Lecture 4
Linear Maps And The Euclidean Group.

I assume that you have seen the basic facts concerning linear transformations and matrices in earlier courses. However we will review these facts here to establish a common notation. In all the following we assume that the vector spaces in question have finite dimension.

4.1 Linear Maps and Matrices

Let V and W be two vector spaces. A function T mapping V into W is called a linear map if $T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2)$ for all scalars α, β and all $v_1, v_2 \in V$. We make the space $L(V, W)$ of all linear maps of V into W into a vector space by defining the addition and scalar multiplication laws to be “pointwise”. i.e., if $S, T \in L(V, W)$, then for any $v \in V$ we define $(\alpha T + \beta S)(v) := \alpha T(v) + \beta S(v)$.

4.1.1 Remark. If v_1, \ldots, v_n is any basis for V and $\omega_1, \ldots, \omega_n$ are arbitrary elements of W, then there is a unique $T \in L(V, W)$ such that $T(v_i) = \omega_i$. For if $v \in V$, then v has a unique expansion of the form $v = \sum_{i=1}^{n} \alpha_i v_i$, and then we can define T by $T(v) := \sum_{i=1}^{n} \alpha_i \omega_i$, and it is easily seen that this T is linear, and that it is the unique linear transformation with the required properties.

In particular, if w_1, \ldots, w_m is a basis for W, then for $1 \leq i \leq n$ and $1 \leq j \leq m$ we define E_{ij} to be the unique element of $L(V, W)$ that maps v_i to w_j and maps all the other v_k to the zero element of W.

4.1.2 Definition. Suppose $T : V \to W$ is a linear map, and that as above we have a basis v_1, \ldots, v_n for V and a basis w_1, \ldots, w_m for W. For $1 \leq j \leq n$, the element Tv_j of W has a unique expansion as a linear combination of the w_i, $T(v_j) = \sum_{i=1}^{m} T_{ij} w_i$. These mn scalars T_{ij} are called the matrix elements of T relative to the two bases v_i and w_j.

4.1.3 Remark. It does not make sense to speak of the matrix of a linear map until bases are specified for the domain and range. However, if T is a linear map from \mathbb{R}^n to \mathbb{R}^m, then by its matrix we always understand its matrix relative to the standard bases for \mathbb{R}^n and \mathbb{R}^m.

4.1.4 Remark. If V is a vector space then we abbreviate $L(V, V)$ to $L(V)$, and we often refer to a linear map $T : V \to V$ as a linear operator on V. To define the matrix of a linear operator on V we only need one basis for V.

> 4.1—Exercise 1. Suppose that $v \in V$ has the expansion $v = \sum_{j=1}^{n} \alpha_j v_j$, and that $Tv \in W$ has the expansion $Tv = \sum_{i=1}^{m} \beta_i w_i$. Show that we can compute the components β_i of Tv from the components α_j of v and the matrix for T relative to the two bases, using the formula $\beta_i = \sum_{j=1}^{n} T_{ij} \alpha_j$.

Caution! Distinguish carefully between the two formulas: \(T(v_j) = \sum_{j=1}^{m} T_{ij} w_i \) and \(\beta_i = \sum_{j=1}^{n} T_{ij} \alpha_j \). The first is essentially the definition of the matrix \(T_{ij} \) while the second is the formula for computing the components of \(Tv \) relative to the given basis for \(W \) from the components of \(v \) relative to the given basis for \(V \).

\[\text{\textgreater 4.1 Exercise 2.} \quad \text{Show that } T = \sum_{i=1}^{n} \sum_{j=1}^{m} T_{ij} E_{ij}, \text{ and deduce that } E_{ij} \text{ is a basis for } L(V, W), \text{ so in particular, } L(V, W) \text{ has dimension } nm, \text{ the product of the dimensions of } V \text{ and } W. \]

