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Abstract

A famons innovation of Sophus Lie was his approach to the study of
differential equations throngh their groups of svinmetries. We will ex-
amine a techuigue catled the Syinuetrie Criticality Principle. which is

a specialization of this approach 1o Fuler Lagrange equations.

Preface

The invitation to give a series of lectires during the Sophus Lie NMe-
morial Week is o great honor and privilege for e, My dissertation
was titled A Global Formulation of the Lie Theory of Transformation
Groups™. and much of my rescarch <ince then hias also heen concerned
with ideas that can be traced back to Lice.

Porhiaps the two arcas of the mathematios that T have worked i
the most are Differentiable Group Aetions and the Calenlus ol Varia-
tions. About fifteen vears ago [ hecame fascinated with a mathematical
principle that lies at the interseetion of these two fields. T oeall it the
Svinnetric Criticality Principle (SCP for shortysand in these Tectnres |
world like to sirvey of some of the elegant and surprising mathematics
that sirotds this principle. Tnothe first of the three Teetires we will
ivesticate SCP itself. determine its vanee ol validity and artempt to

nderstand whyv it can be such o powerfud tool for proving the existence
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of critical points (and also for locating thent). In the second lecture
we will apply SCP to some specific problems that arvise in applications
of the Caleulns of Variations to geometry and physics. and sce liow it
leads to precise descriptions of solutions to many of these problens.,
Finallv. in the thivd Tecire, we will look at a sophisticated recent ap-
plication of SCP by Tont Parker. This application. to the Yang-\ills
functional for gange fields. helped settle a lone outstanding question
namely. whether there exist solutions of the Yang-Mills equations that
are unstable (and henee neither self=dual nor anti self-dual) L 15
(61

Because these lectires were designed as part of a Stanmer School.
the exposition is intentionally “uneven™  or rather. T hope. oraded. T
have attempted to piteh the st Teeture at o level accessible (o first-vear
graduate students. the second for advanced eraduate students. and the
final Tecture tfor more matre rescarch mathematicians.

['should point ont here that T did nof discover the Symmetric Criti-
cality Principle (althongh perhaps it would he fair to sav that 17 nucov-

ered” it). As vou will see. it is one of those ideas that has heen arotnd
for a very long thme. and physicists in particular have heen using it.
usuallyv implicitly. for perhaps as far back as one caves 10 look. v role
has been rather to draw attention to it by giving it a name and help-
g settle its true range of validity [12]. and to give a rigorous cencral
discussion of its applications in Geometry and Mathematical Physics

13].

1 Introduction

It is nearly inconccivable that a student cnrently doine eraduate work
- any arca of Mathematios would not 1o he familiar with the name of
Sophns Lies and at least with the basis of his theories of Lie eroups and
Lic algebras. For these are not onlv in themselves major ficlds of modern
mathematical rescarch. but they also scem 1o plav o hasic role in most
other aveax of pure and appliecd Mathematics and Phvsies. Still, the Way
that Lie groups are normally tanght todav, a student conld be excnsed
for not realizing that Lie’s prinary interest in them wat nof as abstract
objects. but rather as transformation groups. In fact. for Lic. they arose
1 practice as the svinmetry eroups of nuportant geometrice. aleebraic.

and analvtic structures. and their Lie algebras wore the infinitesimal
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generators of one-paraineter groups of <uch syvnnmetries. Lic was a man
of extraordinarily wide interests. and he applicd his remarkable insights
about svinmetry to a very broad spectrnum ol problems. In particular.
inspired no doubt by Galois™ spectacular success in studving algebraic
equations through their svmmetry groups. Lie had the genius to suspect
that a deeper understanding of the svimetries of differential equations
niight similarly lead to progress in classifvine them and finding bettoer
methods for their solution. Of comrse he was correct. and this ~Galois
theory differential eqnations™. initiated by Lic [17 is still an important
and active field of rescarch [10],

Now. many of the most important differential equations (both or-
dinary and partial) that arise i pure and applied Mathewatics are
“Fuler-Lagrange equations™. that characterize the critial points. p. of
some Calenlus of Variatons functional. /7. 1o these equations arise as
an analvtic reformulation of the fact that. /7. the differential (or first
variation” ) of I7 vanishes at po In particular. the “field equations™ that
desceribe both the stable configurations and the dyvinamical evolutions
of physical field theories are virtually alwavs derived from sueh a La-
grangian variational principle [3.0 NMorcover. an important component
of designing physically realistic field theoretic models consists of build-
ing into the defining Lagrangian functional appropriate synnnetries that
are sugeested by experimental results,

Since it is clear that. for Euler-Lagrange cquations. any syvinnietry
of the detining functional £ will also be o svinmetry of the variational
cguations. this sueeests that we shonld nvestigate. more generallv, the
following question: Give a smooth rea-valued function. F @ M — R.
what ix the relation between the set CrF) of eritical points of £ and
the geometry of a Lie group ¢ of diffeomorphism ot M that has £ as
an invariant function” As we shall sce helow, this is precisely the sort
of relation that the Svimmnetric Criticality Principle tells us about. and
while I don™t know of any work by Lic concerned with this more general
question. it fits in so well with his ecneral approach that a swrvey of

SCT seems quite appropriate for a conference devoted to his niemory.

