point of B(M)
lying over m, and if X and y are any tangent vectors at b which project to x
and y, then

(2.1) T.y = & (T 75 (X) o; () &,

i.e. Tyy = z is equivalent to w;(z) = Z 7;(X)w;(¥) (Z being any tangent
vector at b that projects to z).

Geometrically, T, measures the difference infinitesimally between
K—(parallel translation) and E~(para11e1 translation) along curves coming into
m tangent to x. i. e. if ais a C* curve in M with «,(O)=x, if the fi(u) are the
K~(parallel translates) of a base f;,. .., f; along a to «(u), and if the f;(u) are
their K-(parallel translates), then one has 1—°j(u) = Zh;; (u) f;(u); then the matrix
of Ty relative to the f; is (h,'J (0)).

We now say this same thing in a different way. Let « be as above,
B ‘a K-horizontal curve over o, E a K-horizontal curve over a, with 5(0) =E(O).

v. 32 m.e 2, 30 de junho de 1960.
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168 W. AMBROSE, R. S. PALAIS AND I. M. SINGER

Then for each u there is a unique matrix h(u) for which 8 (u) = B(w)h(u). This
h(u) is the above (h;; (u)) and 7ij (%), if X lies over x at B(0), is h{j(_(}); and 7;;(X)
is the vertical component, in the sense of the K-connexion, of B at 5(0).

LEMMA 2.1. In the above notation we have
a) h™'h' = —7(3,)
b) h'h™'= —7(8,).

Proof: We use Lemma 4.1 of (Ambrose an Singer, 1958) which, altho stated
there for connexions on a bundle of frames, is clearly valid for any affine
connexion. It gives, in the present notation,

h™'h' = ¢ (8,).

Since § is K-horizontal, 5 (8,) = 0, hence 7 (§,) =7 (8,) — ¢ (5,) = — ¢ (8.),
so a) holds. To prove b) we note that K B. = d Ry B,, hence 7 ( Be) =
=¢(dR, 8,) =h™' 7 (8,) h. So a) becomes h™'h' = —h~'r (8,) h, which gives

b) immediately.

THEOREM 1. Assume the above notation. Suppose for each u ¢ [a,b] we have
a y(u) € Mg and that all these y (u) are K-parallel to y(a) along . Let
x(u)=a,(u). Then all these y(u) are K-parallel to y(a) if and only if T,y (u) = 0
for all u. In particular, if a is a K-geodesic then « is a E—geodesic if and only
if Tyx=0 for all tangent vectors x to a.

Proof: Let y(a)=Zcie; where 8(0)=5(0)=(m,e, ,. . .»€q), and define E=X¢,E;;
define the vector field F along 8 by F(u) = dR,E (8(u)). We shall write
T,y for the function on [a, b] whose value at u is Ty (u) and also consider
the functions E(8), » (E(8)), 7(8*), etc. on [a,b]. If a=(a;) and c=(cy,...,c))
we define ac = (Zay; ¢, . . ., Zagjc;) and denote the i-th component of ac by
(ac)i. We also define aE, if E = Z¢; E;, by aE = (ac),E; + ... + (ac)q Eq.
Clearly we have a(w (E)) = w (aE).

We first prove:

i) T,y = 0 if and only if hw (E(8)) = » (E(8)) (all these considered as functions
on [a,b]).

Proof: SincedrF =y and dr 8, = a, the definition of T makes T,y =0 if and
only if 7(8,) «(F) =0. By the previous lemma, h™'h' = — 7(B,) and we
know «(F) =& (dR,E(8)) =h™'w(E (8)), hence T,y =0 if and only if
b 0h ™ w(E(8) =0. Bt A h'h ™! = —(h™') and « (E(B)) is constant, so
h™'h'h ™l (E(8)) = 0 is equivalent to (h™'w(E(8)) = 0, which is equivalent
to h™'w(E(8)) = constant. Because h(0) = the identity matrix this is equivalent
to h™'w (E(8))=w(E(8)), which is trivially equivalent to h™'w (E (8)) =w (E(6)).
Hence i) is proved.

