
Math 32a Fall 2003 R. Palais

.Project 8. Fundamental Theorem of Surfacess

This final Matlab project asks you to implement the Fundamental Theorem of Surface
Theory as a Matlab function. It is a complicated problem and to manage the complexity
successfully you will have to organize your work carefully and work slowly and deliberately.
When you have completed this project, I think you will have adequate excuse to feel proud
of both your programming skill and your comprehension of the mathematics involved.

Review of Notation and Definitions

Before stating the project we need to recall some definitions and notational conventions
that will be used. O will be the rectangle [a1, b1] × [a2, b2] in R2. A point in O will be
denoted by p or (t1, t2) in a mathematical context or (t1,t2) in a Matlab context. We
have two 2 × 2 symmetric matrix-valued functions, g and ` defined in O: g = (gij) and
` = (`ij). The matrix g should be positive definite, so in particular it is invertible and we
denote its inverse by g−1 = (gij). By Cramer’s Rule:

g−1 =
1

det(g)

(
g22 −g12

−g12 g11

)
,

i.e., g11 = g22/ det(g), g22 = g11/ det(g), and g12 = g21 = −g12/ det(g), where det(g) is
the determinant of g, given by det(g) := g11g22− g2

12. We also have corresponding positive
definite 3× 3 symmetric matrices G and G−1 defined in O by:

G =

 g11 g12 0
g12 g22 0
0 0 1


and hence

G−1 =

 g11 g12 0
g12 g22 0
0 0 1


We also have two 3× 3 matrix-valued functions A1 and A2 defined in O by:

A1 =

 1
2 (g11)t1

1
2 (g11)t2 −`11

(g12)t1 − 1
2 (g11)t2

1
2 (g22)t1 −`12

`11 `12 0



A2 =

 1
2 (g11)t2 (g12)t2 − 1

2 (g22)t1 −`12
1
2 (g22)t1

1
2 (g22)t2 −`22

`12 `22 0


and finally, there are two further 3× 3 matrix-valued functions in O, P k := G−1Ak.

1



Math 32a Fall 2003 R. Palais

The Gauss-Codazzi Equations

If gij and `ij are the coefficients of the First and Second Fundamental Forms of a surface
F : O → R3, then the matrix-valued functions P 1 and P 2 defined in O as above satisfy
the matrix identity

P 1
t2 − P 2

t1 = P 1P 2 − P 2P 1

called the Gauss-Codazzi Equations.

Statement of the Project

The primary Matlab M-File should be called SurfaceFT.m and should start out:

function F = SurfaceFT(g11,g12,g22,l11,l12,l22,a1,b1,a2,b2,T1Res,T2Res)

where I :=
∑

ij gij(t1,t2) dti dtj and II :=
∑

ij lij(t1,t2) dti dtj are quadratic
forms in O, and the function F : O → R3 returned is supposed to be the surface having I
and II as its First and Second Fundamental Forms. For this surface to exist, we know from
the Fundamental Theorem that it is necessary and sufficient that I be positive definite and
that the Gauss-Codazzi equations be satisfied.

Of course the heavy lifting of the SurfaceFT will be done by AlgorithmF (i.e., the solution
of the Frobenius Problem) which you will apply to integrate the frame equations in order
to get the frame field f—after which you must apply AlgorithmF a second time to get the
surface F from f1 and f2.

But to carry out the first application of AlgorithmF, you must first compute the matrices
P 1 = G−1A1 and P 2 = G−1A2 that define the right hand sides of the two frame equations.
Recall that G−1 is the inverse of the 3× 3 matrix

G =

 g11(t1,t2) g12(t1,t2) 0
g12(t1,t2) g22(t1,t2) 0

0 0 1


and so it can be easily computed from the gij(t1,t2) by using Cramer’s Rule, while the
two 3× 3 matrices A1 and A2 are given explicitly (see above) in terms of the g11(t1,t2)
and their partial derivatives with respect to the ti . (Of course, once you have both
G−1 and Ai, you get P i as their matrix product.)

In order to be able to compute the Ai, you will first need to define some auxilliary functions.
Most of them can probably be subfunctions defined in the same file, though some could
be separate M-Files. For example you will want to have a function called g(t1,t2) that

returns a 2 × 2 matrix
(
g11(t1,t2) g12(t1,t2)
g12(t1,t2) g22(t1,t2)

)
and another called l(t1,t2) that

returns a 2 × 2 matrix
(
l11(t1,t2) l12(t1,t2)
l12(t1,t2) l22(t1,t2)

)
. You will then want to create the

functions G(t1,t2) and invG(t2,t2) that return the 3× 3 matrices G and G−1.

There is another complication before you can define the Matlab functions A1 and A2 that
represent A1 and A2. You not only need the functions gij(t1,t2) but also their first
partial derivatives with respect to the variables t1 and t2. I recommend that along with

2



Math 32a Fall 2003 R. Palais

the function g(t1,t2) you also define two more functions g t1(t1,t2) and g t2(t1,t2)
that return 2×2 matrices whose entries are the partial derivatives of the gij(t1,t2) with
respect to t1 and t2 respectively. As usual you can compute these partial derivatives using
symmetric differencing—you don’t need to do it symbolically.

You should define a Matlab function GaussCodazziCheck that will check whether or not
the Gauss-Codazzi Equations are satisfied. Once you have defined the two 3 × 3 matrix-
valued functions P 1 and P 2, it will be easy to write GaussCodazziCheck, since the Gauss-
Codazzi equations are just P 1

t2 − P 2
t1 = P 1P 2 − P 2P 1. The idea is to check the identities

numerically, matrix element by matrix element, at a sufficiently dense set of points, again
using symmetric differencing to compute the derivatives.

Of course, when you are all done you will need some good test cases on which to try out
you algorithm. We will discuss this elsewhere.

GOOD LUCK, AND HAVE FUN!

3