2 The symmetric criticality principle

Betfore stating SCP let’s look at some very simple examples. First.

two that alinost evervone sces in their introductory caleulus course:
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“Antong all rectangles (triangles) with a fixed perimeter. show that the
square (equilateral trianele) has the greatest area”™ . T suspect that 1ost
people. when they first meet these problems. sce immediately that the
proof reguires no computation  that it {ollows solely {from svnunetry
considerations. .\ somewhat less obvious application of SC' ix that any
smooth function on the plne tor more generallv in R”) that depends
only on the distance from the origin st have a critical point at the
origin. and similavlv. any inetion on the Earth (e the two-sphere)
that is constant on lines of Latitude must have critical points at the
Norvth Pole and South PPole.

These are tov examples: they capture a little of the Havor of SCT.
but are too trivial to illnstrate its fudl essence. We will present some
nmore serions and mterestine ilnstrations from the Calenlus of Variations
shortly,

Now let’s eive a carciul statement of SCP. As above, wo let: J°
M — R be asmooth. real-valued funetion on a smooth manifold V. and
denote hy CF7) its et of eritical points. e the set of solutions p to the
abstract variational problem dF, = 0. Recall that dF, & T7), is the
lnear functional on 7V defined by letting d F,(N) he the divectional
derivative of £ in the divection X for any tangent vector X at p. Thns
the vanishing of the divectional devivative in o/l divections N at s the
necessary and sudlicient condition for p 1o helone to CF).

Next suppose that o Lie group (Cact= smoothlv on M that is. M/
is a smooth G-nanilold, and suppose moreover that 77 is an invariant
function for the action of e that 1 is constant on the orbits ol (4.
or cquivalentlv that [ g = Ffor all ¢ = ¢ Then by the chain mle.
Al = dg, = dF,and it tollows that if pois o eritical point of 17 then
R0 s gpo el COFy s oo G-invariant <et. and henee a union of G-orbit s,
Those G-orbits included in CoFy ave called critical orbits,

The set of stationary porits of the action of ¢ on Y will playv a
central vole in what follonws: These are the points pool M such that
gp — plorall g i Goiel points where the isotropy eroup (7, is all
of Goand hencee where the orbit Gpconsists of just the point p itself,
Traditionally thix <et is denotec by MO it we shall alwavs denote it
by M and we call it the et ol synnnciric points of Y. This is hecanse
i the Calenlus of Variations serting that we <hall be dealine with. the
clements of X ovepresent ceometrical or physical conficurations that are

mapped into themselves by G-those that i the phyvsicists jareon, have
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“tmbroken svimmetry”. Our objeet of primary interest will he the set
CU)NY of “svimetrie critical points™ i other words the eritical orbits
that are reduced 1o a single point.

On the other hand. we can also consider the set COI71Y) of “critical
svinnetric points™. Recall that the chain-rile implies that (/(Ff\_‘),, =
(/]",,f’/‘L‘,,A so that these are the points satisfiving the weaker condition
that the directional derivative d 10N ) while not necessarily vanishing
tor all direetions at p. does at Teast vanish for those that are tangent
to X0 Clearly then C1) N SOOI e assvinmietrie eritical point
IS triviallv aceritical svinmetric point. SCP s the statement that the

converse also holds.

2.1 The Symmetric Criticality Principle
COFY O = CulN.

Lets next trv to inderstand why this simple principle has proved 1o
be <o remrkably nseful and also why vou =hould be a livtle surprised
byt Firste e is wseful hecause the set N or svoinetric points of \/
s almost always oo mach “sinaller™ <ot than M itsolf. and s nakes
i Lar casier 1o find eritical points of 2% than 1o lind critical points
ol 170 For exaniples in Calenlns of \Vaviation- problems 3 owill alwavs
be infinite dimensional. (which is preciselvowhy it is so hard 1o prove
ceneral existence theorems for Enler-Lagrance equations). Bt as we
shall seel Xowill frequent v be finite dimensional At inmany cases, N
will even be compact. in which case 1he oxistonee of eritical svinmetric
point~ i~ obvions. There ix an even more extreme cnse that also ariees
frequentiy. one that makes SCP nsefl cven for fingre dimensional 1/:
wanely when N has an isolated pomt. For triviallve any isolated poin
of Misaeritical svnmetrie point. and therefore. according 1o SCP. o
svinmetric critical point. (Recall our example above of the rotations of
the twosphere about the =axis). The reason that SCP s SUrprising is
exactlv the same as the reason it is nscelil. 160V is infinite dimensional
b Mis finite dimensional. then there is an indinge dimnensional space
O, trasverse to Y T Why should the vanishine of dF, on the
finite dimensional IY imply it onothe far Laroer .7 In the extreme
case that pois an isolated point of X 1, = 0o while O, = T3, and

thix puzzle also beconmes exireme,
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Now some important “had news™  SCP s not calid in complete gen-
crality! (which is why we called it a “principle” and not a “theorem™ ).
Worse vet. SCP nay not even be meaningful in certain CITCTIISTALICES,
Wo have assumed in onr disenssions so far that the set ¥ of svimetric
points must be a swooth submanifold of 1/ But this may not be so.
i which case we cannot everl speak meaningfully of eritical synmetrie
points. Morcover. even when ¥ is a smooth manifold. there can be
critical svinmetric points that are not critical points. However. before
oiving explicit. simple examples of these failwres of SCP. let me follow

up with the good news:

e SCT is alwavs valid when (s compact (and so in particular when

¢/ is finite).

e SCP is also valid when the ¢ manifold M admits an invariant
Ricmanninn structire  ie. when Cis a group of Ricmannian

Isometries.