To finish the proof of the theorem we now show
i) All y(u) are K—parallel along « if and only if hw(E(B)) =w(E(ﬁ)).

An. da Acad. Brasileira de Ciéncias.
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Proof: The y(u) are K—parallel to y(a) if and only if d+E(B8)=d=F; since
d7E = d=E and d7F = drE(B) this shows the y(u) are K-parallel if and only if
drE(8) = d7E(8). And drE(8) = drE(fh) = dw(hdRhE(B))=d1r(dR,3hE({5’)) =
=dr(hE(B)), so the y(u) are all K-parallel if and only if drE(8) =dr(hE(8)) and
this is equivalent to E(8) = hE(8), which is in turn equivalent to «(E (8)) =
«(hE (8)), or to hw(E(B) = w(E(B)). This proves ii), and together i) and ii)
imply the theorem.

If T,x=0 for all x in all M,, we say the two connexions have the
same geodesics. This means, of course, the same parametrized geodesics.

The expression T,y, as a function of x and y, is a bilinear function
from M, X M,, to M,,. Hence it has a symmetric part S and an anti-
symmetric part A, where S,y = (T,y + T,x)/2 and A,y = (Ty—T,x)/2, with
T=S+A. Since S is determined by its values on the diagonal our theorem
above gives:

Corollary. Two affine connexions over M have the same geodesics if and
only if the symmetric part of their difference transformation is zero, i.e. if
and only if their difference transformation is anti-symmetric.

We now point out that if W and W are the torsion bilinear functions
of ¢ and p then the anti-symmetric par A of their difference transformation
is given by

(2.2) A=W—W.

Proof: The structural equations of the connexions give, in an obvious notation,
de=—pw+Q,do=—pw+ Q, where Q and Q are the torsion forms. These
torsion forms (on B(M)) being equivariant and horizontal give rise in the usual
way to bilinear functions, W and W, from M,, X M,, to M,, (for each m e M).
Hence Ew—cpw=§—-9, ie x ro=0—0. Expressing 7w, Q, Q in terms of A,W,W
(and noting that our product of forms contains an anti-symmetrisation in
it) we get (2.2).

3. SPRAYS AND CONNEXIONS

An affine connexion over M gives rise, for each x in each M,,, to a
unique (paramestrize) geodesic «, whose tangent vector at m is x. Wenow
want to consider, without an affine connexion being given, an assignment
which gives, for each x in each M,,, a curve «, whose tangent vector at m is x.
We call such an assignment a spray if it satisfies certain natural conditions
(“natural” in the sense that they hold when the «, are the geodesics of an
affine connexion). The object of this section is to show that every sprey
on M comes from an affine connexion over M, that the torsion of the affine
connexion can be assigned arbitrarily, and that the spray plus the torsion
uniquely determine the connexion.

In general, even if the o, are the geodzsics of an affine connexion,
the a,(t) can not be defined for all real t (o, may run into a “hole” in M). Hence
we must assume that our «,(t) are defined only for some t. For uniqueness
statemsnts w2 need, howsaver, to know they are defined for as big a range

v. 32 no 2, 30 de junho de 1960.



170 W. AMBROSE, R. S. PALAIS AND I. M. SINGER

of t as possible. This explains the elaborateness about the domains in the
following definition.

Def. A spray on M is an assignment which gives, for each x in each M,,,
a C” curve o in M, such that the follewing hold:

1) The domain of each « is an open interval of real numbers
containing 0,

2) (0"x>*(0) = X,

3) G ) = ac(s+1),

4) an(t) = ax(st)

5) Let 0 be the subset of R X T (M) consisting of all (t,x) (teR,

xe T(M)) for which a, (t) is defined, and F the mappinf of 0 into
T(M): F(t,x) = (a),(t). Then F ¢ C=.

