
Math 32a Fall 2003 R. Palais

Midterm Exam Answers

Part I: Successive Approximation

If X is any set and f : X → X a mapping of X to itself, then for each positive integer n we
define a mapping f

(n)
X → X by composing f with itself n times. That is, f

(1)
(x) = f(x),

f
(2)

(x) = f(f(x)), f
(3)

(x) = f(f(f(x))), etc. To be more formal, we define the sequence
f

(n)
inductively by: f

(1)
:= f and f

(n+1)
:= f ◦ f

(n)
.

. Problem 1. Show that f
(n) ◦ f

(k)
= f

(n+k)
.

Answer. We fix k and proceed by induction on n. For n = 1 the result is true by
definition. Assuming the result for n result for n+1 follows by associativity of composition
as follows:
f

(n+1) ◦ f
(k)

= (f ◦ f
(n)

) ◦ f
(k)

= f ◦ (f
(n) ◦ f

(k)
) = f ◦ f

(n+k)
= f

((n+1)+k)

. Problem 2. Let X be a metric space and suppose that f satisfies a Lipschitz condition
with constant K. (Recall this means that ρ(f(x1), f(x2)) ≤ Kρ(x1, x2) for all x1, x2 ∈ X.)
Show that f

(n)
satisfies a Lipschitz condition with constant Kn.

Answer. This is an absolutely trivial induction!

In what follows, we suppose that X is a metric space and that f : X → X is a contraction
mapping, i.e., we assume that f satisfies a Lipschitz condition with constant K < 1. (We
refer to K as a contraction constant for f .) We recall that in an earlier assignment you
proved the so-called Fundamental Inequality For Contraction Mappings, namely, for all
x1, x2 ∈ X,

ρ(x1, x2) ≤
1

1−K

(
ρ(x1, f(x1)) + ρ(x2, f(x2)

)
.

. Problem 3. Show that a contraction mapping f : X → X can have at most one fixed
point, i.e., there is at most one point x ∈ X such that f(x) = x.

Answer. If x1 and x2 are both fixed points, then ρ(x1, f(x1)) = 0 and ρ(x2, f(x2)) = 0
so the Fundamental Inequality gives ρ(x1, x2) ≤ 0, implying x1 = x2.

. Problem 4. Show that if f : X → X is a contraction mapping with contraction
constant K and if x is any point of X then

ρ(f
(n)

(x), f
(m)

(x)) ≤

(
Kn + Km

1−K

)
ρ(x, f(x)),

and deduce that f
(n)

(x) is a Cauchy sequence.
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Answer. Since f ◦ f
(n)

= f
(n+1)

= f
(n) ◦ f (by Problem 1), ρ(f

(n)
(x), f(f

(n)
(x))) =

ρ(f
(n)

(x), f
(n)

(f(x))) ≤ Knρ(x, f(x)) by Problem 2. If we substitute f
(n)

(x) for x1 and
f

(m)
(x) for x2 in the Fundamental Inequality, we now get the stated inequality. Then,

since K < 1 implies that both Kn and Km tend to zero as n and m approach infinity,
limm,n→∞ ρ(f

(n)
(x), f

(m)
(x)) = 0, i.e., the sequence {f (n)

(x)} is Cauchy.

. Problem 5. Now prove:

Banach Contraction Principle. If X is a complete metric space and f : X → X is a
contraction mapping, then f has a unique fixed point p and if x is any point of X then

the sequence {f (n)
(x)} converges to p.

Answer. Pick any x ∈ X. By the preceding problem, the sequence {f (n)
(x)} is Cauchy

and since X is complete, it converges to a point p of X. Since a Lipschitz map is contin-
uous, it follows that {f(f

(n)
(x))} = {f (n+1)

(x)} converges to f(p). But {f (n+1)
(x)} is a

subsequence of {f (n)
(x)} so it converges to p, and hence f(p) = p. So p is a fixed point of

f , and by Problem 3, it is the unique fixed point.

Important Caveat! In applications, X is frequently a closed subset of a Banach space
V (hence complete) and f is some mapping from X into V for which one can prove that
f satisfies a Lipschitz condition with constant K < 1. But that is not enough! One
must also prove that f maps X into itself in order to apply the Contraction Principle.