Thie proof of this latter fact is both casy and intuitive. and we shall give
the full details after the counter-examples. Fortunately. these 1wo cases
cover most of the important sitnations where we wonld Tike 1o apply

SCP.

2.2 Counter-example 1

We shall show that eiven any non-cmpty closed set ¢ inca smooth man-
ifold V. there exists a simooth action of =R on M with ¥ =" (The
same result also holds for non-compact M. but compactness simplifies
the proof a little). When A s compact there is a bijective correspon-
dence hetween smooth R-actions and smooth veetor fields. with the
stationary set ¥ of the R-action heing just the set where the generating
voctor ficld vanishes. So we onlv have to find a smooth vector field X
on A that vanishes precisely on € Now the existence of a smooth
real-valued function fon M owith ¢ = f710) is a standard fact. and
by o hasic theorem of elementary differential topologyv. given any p i
A/ there is a smooth veetor field Yoon M vanishing ouly at p. Since
(' is non-empty we can take p e Coand then define X = f}7 Since we
cann for example choose € to he a Cantor set. we see that when = R.

Vs not generally a smooth submanifold of A7,
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2.3 Counter-example 2

In thix example we again take (7 — R aud let M/ = R”. We define a
stooth G-action (in fact a linear representation) of Gou M by g, p) =
(¢ +pl.p). Notice that this is a well-know, “physical” action it is the
Hawmiltonian flow corresponding to a one-dimensional free particle of
it mass. Clearly S coincides with the g-axis. and the other orbits
are just the lines p = constant. parallel to the g-axis. Tt follows that
a smooth fanction £ on A/ i invariant if and oulyv if it is of the for
Fly.py = Iip) for some stmooth hm('tiun fron R. But such o function is
Constant on X 5o every point of X is a critical svinetrie point. On the

other hand. i /7/(0) # 0. then there are 1o svimetric eritical points.

Validity of SCP for Riemannian C/~-manifolds

[ this section we assunie (hat Mois o Ricmannian Gomanifold. and.
as usttals oM~ Rois a Geimvariang Mnction. To sav that the (-
wanifold 17 is Ricianuian means 1ot onlv that M/ has a Ricnannian
structure. but also that every olement of (U acts as an isome tryv of 1/,
We denote the Ricimannian inner product by o0 For cach poin M we
have the so-called 1sotropy represcntation g - - g, of the isotropy eronp
Goon T, aud we note that it is clearly orthogonal. For points pof

Y this of course eiven an orthogonal representation of ¢ on 13,

Let exp denote the exponential wap of 7V imo M. That is. il
Cols o tangent vector 1o M a pothen ~ (1)~ exp(te) is the geodesic,
paramnctrized proportionally 1o are-lenet b, wirly - ) =pand ~(0) = .
Shce isometries wap geodesios 1o ocodesios, if g = Gilien N = g0~
is the veodesie with AU = gip) and Moy = dgte). and it follows that
expedy = geexp. I exp » denotes the restriction of exp to 1M, then
from the definition of exp it follows that e Xy, s the identity map of
T, <0, by the inverse function theoren, exp, maps a neighborhood of
zevo i the Hilbert space T M, ditfeomorphicallv onto a neighborhood of
pie M This is acanonical chiart or coordinm e svstem for M near p. so-
called “Ricmanmian normal coordinatos Thevelation expodg = GOOXp

above now savs that:

Proposition  If e N then in o e wyhborhiood of pthe action of G on

Moas lincar in Ricmannian normal coordinalcs al pooand in fact s Just
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the isotropy representation of G
And as an immediate corollary

Corollary ¥ is a smooth submanifold of M. in fact a totally geodesic

submanifold. Morcover. Jor cach pin .TY, = {oe T dyte) = ¢

for all g ¢ G the tungent space to N consists of all the clements

of T, fircd by the isotropy represe ntation at p.

Note that X need not he connected. and moreover different compo-
Hents of & can oven have different dimensions. Thus one cannot speak
of the dimension of ¥ only its dimension at some point.

Next. recall that the eradicut of a simooth real-valued hetion o e
1/ — R is the veetor field Yo dnal to the I-fornn du with respect to the
Ricnnmian structure. Lo Sois characterized by du(. N ) = (N.Nu) (so
of course (i) consists of the zevos of V). Because dg,, is an Isometry
of TM, onto TV, for every g < GLthe identity d b edg, = d I, noted
carlior. translates immediately into dg(NF,) = N1, other words.
the vector ficld SF is Geoquivariant. In particndar. if pis a svimnetric
point then it follows that (X7, is fixed by the isotropy representation

at p.and by the above Corollary we sce that:
Proposition A/ cach point of XN s fangent o hD¥

Lot N he amyv submanifold of A7 owith the indiced Ricnannian
strncture). and given p e N let 2 denote the orthoconal projection of
1M, onto the subspace TN, Clearly 20N, satisties the characteristic
definine property of X ia N, 0 they are i fact equal. T partienlar.
the critical points of b\ ie. the zeros of Sap N ). are exactlyv the
points where Nu i orthoconal to N Specializing to o = Fand N = X
wo see that the critical svnmetrie points are exactly the points p where
T/ is orthogonal to Y. Bat. by the preceding, Proposition. N s aliways
faneent 10 Y. so at a critical svimetrie point. T =00 hen o eritical

SVIICHTC point is asvinmetrie critical point. and we have proved:

Theorem  The Symmdcivic Criticality Prociple is o valid thearcm for
Y / / .

Ricomannian G-nanifolids.