6) ¥ is maximal relative to 1) — 5).

The above F is the usual flow on T(M), i.e. Fis a 1-parameter family
of transformations of T(M) into T(M), defined by

Fi(x) = (o) (1),
F clearly has the following properties.

1) For each x, F;(x) is defined for an open interval of real numbers
containing 0,

2l) FO (X) = X,

3,) Ft(Fs(x)> = Fs+t(x):

4) Fi(sx) = sFy (x)

5) F ¢ C (from 0 into T(M))

6') F is maximal relative to 1) — 5")
7) Fi(@) = (o), (t).

Conversely, if a 1-parameter group of transformations of T(M) into
T(M) is given satisfying 1’) — 6’) and ax(t) is defined as the projection of F,(x)
into M, then these «, form a spray satisfying 1’ — 7).

There is still another formulation of the notion of a spray, which is
well known, in terms of the infinitesimal generator V of the flow F. If the
flow F is given then one defines the vector field V, on T(M), by V(x) = the
tangent vector to (a,), at () (0). This vector field has the property: If =
is the projection of T (M) into M, then drV(x)=x. Conversely, any vector
field with this property gives rise to a unique spray, via its integral curves.

We say a spray is the geodesic spray of an affine connexion if anf only
if for each x in each M, the a, given by the spray is a geodesic of the connexion.

Prop. For each spray on M there exists a unique affine connexion of torsion
zero whose geodesic spray is the given spray.

An. da Acad. Brasileira de Ciéncias.
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Proof: We shall use the notation e, and F as above for the mappings given
with the spray. For each m ¢ M we define a mapping y,, of M,, — M by:

d’m(x) = ; Fl (m7 X)

where 7 is the natural projection of T (M) — M. For each x ¢ M,, let p, be
the ray: p,(t) = tx (defined for all real t). We first prove

@ YuoPx = &
Proof of a): We have, from 3'), taking t = 1,
Fi(m,) opy(s) = sF,(m,x),
hence
7 Fi(m, ) op.(s) = 7 F, (m, x).
The definition of ¥, and 5) then give «).

There is a natural isomorphism. of M, onto (M,,)y, namely, x—>p.* (0),
and we now see that dy,, is the inverse to this for «) with 2) gives

d¢mpx* (0) = ax* (0) = X.

Hence, by the inverse function theorem, ¥, maps some neighborhood of 0
in M,, diffeomorphically onto some neighborhood of m.

We define the desired connexion as follows. Let b=(m, e,,...,e4)¢e
¢ B(M) and we shall define K;,. Let x(,...,x; be the dual base (of M,,) to
€1,...,€4. Define the mapping ¥, of a neighborhood of 0 in M,, to B(M) by

¢b (n) = (ll/m (n)’ dlpﬂl ._a_ag (n)) AR d¢m —é—i_d (n)) :

Clearly ¢, (0) = b. We now define
Kb = d‘l/b (Mm)O-

It is easily checked that the K thus defined is a connexion on B(M) so it remains
to show that: 1) the spray generated by K is the given one, 2) K has torsion
zero, 3) uniqueness of K.

Proof of 1): If a spray is given on M then its associated flow is generated
by a certain vector field V on T(M), where V is defined by: if & (t)=F;(m,x)
then V (m,x) = a,*(0). By 3') we then have

B) ax=7—r°&x

where 7 is the natural projection of T(M)—> M. Clearly V determines F.
If the spray comes from a connexion K with canonical horizontal

fields E; then

7) V(m,x) = d= E (b), if 7, (b) = (m,x),

where 7 is the projection of B(M)—>T(M) carrying each base into its first
element. Since a, is constant when x is the zero element of M, this deter-
mines V. .
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Hence to prove 1) it is sufficient, if V is the vector field of our given
spray and E; is the vector field of the connexion we have defined, to prove
that y) holds for this V and this E,.