. Problem 6. Show that if f : X → X is a contraction mapping and p is the unique
fixed point of f , then for any x in X, ρ(f

(n)
(x), p) ≤

(
Kn

1−K

)
ρ(x, f(x))

Answer. In the inequality of Problem 4, take the limit as m tends to infinity.

Remark. The sequence {f (n)
(x)} is usually referred to as the sequence of iterates of x

under f , and the process of locating the fixed point p of a contraction mapping f by
taking the limit of a sequence of iterates of f goes by the name “the method of successive
approximations”. To make this into a rigorous algorithm, we must have a “stopping
rule”. That is, since we cannot keep iterating f forever, we must know when to stop.
One rather rough approach is to keep on iterating until successive iterates are “close
enough”, but a better method is provided by the previous problem. Suppose we decide
to be satisfied with the approximation f

(n)
(x) if we can be sure that ρ(f

(n)
(x), p) ≤ ε

where ε is some “tolerance” given in advance. We first compute f(x), then ρ(f(x), x), and
then solve

(
Kn

1−K

)
ρ(x, f(x)) = ε for n and iterate n− 1 more times to get our acceptable

approximation f
(n)

(x) to p.

. Problem 7. Solve
(

Kn

1−K

)
ρ(x, f(x)) = ε for n in terms of ε, K, and ρ(x, f(x)).
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Answer. Take the log of both sides and solve for n. This gives

n =
log(ε)− log(ρ(x, f(x)) + log(1−K)

log(K)
.

Since we want an integer, we take the smallest integer that exceeds this value,

. Problem 8. Carry out the following (third) Matlab Project. (Make a printout of your
version of the M-File and submit it with the exam, but also send an electronic version to
Izi and me as an email attachment.)

Third Matlab Project.

Write an Matlab M-file that implements the Successive Approximations algorithm. Name it
SuccessiveApprox.m, and use it to define a Matlab function SuccessiveApprox(f,K, x, eps).
Assume that f : Rn → Rn is known to be a contraction mapping with contraction constant
K, that x ∈ Rn, and you want to compute iterates of x until you are within eps of the
fixed point p of f . Use a subfunction to compute the number of times n you need to iterate
f starting from x to get within eps of p, and then use a loop and feval to iterate applying
f to x the appropriate number of times.

Answer.
function p = SuccessiveApprox(f,K,x,eps)
if (K>=1)

error(’Error: K must be less than 1’);
end
p = feval(f,x);
dif = x-p;
rho = sqrt(dif*dif’); % the distance from x to f(x)
n = getN(rho,eps,K);
for i=[1:n-1]

p = feval(f,p);
end
function n = getN(distance,eps,K)
n = ceil((log(eps) - log(distance) + log(1-K))/log(K));

Part II: Inverse Function Theorems
I don’t think you will need any convincing that “solving equations” is an essential mathe-
matical activity. For us, solving an equation will mean that we have normed spaces V and
W , a map f from a subset X of V into W , and given y ∈ W we would like to find (some
or all) x ∈ X such that f(x) = y. In practice, what frequently happens is that we start
with an x0 and y0 satisfying f(x0) = y0, and given y close to y0 we would like to find the
x close to x0 that satisfy f(x) = y. A so-called “inverse function theorem” is a theorem to
the effect that, under certain assumptions on f , for each y in some neighborhood U of y0,
there is a unique x = g(y) near x0 that solves f(x) = y. In this case g is called the local
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inverse for f near x0. Perhaps the mother of all inverse function theorems is the Lipschitz
Inverse Function Theorem, which we state below after reviewing some standard notation.

Notation. In the following, I denotes the identity mapping of the space V , so F0 = I − f
means the mapping F0(x) = x− f(x) and more generally for any y in V , Fy := I − f + y
means the map Fy(x) := x − f(x) + y. Also we denote the closed ball of radius ε in V
centered at v0 by B̄ε(v0, V ) := {v ∈ V | ‖v − v0‖ ≤ ε}.

Lipschitz Inverse Function Theorem. Let V be a Banach space and f : O → V a
map of a neighborhood of the origin into V such that f(0) = 0, and suppose also that
F0 := I − f satisfies a Lipschitz condition with Lipschitz constant K < 1. Then:

1) f satisfies a Lipschitz condition with constant 1 + K.

2) For r > 0 small enough that, B̄r(0, V ) ⊆ O, the map Fy := I − f + y is a contraction
mapping of B̄r(0, V ), provided y in B̄(1−K)r(0, V ).