Since we always assue our manifolds are paracompact. if M s
modeled on a Hilbert space (i particular. if it is finite dimensional).
then we can choose a Ricmannian stracture for 1/, Then if (7 is any
compact group acting on M. by the well-known process of “averaging
over the group”™ we can get an invariant Ricianuian struceture for 1/,
and it follows as o corollary of the above Theorem that SCP is valid
for all Hilbert G-manifolds. provided ¢ is compact. Of course. for an
mfinite dimensional M not modeled on Hilbert space. this arenment
2.

breaks down. Nevertheless: o somewhat move claborate argument (]

Theorem 5.4]) proves:

Theorem [/ (7 s a compact Lic group then the Symctric Criticality

Principle is calid for all G-manifolds.

Before leaving this abstract discussion of SCP T should point out that
it does mof answer all the mportant questions concerning variational

problems with ssietry, Heve are two exanples.

First. just becanse an equation exhibits some svinmetry, it does
not follow that we onlv care abont solutions that exhibit this same
svimmetry. i fact, as often as not. we also need to know information
about the non-syvinnetric solutions of svimnetrie variational problems

and regarding these SCP s silent.

Al second. we can sav little about the sccond order properties of
I at acsvnnucetrical eritical point <tarting from knowledee of telr second
order properties of FIMN0 Recall that at a ceritical point poof £ there is
a well-defined svunnetric bilinear forns Hesso 75, on T4, the Hessian
of I pothat chiaracterizes the second order behavior of /7 near p.
N and Y o are vector fields on M then HesstF7, 0N Y ) — N0y B
thy docal coordinates at p. its matrix is the matrix ol scconud partial
derivatives of I7at pyo I the Hessian is positive definite then pis a local
ninine while i e s negative defivite then pois a local masinm.
and in ceneral the index and coindes of the Hesstan are called the index
and co-index of the eritical point o A a svinetric evitical point. the
Hessian is invariant wnder the isotropy representation. <o for example,
i the sotropy representation i= irreducibio. then fas is pointed ont in
AT i follows rony Selnns Tenna that ponst be cither @ mininum or

aomaxiu. Bue in infinite dimensions o representation ol a compact



eroup is never irreducible. so this is of no help. Of conrse. the index and
coindex of Foat p ave greater than or cqual to the index and coindex of
F

-

to infer properties of the Hessian of I/ transverse to X from the Hesstan

NMoat po But this is trivial - areal second order SCP wonld allow us

of FI¥. and this is unfortunately not possible.

3 The calculus of variations

The most interesting and striking uses of SC'P occur as applications to
problems in the Caleulns of Variations. Before setting up the machinery
to explain this in full gencrality. let’s examine a couple of simple but
inportant exanples,

First. lTet’s consider the problem of finding closed gcodesics on a
surface of revolution ST formed sav by rotating the graph of o positive
function y = flr) abow the r-axis in RY Let (¢ = S denote the
compact group of comples munboers of modulus 1. If we identifv € ¢
with the rotation 2, through an angle # about the r-axis. then G acts
on S, and the orbits are the “civeles of latitude™. ~,. of radins f(a)
and hence length 27 f(a) formed Dy intersecting S with the planes
=« o parallel to the yoz-plane. [ think it is clear imtuitively that
those orbirs =, corresponding to critical points a of f must be geodesices
of 5. (Imagine stretehing a piece of thread tightlv aronnd S). We will
use SCP to prove this. Let M denote the manifold of =C loops in 57,

oo Chmaps o of SUinto S0 The length function F-on M ois of conrse

)

defined by Flo) = |

tolvcylde (Why M oveallv is o smooth Banach

0
manifold and F : M/ — R a smooth function will he explained later).

There is a natural action of ¢ on M namely g = ¢ acts o a by

>

(go (' = Ry(o{c'")

S0 ¢ just translates the base point of a loop
by —# and then rotates its image oS through the anele . Sinee Ry is
Al isometry, it is clear that Fis o G-invariant function on /. so we are
i a position to apply SCP. Bue which elements of A are svimetric?

Note that if go = o for all g =

i (. then taking 1 = 0 in the
above formula for the action of ¢ on @ gives a(c') = Ry (1), i.c.. cach
sviannetric loop o is an orbit of GCou 5. Conversely. the orbits are clearly
svmmetric. and so Y coineides with the one-dimensional manifold of
orbits ~ .. Finallv. sinee /7~ ) = 27 f(0). the eritical svimetric points

are the ~ . for which o is a eritical point of f.and then by SCP these

6



are the svmmetric geodoesics.

Next. a classic example of the technique of making a “svinmetry
ansatz". This is an implicit appeal 1o SCP that phvsicists love dearly
and wse frequently to discover particular solntions of their variational
problems.

Let A denote an n dimensional ~anmlus™. 4 = {r € R"[r < Ll
< rafoand let g be asmooth real-valued funetion o its boundary .
Let M denote the Banach space of (7 real-valued functions {0 on 1

that agree with ¢ on the bouudary. The Dirichlet unctional.

Ry - /;W('<,l-)u‘-’,/.r.
A

15 casily seen to bhe a smooth quadratic function on M. and according
to Dirichlet’s Principle. a function {7 on 2 is haronic (and has g as
its boundary values) il and onlv if it is o critical point of I

Now suppose we want to find all the radial harmonic functions on
R A function U s vadial if it has the form (7 () = 7 Le1]) for somie O
i C2 ) and for such a function clearlv X)) = l\"(;\.x'jf),l‘,r”'\h‘f\.
Thnscresticting to radial functions and using spherical polar coordinates

to evaluate the integral. the Divichlet functional takes the for:

where 0 denotes the volwe of 5771 The Fuler-Lagrange equation for
the vight hand side of the latter is just (20 (e Y = 0. or 10"+
(1 — 1) = 0. and this is casily solved explicitlv: it has the general
~ohttion (\'(/‘) =+ (except, (\'(1‘) = -blogr when n=2). and
of cotrse these are indeed the radial harmonic functions.