So let b=(m,e,,...,eq) be fixed and we write x=¢,. To prove v)
it will be sufficient to find a curve 6 in B(M) with 6(0) =b, 6,(0) = E, (b),
and Tod = a,. We define § by

6 = Y, o Px-

Letting x;, ..., X be the dual base {of M,,) to e, ..., e;, we have

5(t) = (‘!/m (px (t)): d‘l’m —'3%1— (px (t)>’- B -’d‘//m —66Td (px (t))) )

Since § clearly projects under 7 to ¥y, ¢p, = @, (using @) and since 5,(0) is
horizontal by definition of K, we have

i) E;(b) = 8,(0).

Clearly »
- d
Lo 5<t) = ("/’m (px (t))! d'pm _(E‘ (px (t)) ) *
1
3 3 .
Because " (py (1) = e (D, (t)) = p* (t) and «) shows that
1 1
d¢m © Dy (t) = Qyx(t)
we have

) Tod(t) = (ac(t), aw(t) = Fy(m, x) = & (t).
As remarked above, i) and ii) prove v) and hence 1).

Proof of 2): One defines the torsion forms of the connexion to be the
horizontal 2-forms @, ..., Q; by

(s, t) = d o(Ks, Kt)

(foralls, te B(M)b) so we want to show dw;(s,t) = 0 if s and t are horizontal
in B(M),. Again letting b = (m,e;,...,ey) and x;, ..., x4 be the dual base of
€. ..,€q it is celar that w,«dy, =dx;, hence d w, odyy, = 0. If s,t are horizontal
at b then, since Ky, = dy, (M,,)y, dw; (s,;t) =dwiodyy(s,t) =0. This proves 2).

Proof of 3): Let ¢ be any other connexion with the same geodesics
as ¢ and torsion 0 and let 7 be the difference form. Then r gives rise to a
difference transformation T as in §2. We write T as a sum of a symmetric
and anti-symmetric part: T=S+A. Because ¢ and » have the same geodesics,
S=0, by the Corollary to Theorem 1. Because they have the same torsion,
A=0 by (2.2). Hence T=0, thus 7=0, thus ¢ =o.

If W is any mapping which assigns to each pair of vectors, x and v,
in each M,,, an element W(x,y) in My, and such that W is bilinear, W is anti-
symmetric, and W ¢ C* we call W a forsion fensor on M.

An. da Acad. Brasileira de Ciéncias.

-




SPRAYS 178

Theorem 2. 1If a spray and torsion tensor are given on M then there exists
a unique affine connexion over M whose spray of geodesics is the given spray
and whose torsion is the given torsion tensor.

Proof: Let ¢ be the 1-form of the affine connexion given above with torsion
zero and whose geodesic spray is the given spray. Let W be the given torsion
tensor, and let T = W/Z, so W(x,y) =Ty — Tyx. Let 7 be the equivariant
1-form on B(M) corresponding to T and we define the desired connexion ¢
by ¢ = ¢+ 7. Then T is the difference transformation of ¢ and . Because
‘T,x = 0 we have, by Theorem 1, that ¢ has the same geodesics as ¢, and by
{2.2) we see that W is the torsion of ». Uniqueness follows as in the previous
proposition for if & is another such then having the same geodesics and torsion
again implies the symmetric and anti-symmetric part of its difference tians-
formation with 'c;':" is zero.

4. DISSECTIONS AND SPRAYS

We show here that there is a natural 1:1 correspondence between
sprays on M and dissections of M”. If a spray is given it provides a mapping
(denoted by ¥, in §3) of M, —> M and we can carry over the natural dissection
of (M,,)* (i.e. the one obtained from its linear structure) via ¥y, to get a dis-
section of M at m, for each m, thus obtaining a dissection of M. However
we prefer to describe this dissection starting from the «, of the spray, and to
give the dissection in terms of the Hessian H; which it assigns to f. If a spray
is given, consisting of a family of curves {ax} (using our previous notation)
we then define the Hessian H; of f by

4.1) H; (x,x) = D*(0) (fo o).