3) For each y in B̄(1−K)r(0, V ), there is a unique x = g(y) in B̄r(0, V ) such that f(x) = y.

4) This inverse map g : B̄(1−K)r(0, V ) → V satisfies a Lipschitz condition with Lipschitz

constant 1
1−K .

Some general hints for the following problems, The next problems will lead you
through the proof of the Lipschitz Inverse Function Theorem, and the following hints may
be of some help. But first try to do the problems without looking at the hints. (You quite
possibly will think of some or all of them on your own anyway.)

a) Note that (since the “y”s cancel) Fy(v1) − Fy(v2) = F0(v1) − F0(v2), so any Lipschitz
condition satisfied by one of the Fy is also satisfied by all the others.

b) If you write out what it means to say that F0 satisfies a Lipschitz condition with constant
K (and rearrange terms a bit) you will find ‖(f(v1)− f(v2)− (v1 − v2)‖ ≤ K ‖v1 − v2‖.

c) What does it mean for x to be a fixed point of Fy?

d) You are probably used to thinking of the triangle inequality in the form ‖x + y‖ ≤
‖x‖+‖y‖, but if you replace x by x−y you end up with ‖x‖ ≤ ‖x− y‖+‖y‖, and quite
often it is this second form of the triangle inequality that is easier to apply.

. Problem 9. Prove conclusion 1) of the Lipschitz Inverse Function Theorem.

Answer. Since f = I −F0, f(x)− f(y) = (x− y)− (F0(x)−F0(y)), so ‖f(x)− f(y)‖ ≤
‖(x− y)‖+ ‖F0(x)− F0(y)‖ ≤ ‖(x− y)‖+ K ‖(x− y)‖ = (1 + K) ‖(x− y)‖.

. Problem 10. Prove conclusion 2) of the Lipschitz Inverse Function Theorem. (Hint:
The only slightly tricky part is showing that Fy maps B̄r(0, V ) to itself provided ‖y‖ ≤
(1 − K)r, i.e., that for such y, if ‖x‖ ≤ r, then also ‖Fy(x)‖ ≤ r. See the “Important
Caveat!” immediately after the statement of the Banach Contraction Principle.)
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Answer. ‖Fy(x)‖ = ‖F0(x) + y‖ ≤ ‖F0(x)− F0(0)‖ + ‖y‖ ≤ K ‖x‖, so if ‖x‖ ≤ r and
‖y‖ ≤ (1 −K)r then ‖Fy(x)‖ ≤ r, i.e., if y in B̄(1−K)r(0, V ) then Fy maps B̄r(0, V ) into
itself, and by hint a) it satisfies a Lipschitz condition with constant K.

. Problem 11. Prove conclusion 3) of the Lipschitz Inverse Function Theorem. (Hint:
You may want to look at general hint c) for this.)

Answer. By the preceding problem, if y in B̄(1−K)r(0, V ), then Fy has a unique fixed
point x = g(y) in B̄r(0, V ). But x = Fy(x) := x− f(x) + y is equivalent to f(x) = y.

. Problem 12. Prove conclusion 4) of the Lipschitz Inverse Function Theorem.

Answer. Let y1 and y2 be in B̄(1−K)r(0, V ) and let xi = g(yi), so that f(xi) = yi.
Now by definition of F0, x1 − x2 = (f(x1) − f(x2)) − (F0(x1) − F0(x2)) so ‖x1 − x2‖ ≤
‖y1 − y2‖+‖F0(x1)− F0(x2)‖ ≤ ‖y1 − y2‖+K ‖x1 − x2‖. It follows that ‖g(y1)− g(y2)‖ =
‖x1 − x2‖ ≤ 1

1−K ‖y1 − y2‖.

Remark. The principle application of the Lipschitz Inverse Function Theorem is as a
lemma to prove the (far more important) Differentiable Inverse Function Theorem. We
consider this next.