But wait a minatc! By taking the Euler-Lagrange equations of this
oue-variable functional. we ave implicitly restricting not onlv the fune-
tion O to satisfy the radial ansafz (which is Togitimate). hut we are as
well only looking at first variations that also satisfv this same ansaf -z,
and there is nothing in Divichlet's Principle 1o justify the Tatter. One
Figorons way to proceed is to write the Laplacian in polar spherical coor-
dinates. and substitute the svimmetry ansatz into the harnonic cquation
N = 0. (This is basically the method of gronp-invariant solutions. ox-
plained in Chapter 3 of [10].)

OfF conrse this gives the correct answer. bt by a much more compli-

cated derivation. The contrast is even more dramatic for the analogous

ST



problem of finding the static. radial solutions of the Einstein field equa-
tions of General Relativity (the so-called Schwarzschild line element).
where pages of complex caleulations involving a system of ten partial
differential equation to solve a svstem of two ordinary differential equa-
tions. Having worked throngh the original calenlation in Eddington’s
“Nathematical Theory of Relativity” 0 T was very impressed with this
enormons simplification when I saw it in Herman Weyl's "Space. Time.
and matter™. Bat I renember looking in vain for sonie explanation from
Wevl as 1o how one overcones the logical hiatus mentioned above.

Of conrse the answer is the Svinetrie Crivicality Principle. For

the case of radial harmonic functions. the compact group (= SO
acts (incarlv) on M by (gl 0 = Cg Ly the Divichlet Functional.
s invariant. and the set X of svimmetrie points consists of the ra-

dial functions. So. what is specified by the Ealer-Lagrange equation
(2(\'/17‘)1‘” Y — 00 3s the =et of critical svimmetry points and by SCT
these are also the svimmetric critical points. e the radial harmonic
functions.  An entirelv similar argument justifios Wevl's derivation of

the Schwarzschild solution.

Nl anifolds of Sections of Fiber Bundles

The above two simple eximples give an indication of how SCTP can he
applied to realistic problems of the Caleulns of Vaviations. In order to
explain the general theors of sneh applications. we must first review
some of the important concepts atd machinery of the snbject. and in
particidar explain just what are the manifolds M0 syvinmetry gronps 6.
functions 17 and svimetvie points Yo a general Caleulis of Variations
settinge.

Lot N be a smooth manifold and 70 /7 — X smooth fiber bandle
over N We call 7 a smooth GO fiber bundle if both the total space. [0
and the hase space X are simooth G-manifolds. and the bundle projec-
tion 7 ix Geeguivariant. This imphies that cach operation of o g in ¢/
on 17 i< a fiber bhundle morphissn over the corresponding operation of
g oon N While not essential. it will simplify the disenssion to assume
that the hase manifold N is compact. and we shall do so. sinilarlv, we
will assiune that the eronp (i compact. so we can safely apply SCP
to anyv G manifold.

One important special case of a GO liber bundle is the product (-
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wanifold £ = X N where X and N oare smooth G-manifolds. the
action of (Vs the product action. gl n) = (g gn). and 7 is the natral
projection onto N Another important special case is o Gvector hundle
over X This means that £ is a smooth veetor bundle over X and cach
operation of ¢Con Fis a veetor bundle morphisn.

We denote by C'(E) the space of continnons sections ol £ T case
=X < Nowe make the standard identification of C(E) with C'LNL V).
As suall we topologize fiber hundle. the cronp (8 acts naturally on
U s = Oty and g = Gothen gs = Coly s defined by (gs)ia) =

Ve When £ is a0 Govector indle over N then clearly C(F) os

glsiy
a Banach space and the action of ¢Con C117) s a0 strongly continmons
lIncar representation. Tt is perhaps not obvions. but C'(F) i a Banach
C-maunilold. and in fact it can he considered as the basic example of the
tvpe of Gemanifold 1 that arises i the Calendus of Variations. Here is
how one puts a natiral stooth straceture on C(CF).

A vector bundle € over X is called a0 vector bundle neighborhiood
(VBN for acfiber hundle £ over N il the total space ol & is an open
sub-bhudle of the total space of Foand if the inclnsion map & — £ is a
fiber bhundle movphism, Clearly the Banach =pace (&) i then an open
stthsct of CHE) Tt is not hard to <how (hy a proof analogous 1o that
of the tibular neighborhood theorem ) that it s = C'CF) then there is a
VBN S tor Fowith s < Cr8). and we coll suelh a £ a VBN for s i 2L so
as & varies aver all VBN s Tor £ the corresponding Banach spaces ('(&)
eive a1l open covering of C(L) by charts. and sincee it can be shown
that these charts are stoothlyv related. we live o natural simooth atlas
defining @ smooth manitold <tractnre for Cr27)0 OF course many details
Lave been omitted from this discission tand also from the following
paragraplis): the interested reader will find rhese details in 11 We
note firther that this assieiment of a Banach nanitold C'0F) 1o cach
fibher hinwdle £ over X is even functoriadl oiven o smooth tiber badle
morphism = Fy - Eo rover the ident tv map ol o) the map s — 20 s
i~ a stmooth map Cozy s Cols) Such waps €0z are called differontoal
opcrators of order coro Arom (sections of ) fo0 Usuallv we will wrire
sitnply ors) nstead of Cf 2000 =0 Slsitr) o Slstar).