Here D(s) denotes differentiation on the real line at s. This determines Hj
as a bilinear function on each M,, X M, for which f ¢ F:," , making

H; (x,y) = (1/4) [D*(0) (fo ay4y) — D*(0) (fo aty—y) — D*(0) (fo ) —
—D*(0) (foa,) .

One proves the bilinearity of H; most easily by reference to the mapping ¥,
above, and in terms of that definition of the dissection, but we omit the details
here. The assignment: f —> H;, has the properties mentioned in §1 which
ensure that it arises from a dissection of M". We call this the dissection induced,
by the spray { ax}.

In this section we wish to show that every dissection arises in this
way from a spray and that this correspondence between sprays and dissections
is 1:1. We shall do this by showing that a dissection gives rise to a connexion
whose geodesic spray induces the given dissection.

At this point we wish to consider the condition on a connexion that
its geodesic spray induce a given dissection. From now on our dissection will
be described by an assignment: f — H;, which associated to each C” function
f (whose domain is an open subset of M) an H; which is a bilinear function
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on each M, X M,, for which m is in the domain of f, and which has the pro-
perties: a) the assignment is C” in the sense of §1, b) it is linear, c) at any
critical point of any f, H;, shall be the usual Hessian of f. As shown in §1,
this is equivalent to a dissection of M.

The condition that a spray { ax} induce a given dissection of M” is
(4.1). Now suppose a connexion is given on B(M) with canonical horizontal
vector fields E; and let { ax} be the geodesic spray of this connexion. If x 30
and b= (m,e;,...,e)) with x = ¢;, and if @ is the integral curve of E; with
a,(0)=b, then 7o@ = a,. Hence for f ¢ F,,

(Ef (b)) (fom) = D*(0) (foroay) = D*(0) (foay).

Combining this with (4.1) we see that a given dissection: f — H; is induced
by the geodesic spray of the connexion K if and only if for each
b= (me,,...,e), and each f ¢ F,\

(4.2) (Ef (b)) (for) = H; (g, €)).

It is trivially sufficient to know this at a single b over each m ¢ M and to know
it only for j=1.

Next we recall a few notions associated with a coordinate system of M.
Let x;,...,%x4 be any coordinate system of M, with domain 0. This gives
rise to a local cross section x of B(M), over 0, defined by

x(m) = (m, —6671 (m), ..., -—a%d— (m)) .
. From the x; we obtain a coordinate system y,,. .., y,, Vits--.» Yaa of BM)
with domain 7~ '(0)=B(0), defined by

Vi = Xjomw

yi; (0) = dx;(e) if b= (m, e, ..., e.

If H is any connexion on B(0) with canonical horizontal vector fields
E; then

(43) Ej (Xi o7r) =Vij -
Proof: (E;(b)) (xiow) = d7E;(b) x = ¢ x; = dx; (e;)) = yi; (b).

The coordinate system yi,..., V4, Yit,- .., via defines a product
representation of 7' (0) as 0XGL(d,R) and thus defines on 7' (0) an affine
connexion of curvature and torsion zero. We call this the affine connexion
_g_iven by the coordinate system X1,...,Xq. If its canonical vector fields are
E; and o is its 1-form then at all m ¢ 0,

¢ = dy;;

@.4) _
B (em) = dx (2 )
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Let _I_{ be any connexion on B(0) with canonical horizontal vector
fields E; and K be given by the coordinates x;,...,x,; let ¢ and % be the 1-forms
of these connexions and 7 their difference form: r = —¢. Then at any
b= (m, €,...,€0) & ' (0),

(4.5) 7ij (B5 (b)) = H(ej, &) = (Bf (b)) (xi0m),

where this Hessian is that induced by the geodesic spray of the connexion K.
Proof: 1;(E) = ;i (E) — 0; (E) = oy (B) =dy;; (Ey) = E; y;; = E] (xj07) =
= H, (g, ¢;) (the last two equalities holding by (4.3) and (4.2).