4.2 Isomorphisms and Automorphisms

If \(V \) and \(W \) are vector spaces, then a linear map \(T : V \to W \) is called an isomorphism of \(V \) with \(W \) if it is bijective (i.e., one-to-one and onto), and we say that \(V \) and \(W \) are isomorphic if there exists an isomorphism of \(V \) with \(W \). An isomorphism of \(V \) with itself is called an automorphism of \(V \), and we denote the set of all automorphisms of \(V \) by \(\text{GL}(V) \). (\(\text{GL}(V) \) is usually referred to as the general linear group of \(V \)—check that it is a group.)

\[\text{\textgreater 4.2 Exercise 1.} \quad \text{If } T : V \to W \text{ is a linear map and } v_1, \ldots, v_n \text{ is a basis for } V \text{ then show that } T \text{ is an isomorphism if and only if } Tv_1, \ldots, Tv_n \text{ is a basis for } W. \text{ Deduce that two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.} \]

There are two important linear subspaces associated to a linear map \(T : V \to W \). The first, called the kernel of \(T \) and denoted by \(\ker(T) \), is the subspace of \(V \) consisting of all \(v \in V \) such that \(T(v) = 0 \), and the second, called the image of \(T \), and denoted by \(\text{im}(T) \), is the subspace of \(W \) consisting of all \(w \in W \) of the form \(Tv \) for some \(v \in V \).

Notice that if \(v_1 \) and \(v_2 \) are in \(V \), then \(T(v_1) = T(v_2) \) if and only if \(T(v_1 - v_2) = 0 \), i.e., if and only if \(v_1 \) and \(v_2 \) differ by an element of \(\ker(T) \). Thus \(T \) is one-to-one if and only if \(\ker(T) \) contains only the zero vector.

Proposition. A necessary and sufficient condition for \(T : V \to W \) to be an isomorphism of \(V \) with \(\text{im}(T) \) is for \(\ker(T) \) to be the zero subspace of \(V \).

Theorem. If \(V \) and \(W \) are finite dimensional vector spaces and \(T : V \to W \) is a linear map, then \(\dim(\ker(T)) + \dim(\text{im}(T)) = \dim(V) \).

Proof. Choose a basis \(v_1, \ldots, v_k \) for \(\ker(T) \) and extend it to a basis \(v_1, \ldots, v_n \) for all of \(V \). It will suffice to show that \(T(v_{k+1}), \ldots, T(v_n) \) is a basis for \(\text{im}(T) \). We leave this as an (easy) exercise.

Corollary. If \(V \) and \(W \) have the same dimension then a linear map \(T : V \to W \) is an isomorphism of \(V \) with \(W \) if it is either one-to-one or onto.

Recall that if \(V \) is an inner product space and \(v_1, v_2 \in V \), then we define the distance between \(v_1 \) and \(v_2 \) as \(\rho(v_1, v_2) := \|v_1 - v_2\| \). This makes any inner-product space into a metric space. A mapping \(f : V \to W \) between inner-product spaces is called an isometry if it is distance preserving, i.e., if for all \(v_1, v_2 \in V \), \(\|f(v_1) - f(v_2)\| = \|v_1 - v_2\| \).
4.2.1 Definition. If \(V \) is an inner product space then we define the Euclidean group of \(V \), denoted by \(\text{Euc}(V) \), to be the set of all isometries \(f : V \rightarrow V \). We define the orthogonal group of \(V \), denoted by \(O(V) \) to be the set of \(f \in \text{Euc}(V) \) such that \(f(0) = 0 \).

4.2.2 Remark. We will justify calling \(\text{Euc}(V) \) a group shortly. It is clear that \(\text{Euc}(V) \) is closed under composition, and that elements of \(\text{Euc}(V) \) are one-to-one, but at this point it is not clear that an element \(f \) of \(\text{Euc}(V) \) maps onto all of \(V \), so \(f \) might not have an inverse in \(\text{Euc}(V) \). A similar remark holds for \(O(V) \).