Asremarded above, when /732 a GHiher bundle then Gacts natnrally
on the Banach manifold C'027) and it ix casv 1o chieck that this action
= =mooth. Tewill he essential for o later applications of SCP 1o have

a good characterization of the ser X ol svuunetric points of C'(1). and
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fortunately this is casy. In fact. it s immediate from the definition of the
action of G on C'(E) that gs = s for all ¢ if and only it s(g.r) = g(s(.r))

for all ¢ and .. Thus:

Proposition [If E s any G fiber bundle. then the set N of symmetric
clements og the Banach Gonanifold CUE) consits of the sections s that

are equicariant as maps of the base into the total space.

There is an hnportant class of (¢ fiber bundles E for which the
strictue of the svmetric points of C'(E) can he made even more ex-
plicit. Nawmelv. F s called a homogencous G oiber hundle if the action
of G on the base. X s transitive. 1f we choose py in X and let 1/ = 7,
denote the isotropy group at py then. by the equivariance of the projec-
tion 7. the fiber £, over py is an H manitold. so its set of H-stationary

points (which we will denote by ffll,'l’) i a smooth subianifold of £, .

If s X — F s an equivariant section. then since hpy = py for h < H. it
follows by equivariance that h(s(pn)) = s{hpg) = s(po). so s(py) € EI/)‘[’.
Converselv, given any ¢ € /:‘Il,[[f it s casy to see that s{gpy) = ge gives a

well-defined smooth and equivariant section of £, and that this is the
unique equivariant section whose value at py is . This gives a bijection

~H
L
that it is smooth in both directions. This proves:

between the equivariant scctions and and it is not hard to check

Proposition [If F is a homogencous G fiber bundle over X and H
s the isotropy group at some point py of X then the map s — s(py)
15 a diffeomorphism betweon the set Xoof symmetric (1. cquivariant)

clements of C(EY and E,’,‘/‘,

Corollary If E is a homogencous G- fiber bundle. then the set X of

symmetric clements of CUEY s a finite dimensional manifold. and is

coen compact of the fibers of E- are compact.

It ¢+ is not transitive on X, hut has an orbit. Q. of codinension one.
then the (Cmanifold X is said to have cohomogeneity one. In this case
we can also often identify the equivariant sections of £ with something
simpler. as follows. Assunmie X is a complete Ricmannian ¢ manifold.
A geodesic ¢ normal to Q at one point py will meet all other orbits.

and meet them orthogonallv. It in addition 7 is regularly embedded
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in X" we call it a section of the G manifold X, (For example. any line
throngh the origin is a section for the action of SO(n) of R, Similarly.
a circle of longitude is a section for rotations of the two-sphere about
the z-axis.) The isolated group H at py will also be the isotropy group
at other points of €' (except at isolated points where it may be larger).

Form the bundle £

over (" whosce fiber at pis the fixed point set of H
on the fiber £, Then it is not hard to see that the equivariant sections
of £ can be identified with sections of this hundle EX over ¢

All the above constuctions work cqually well Crnatatis mutandis) it
we replace the space ('(F) = CyE) of continnous sections and the
compact-open topology by the spaces C¥(E of € seetions and the ¢
topology. That is. we again get by the same process a natural smooth
Banach manifold structure on CF(E). and the assignment is again funce-
torial. NMorcover. when £ is a 0 fiber bundle then CP(E) is again a
Banach ¢ manifold. and the set X of svinnetric elenents of CF(F)
are the equivariant C* sections. And if further £ s a homogencons ¢4
bundle then we have the same identification of ¥ with ]f/[,‘l). (No. there
15 1o contradiction here: the point is that in the homogeneous case at

cquivariant section is antomatically (7).

Remark

For the applications in this sccond lectiure we will he able to get by with
these manitolds M = CPE). But it is portant to realize that these
classical spaces are no longer considered the manifolds of choice for more
sophisticated applications of non-lincar analvsis. Ifdim( X)) = » we can
also define manitolds L’A/,(]f). modeled on the Sobolev Banach spaces of
L} sections of vector hundles over . provided A > n/p. By definition
L&) consists of sections of & with “distributional derivatives™ of order
< hoin L) ave soothly related. In particular. the ]‘f(]“,‘)(lf >n/2)
are Hilbert manifolds and will he denoted by HYCE ). While perhaps
less intuitive than the manifolds CFCE). these Sobolev manifolds turn
ont 1o be much hetter suited for problems involving non-linear PDE.

and 1 particular for “hard” Calculus of Variations problems. and these

are the manifolds that we must work with in the final lecture.

We next discuss the nature of the functions 7 studied by the Cal-

culus of Variations.



We first recall the concept of a (non-licar) A-th order differential
operator of order A from (scctions of) Ey to (sections of) By is a certain
Kind of map D : CRUE ) =-C ) We have alreadey defined this above
for k=0. For eeneral k. ) has the form D=C"(2):C(INE ) —CUES)
s a differential operator of order zero. Thus. a A-th order differential
operator is. by definition. just tue composition of two maps. The first
is a very special Tuniversal A-thoorder differential operator”. (the A-
jet extension map from Fy to JY(E ) the A-<jet bundle of 1) and the

second is a zero order operator {rom JRCE) 10 Fo.