In case K is also given by a coordinate system, say z,,. .., z,, with
domain 0 and ¥ is the corresponding cross section of B(M) over 0 then we

have, at all b ¢ ¢¥(0) N x(0), letting m = = b,

(46) Tij <Ek (b)) = —6—(29—'—(;{'2—1:

(m).

Proof: In this case we have, at all n ¢ 0,

71 0) = (52 @) = 32 (o

Hence, as in the above proof,

]

7i; (B (b)) = dy;; (Ex (b)) = Ey(b) y;; = dy (_é%: (rn)) Yij =

I

a3 lé] d X 62 X
Frn (m) (y509) = £ (m) ( 37, ) = 2 0o (m).
Theorem 3. If a dissection of M” is given then there is a unique spray {ax}
on M which induces it.

Proof: We first prove the existence of a spray inducing a given dissection.
So we assume a dissection: f —> H; given; and we prove the existence of a
connexion K for which (4.2) holds.

We call a coordinate system xy,...,xq of M special at m if and only
if all x;(m) = 0 and all H,;, = 0 at m. We first prove that for each m there
exists a special coordinate system at m. To show this choose any coordinate
system ¥;,...,yq at m with all y;(m) = 0; thus the y; ¢ Fr,. Let p, ..., 1
be their images under the natural projection of Fy —> Fu/F3 = *M,,. Our
dissection of M” now enables us to write p=pi+ i where ui e Hy and uf € HY,.
Let f1,...,f; be functions in F2, such that u = f; + F2,. We define the desired
X1,...,Xq4 by x; =y;—f;. We see that these x; are a coordinate system on
some neighborhood of m because dx; = djri at m, so the dx; are linearly
independent at m. And the projection, given by the dissection, of x; + )
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into F2[F2, is zero because the vi and f; have the same component in F2/F3 .
Hence the x; are a special coordinate system at m. Furthermore, if ey, . . ., €4
is any base of M,, then there exists a special coordinate system at m,

] . - .
say Xi,...,Xq, for which Iz (m) = ¢; (for all i); this is obtained by performing
X;

a linear transformation on the coordinate system already obtained.

Now we define the desired connexion. Let b = (m,e,,... ,€1), choose
. . 9 .
any special coordinate system xi,...,x; at m with P (m) = ¢ (for all i), let
L

X be the local cross section of B(M) obtained from this coordinate system
and we wish to define

Kb = dme'

To legitimate this definition however we must show it independent of the
choice of the special coordinate system. So let Z1,-..,2q be another such,

9 .
(including of course that ry (m) = e,-) and ¥ the local cross section of B(M)
i

which it gives. For__ the moment let us write f{-b = d¢yM,,, and we need
to show that K, = K. _

We have really defined K; and K, to be the horizontal spaces at b
of the connexions defined by the coordinate systems Xi5-..,% and z;, ...,z
so if we can show the difference form of these two connexions is zero at b we

92

a X
aZj aZk

shall have that Kb=ﬁb. By (4.6) it is sufficient to show that (m)=0.

We now prove this.

By (1.2), applied with f=x; and with z,,. . ., zqin place of the x, ,. . ., X4
of (1.2) we have, on some neighborhood of m,

2
8x,-

6Zj azk

%= T 22 )z + Ey

P (m) z; z, + g;

where g; € F,::,. Since the x; and z; are both special at m we have, applying
the mapping, f—> H;,

32 Xi

0= Z’Sk Jz; dzy

(m)H, , +H, .