More Notation. If V and W are normed spaces, then we denote by L(V,W ) the space
of all continuous linear maps T : V → W . (If V and W finite dimensional, then every
linear map T : V → W is automatically continuous, so this is consistent with our earlier
use of L(V,W ).) We saw that there was a natural choice of norm for L(V,W ), namely
|||T ||| := sup‖v‖=1 ‖Tv‖, or equivalently, |||T ||| := sup‖v‖6=0

‖Tv‖
‖v‖ . We also saw that

|||T ||| was the smallest Lipschitz constant for T . If O is open in V and F : O → W
is differentiable at every point of O, then we have a map DF : O → L(V,W ) called the
differential of F , namely p 7→ DFp, and we say that F is C1 (or continuously differentiable)
in O if this mapping is continuous. We recall also that if O is convex and if |||DFp ||| ≤ K
for all p ∈ O then we showed that K was a Lipschitz constant for F .

. Problem 13. Assume that F : O → W is C1, p0 ∈ O and K > |||DFp0 |||. Show that
there is a neighborhood U of p0 such that K is a Lipschitz constant for f restricted to U .

Answer. Since F is C1, |||DFp0 ||| is continuous, so the set where it is less than K is
open. In particular, since |||DFp0 ||| < K, there is an ε > 0 such that |||DFp ||| < K in
Bε(p0, V ). Since open balls in normed spaces are convex, it follows that K is a Lipschitz
constant for F in Bε(p0, V ).

Differentiable Inverse Function Theorem (1st Case). Let V be a Banach space
and f : O → V a C1 map of a neighborhood of the origin into V such that f(0) = 0 and
Df0 = I, the identity map of V . If ε > 0 is sufficiently small, then there is an r > 0 and a
unique “inverse” map g : Br(0, V ) → Bε(0, V ) such that f(g(v)) = v for all v in Br(0, V ).
Moreover g is differentiable at the origin and Dg0 = I.
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. Problem 14. Prove the 1st case of the Differentiable Inverse Function Theorem.
Hint: First show that if ε is sufficiently small then I−f satisfies a Lipschitz condition with
constant 1

2 in Bε(0, V ) and apply the Lipschitz Inverse Function Theorem.

Answer. Since the differential of F0 = I − f at 0 is 0, it follows from Problem 13 that
any positive constant K is a Lipschitz constant for F in Bε(0, V ) if ε is sufficiently small,
so the existence of the inverse g follows from the Lipschitz inverse function theorem, and
also that g is Lipschitz with constant 1

1−K . Since DF0 = I, we have f(x) = x + ‖x‖ ρ(x)
where limx→0 ρ(x) = 0. Then x = f(g(x)) = g(x)+‖g(x)‖ ρ(g(x)), so g(x) = x+‖x‖ ρ′(x),
where ρ′(x) = −‖g(x)‖

‖x‖ ρ(g(x)), and since g is Lipschitz and g(0) = 0 if follows easily that
limx→0 ρ′(x) = 0, which proves that Dg0 = I.

Differentiable Inverse Function Theorem (2nd Case). Let V and W be Banach
spaces and F : O → W a C1 map of a neighborhood of the origin of V into W such that
f(0) = 0 and DF0 has a continuous linear inverse. If ε > 0 is sufficiently small, then there
is an r > 0 and a unique “inverse” map G : Br(0,W ) → Bε(0, V ) such that F (G(w)) = w
for all w in Br(0,W ). Moreover G is differentiable at the origin of W and DG0 = (DF0)−1.

. Problem 15. Prove the 2nd case of the Differentiable Inverse Function Theorem.
Hint: Prove this by reducing it to the 1st case of the Differentiable Inverse Function
Theorem. Namely, define f : O → V by f := (DF0)−1 ◦ F , and carry on from there.

Answer. If we define f as in the hint, then since a continuous linear map is its own
differential at every point, it follows from the Chain Rule that f is differentiable at the
origin and its differential is the identity. Thus f is locally inveritible, and if g is its local
inverse, then g ◦ (DF0)−1 is a local inverse for F .

And finally, the following general case of the Differentiable Inverse Function Theorem
follows from the “2nd Case” simply by replacing F (v) by F (v + v0)− F (v0) !

Differentiable Inverse Function Theorem. Let V and W be Banach spaces, v0 ∈ V ,
and F : O → W a C1 map of a neighborhood of v0 in V into W such that DFv0 has
a continuous linear inverse. If ε > 0 is sufficiently small, then there is an r > 0 and a
unique “inverse” map G : Br(F (v0),W ) → Bε(x0, V ) such that F (G(w)) = w for all w in
Bε(0,W ). Moreover G is also C1, and in fact, if v = G(w) then DGw = (DFv)−1.
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