Remark

We will asstne a basic familiarite with jet bundles and the A-jet exten-
sion map (details can be fonnd in [T, But here is a brief description.
The A-jet of a smooth section s of Fat a point o of X s just a co-
ordinate free wayv of describing the A-th order Tavlor polvnomial of s
at . In fact, olven two sections sp.so defined near o by definition
Jielsihe = Joso)e b and onlv il syte) = sole) = ¢ and with respect 1o
sonie ol choice of local coordinates for X near o and for I near ¢ the
L-th order Tavlor polvioniials of s and s at o agree. The set JYCE) of
all such equivalence classes of Tocal sections at all points . has @ natural
Hundle structure over Nowith tne projection of cowrse mapping j.(s),
to . So what this all means is that, exactly as the name sngeests.
after introducing local coordinates anud local trivializations. a A-th or-
dor differential operator has the forin Du = Foa. Du. D2 Db uy.
{where D70 is o svinbol denoting the set of all partial derivatives of
oot order j1o Tt follows from the definition of the A-jet hundle JY(F)
that the A-jet extension map g - CROEY = CUIROE) ) i o smooth niap
of Banach manifolds. and it is clementary that differential operators of
order zero are stmooth. Tt follows that A-th order differential operators
D CRUE ) = CCED) are ahwavs stooth maps of Banach manifolds.
OCN ) will denote the Tine bundle ol differential forms on N of de-
oree = dint X fand of odd tvpe) so sections ool QUX) define siened
measires on N We will denote by e some fixed section of QX that
defines a positive smooth measire on Ve the Ricmannian measure
associated to some fised Riemannian strneture for N Then every other
section w of Q0N can be written nniquely in the form o = by where

fis o continnons real valued function o X We note that Tinteeration
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over X7 s a natural continuous linear functional on the Banach space
QX)) We denote it by [0 CQ(N)) — R, We recall that there
15 a4 natural “pull-hack™ acton 7w of diffcomorphisms o of X on see-

tions w of QX)) and the “change of variables formmla™ savs that

!\7:“" ,’Y-(_\')“'“ - /\ <

Definition A A-th order Lagrangian for a hundle E over N is o A-th
order differential operator £ CF(E) — ('O N))oden Lis) — ﬁ(,jA (%)).
with £ .]"'(]f) — O0X) as a bundle morphism. I 0 s sowe canon-
ical choice of sinooth measure on X then Lis) = l‘:/,(lj;‘,,s')//. and L,
.]1"(]:‘) — R is called the Lagrangian fuction.  Associated to a A-th
order Lagrangian £ we define a real-valued fnetion Fp 0 CME) — R
by Fels) = [y Lis).

We note that Feoas a composition of a snooth map and o continu-
ous linear funcional. s smooth real-valned function. Tt is such finctions
Fpe CMOEY — R and in particular the structnre of their eritical polnts.
that is =ubject matter of the Calenlus of Variations. We will not here
repeat the well-known derivation of the Euler Lagrange equations corre-
spouding to the condition £, = 0. but only remind the reader that for
a f-th order Lagrangian. these equations are ol order 24, Siuce Mothoer
Natire (and Geometers) seenn to have o preference for second order
PDE. the ereat preponderance of Lagraneians that arise in practice are
in fact of first order cand the few remainine are of second order ).

Of conrse. the next thing to investicate i the conditions under which
a Lacraneian for o G oliber hundle Fodefines a0 G-imvariant hunction
FooCHoEy — R and fortimately this is straiohi forward. The action of
Goon I induces aonatural action of Goon the d-jet hundle S5 0F) . detined
DY gUgntst ) = Jptgs)ye and this indnees an action of Gon CHOIP R,
makine the A-jet extension map jp 0 CP0Fy — COJPCE ) equivaniant.
e ggals) = Ji-tgst. Since [,:1&'(/&] - L‘,(k‘/'/‘ij/,\‘)) = L‘.(j/'/‘/,.i‘f/,\)J. it L
TR O s Gl-cquivariant. e il Ligjoos)) = g LUjps)). then so
s Loten Ligs) = g Lis)oand so;

Fetgs) — /L‘,U/N) = / g Lis) = / Lis) = Fpis).
. SN :

\

by the change of variable fornmla. This proves:



Proposition [f L{s)=Lji(s)) is a k-th order Lagrangian for a G fi-
ber bundle I over X then the corresponding functional Fp:CH(E)—R
is G-invariant provided the bandle morphism £ JN(E) — Q(N\) is

G-cquivariant.

I particular. suppose now that the base manifold X is a Ricman-
nian G manifold. so we have a natural choice for a seetion g for Q).
the Rienmannian measure.  As above we define ﬁ,, S JME) — R by
L;,(./A.(.s)) = L;,/,('jA.(.¥))/I. Then since g7 = g it follows that if the fune-
tion /:,, is G-invariant. then the morphisim £ will he Goequivariant. =o
Fp: CHE) — R will he G-invariant.

We can now recapitulate the above as a genceral prescription for
i)

applying SCP to problems in the Caleulus of Varlations.

1) Let (Cbe acompact Lie group. X a compact G manifold. and 77 a
simooth ¢ fiber bundle over X. Then M = C*(E) is 2 Banach &
manifold. and cach A-th order Lagrangian L(s) = [j(.jk(s)) = for
F o defines o Calenlus of Variations functional F 2 M — R F(s) =

/\ L(s).
2) Fois Goinvariant provided £ JM(E) — Q(X) ix G-equivariant.