The functions z; 2, and g; have critical points at m so their Hessians are the
usual Hessians. Since g; ¢ F° its Hessian is zero, thus

2
6Xi

0=Zx 9z; 9z

(m) H, ,
Because the usual Hessian of z; 7). satisfies
9 ]
H, ., ("a—i;— (m), o, (m)) = Ojp Oiq
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the previous equality shows

2
ax;

— =0 f .
32,0z, (m) = 0 for each p, q

Thus K, = R-b and our connexion is well defined.

Next we must show that (4.2) holds, where the Hessian H; is that
given by the dissection and the E; are those of the connexion just defined.
So consider any fixed b=(m, e, , . .. ,e,) and choose a coordinate system x, ,. . ., %,

. . a . .
which is special at m, and with e (m) = ¢ (for all i). We first show (using

that the x; are special at m) that (4.2) holds when f = x;; then we show (this
part not depending upon the x; being special) that this implies (4.2) for general f.

Proof of (4.2) when f =x;: Because the x; are special we have
H,; (e;,¢;) = 0 for all i,j. Let 7 be the difference form of K and the connexion
given by the x;,...,%4, so 7;; (Ex(b)) = 0 for all i,j,k, — by the definition of K.
Then (4.5) shows Ef (b) (x;om) = 0, hence (4.2) holds for f=x; (We can not use
the equality with Hy (e;, €;) given in (4.5) for that H,, is the one given by the
connexion whereas we need it for the one given in advance).

Proof of (4,2) for general f ¢ F}: (We are really proving here, for
any coordinate system, that the Hessian of the coordinate functions determines
the Hessian of all functions). We have, at all points in some neighborhood of m,

) f=f(m)+ Za,x,+ Xg,x,
where the g, € Fy,, and the a, are real numbers. Then
B) Hi(e,e) =2X(eg,) (e %)
On the other hand, applying Ef to fom,
E{(for) = Za, E] (x,om) + E} (Z g, x,0m) =
=Za, E{(x,0m) + Z(E{ (gy0m) (xp0m) + E(g,om) (B (x,0m) +
+ 2Z (i (g,0m) (Ei(x, o).

Evaluating this at b, uring that x,(m) = g, (m) = 0, and E7 (b) (x,0m) =0 (this
last because we already have (4.2) when f = xl,), we have

EJZ (f°7r) =2X (EJ (b) (gp° 77)) (E.l (b) (Xp°7r>> = ZZ(ej gil) (ej Xp)

With 8) this proves (4.2), so we have proved the existence of a connexion whose
geodesic spray induces the given dissection of M®.

Proof of uniqueness of the spray: Let {a}‘} and { ai} be two sprays which induce
the same dissection of M” and we now prove they are the same. By what
we have proved above we know { a;} is the geodesic spray of some affine con-
nexion K' and {a;':} is the geodesic spray of some affine connexion K. Let
gol and ¢° be the 1-forms of these connexions and 7=¢" — ¢'. We shall prove,

under the assumption that these sprays induce the same dissection, that, for
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the difference transformation T of r, wz have T.x = 0 for all x in all M,. By
§2 this will imply that K' and K” have the same geodesics, i.e. that our two
sprays are the same.

Let m be any point of M, b=(m, ¢/,. .., e,) any point of B(M) over m,

]
and choose a coordinate system x,,. .., x; at m such that 7% (m) = ¢ (for all i).

Let <p be the connemon obtamed from this coordinate system and let 7' —go o',
= —¢". Hence r* = 7"—7'. Because the geodesic sprays of go and ¢ induce
the same dissection of M" we see by (4.5), applied to 7' and +* , that

75 (B; (b)) = ; (E; (b)).

Hence 7; (E (b)) = 0. This implies using the relation (2.1) between r and T,
and letting E;(b) =X = ¥, and writing x = e,

Tix = Zu (Zq 7o (E;j (b) w, (E; (b)) €,
= I, (r; (Eid))) ¢ = 0.

Hence T,x = 0. Since b is arbitrary this proves the desired uniqueness.
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