Proposition. If \(f \in O(V) \) then \(f \) preserves inner-products, i.e., if \(v_1, v_2 \in V \) then \(\langle f v_1, f v_2 \rangle = \langle v_1, v_2 \rangle \).

PROOF. Clearly \(f \) preserves norms, since \(\| f(v) \| = \| f(v) - f(0) \| = \| v - 0 \| = \| v \| \), and we also know that, \(\| f(v_1) - f(v_2) \| = \| v_1 - v_2 \| \). Then \(\langle f v_1, f v_2 \rangle = \langle v_1, v_2 \rangle \) now follows easily from the polarization identity in the form: \(\langle v, w \rangle = \frac{1}{2} (\| v + w \|^2 - \| v - w \|^2) \).

Theorem. \(O(V) \subseteq GL(V) \), i.e., elements of \(O(V) \) are invertible linear transformations.

PROOF. Let \(e_1, \ldots, e_n \) be an orthonormal basis for \(V \) and let \(e_i = f(e_i) \). By the preceding proposition \(\langle e_i, e_j \rangle = \langle e_i, e_j \rangle = \delta_{ij} \), so that the \(e_i \) also form an orthonormal basis for \(V \). Now suppose that \(v_1, v_2 \in V \) and let \(\alpha_i, \beta_i \) and \(\gamma_i \) be respectively the components of \(v_1, v_2 \), and \(v_1 + v_2 \) relative to the orthonormal basis \(e_i \), and similarly let \(\alpha_i', \beta_i' \) and \(\gamma_i' \) be the components of \(f(v_1), f(v_2) \), and \(f(v_1 + v_2) \) relative to the orthonormal basis \(e_i \). To prove that \(f(v_1 + v_2) = f(v_1) + f(v_2) \) it will suffice to show that \(\gamma_i' = \alpha_i' + \beta_i' \). Now we know that \(\gamma_i = \alpha_i + \beta_i \), so we will suffice to show that \(\alpha_i = \alpha_i', \beta_i = \beta_i', \gamma_i = \gamma_i' \). But since \(\alpha_i = \langle v_i, e_i \rangle \) while \(\alpha_i' = \langle f(v_1), e_i \rangle = \langle f(v_1), f(e_i) \rangle, \alpha_i' = \alpha_i \) follows from the fact that \(f \) preserves inner-products, and the other equalities follow likewise. A similar argument shows that \(f(\alpha v) = \alpha f(v) \). Finally, since \(f \) is linear and one-to-one, it follows that \(f \) is invertible.

4.2.3 Remark. It is now clear that we can equivalently define \(O(V) \) to be the set of linear maps \(T : V \rightarrow V \) that preserves inner-products.

Every \(a \in V \) gives rise to a map \(\tau_a : V \rightarrow V \) called translation by \(a \), defined by, \(\tau_a(v) = v + a \). The set \(\mathcal{T}(V) \) of all \(\tau_a, a \in V \) is clearly a group since \(\tau_{a+b} = \tau_a \circ \tau_b \) and \(\tau_0 \) is the identity. Moreover since \((v_1 + a) - (v_2 + a) = v_1 - v_2 \), it follows that \(\tau_a \) is an isometry, i.e. \(\mathcal{T}(V) \subseteq \text{Euc}(V) \)

Theorem. Every element \(f \) of \(\text{Euc}(V) \) can be written uniquely as an orthogonal transformation \(O \) followed by a translation \(\tau_a \).

PROOF. Define \(a := f(0) \). Then clearly the composition \(\tau_{-a} \circ f \) leaves the origin fixed, so it is an element \(O \) of \(O(V) \), and it follows that \(f = \tau_a \circ O \). (We leave uniqueness as an exercise.)

Corollary. Every element \(f \) of \(\text{Euc}(V) \) is a one-to-one map of \(V \) onto itself and its inverse is also in \(V \), so \(\text{Euc}(V) \) is indeed a group of transformations of \(V \).

PROOF. In fact we see that \(f^{-1} = O^{-1} \circ \tau_{-a} \).