3) The manifold X of svmmetrical points of M is the space of G-
cquivariant sections s @ X — £ so the eritical syunetric points
are those equivariant sectous for which the first variation of 17

vanishes for all equivariant variations ol its aromment.

1) In case N is a homogencous Gomanifold (sav N = //H with
& . /
po the identity coset) then X oas finite dimensional. and can be

identified with the closed submanifold 1:‘1” of the fiber I, via

o

the map s — s(py). In particular. for homogencons G- hundles
with compact fibres. ¥ is always compact. so provided [{ has at

Co e R G . . -
et £ = Y s non-empty) every

ivariant Fhas svunnetrice ceritical points.

least one fixed point on £,

5) hicase X lias cohomogeneity one and ("is a “section”™. e, a regu-
larly embedded geodesic of X meeting all the orbits orthogonally.

we can identify the equivariant sections of 7 with sections of the

91



bundle £ over € where H s the isoti py group along €', Nore-
over FIY hecomes a variation problem for this rednced bhundle. so

finding the critical svimmetrie points is an ODE problem.

Now that we have developed this gencral preseription. we e cas-
v explain how SCP is used for finding solutions to some Important

variational problems.

Critical Maps

Weshall first consider "eritical maps™. That is we take as onr bundle £
a product bundle X< V. so sections of £ are just maps of X into V. and
we will consider only tirst order Lagrangians. £ CHN Ny — C(Q(X ).

The first case we shall consider is perhaps 1he most classical of vari-
ational functionals. the “volue™. Here we as=tme that N is compact
Riemannian manifold and that dim(\) < dind(V). and we take as our
manifold 1/ of admissible maps not the entire space C'H(N. V). but
onlyv the open submanifold of inmiersions of X into N, Each innner-
sion s € ML defines and induced Ricmannian structure on X and we
define L{x) to be the volmme element on N of this induced structure.
so that Fip(s) = [ L(s) is the vohnue of the fimage of s, The eritical
poiuts of Fel(s) ave called mininial immersions. and they have a long,
history and rich theory, I particular. when dim(X) = 1 we have the
special case of geodesies, and when 0 = 2 of minimal suwrfaces.

When SCP s considered in this context. it leads to a natuwral and
far reaching generalization (due to \W.-Y. Hslang [T1) of the exauple
we consider carlier. of geodesic orbits on a surtace of revolution,  We
assiwme that NV ois a Ricmwaunian manifold. and look for orbits of
critical volume in N Let H be any closed subgronp of ¢ that occurs
as an isotropy group of some point gy of N Let N denote the set of
points on \ fixed under AL (e points g such that H < Gy and let
N denote the subset of N whore the isotropy group is exactly H.
Az we have seer. N s a totally geodesic submanifold of V. and by
AsSsuption Nk a non-empty subset of N it is a0 standard fact of
transtormation group theory [ that N dense open submanifold
of the compact wanifold N7 Let X be the homogencous (F manifold
G/H and g the identity coset. As above. M denotes the manifold of
C'Uimmersions of X into V. Asx we have noted. sinee X oand N are

G manifolds. so is M under the action (gs)() = g(s(g™ o)), We saw



carlier that the set of svinmetric (e, equivariant) maps of X into NV is
diffcomorphic to N mder the correspoudence s — s(g ). It is casily
seen that {or s to be an hnmnersion. we must have s(ag) € N jel the
sot X of svmmetric points of 1 1s just NI s also casilv scen that
as gy oin N converoes to a point not in N the vohune of the orbit

I

¢/, converges to zero, Since N s compact. it follows that the volume
of (7, must have a maxinmm at some point € NS0 there exists
a critical svmmetric point. and henee a svinetrie eritical point. This

proves:

Hsiang's Theorem Lot be a compact Lic group and N a compact
Ricmannian G omanifold. If a compact subgroup H of (0 occurs as an
isotropy group in N then amonyg all orbits of N having H as an isotropy
group. there is one of marvincim colunie. and it is mnimally cmbedded

TIAY

There is an interesting corollary to this theorem. It was proved in-
dependently by the author and Go DL Mostow that. given any compact
Lie eroup (¢ and closed subgronp H. there exists an orthogonal repre-
sentation of Gon some 7 having [ oas an isotropy eroup. It follows

that:

Corollary  Ervery compact homogencous manifold G/H admits a G-

cquivariant miimal cmbedding inosome ST

Next we assume that X and N oarve both compact Ricmannian mean-
ifolds. For cach (" map s 0 X N we define a smooth function o(s)
on N called the cnergy density of so by o(s)(a) = Tr(dsTds, ) the
Hilbert-Schmidt norm ol the linear map ds,. : TN, — TN\ [et-

Searge
ting 4 denote the Riemannian volume clement of Y. we define a first
order Lagrangian = on C'(N.N) by =(s) = ¢(s)p. and the functional
Fs) = Fo(s) = [ cls)pis called the fofal cnergy of the map s, Critical
points of E are called harmonie maps from X into V. and theyv have
bheen actively studied in the past decades. especially by J. Eells and his
co-workers [5].[6]. When o= dim(X') = 1. then harnmonic maps ave
Just ecodesics parametrized proportionally to ave length, and for n =1
they plav an important role in the study of winimal surfaces.

[t 1s inmediate from the definition of £ that if 2 s an isometry of
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Noand o an isometry of N othen E(ceso o) = F(s). s0 in particular.

+

X and Voare Cspacesd it follows that E is a G-invariant function on

M= CYXNY,
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